用户名: 密码: 验证码:
太赫兹同轴腔高阶模式回旋管振荡器多模非线性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波泛指频率介于远红外和微波频段之间的电磁辐射,由于其在电磁波谱中所处的特殊位置,因而具备许多独特性质,在雷达、通信、材料处理、成像等领域有着广泛的应用前景。随着太赫兹波应用的日益广泛,研制有效的太赫兹辐射源成为世界各国在该领域的研究热点之一。基于电子回旋受激辐射原理发展起来的快波回旋器件——回旋管,被认为是目前最能获得高功率(上百千瓦及以上)输出的太赫兹辐射源。
     工作在太赫兹频段的传统圆柱腔回旋管工作在低阶模式,横向尺寸较小,这给加工及散热带来一定困难,导致输出功率受到限制。而采用同轴结构的回旋管谐振腔,由于其特殊结构可以抑制高阶模式竞争,进而可以增大其腔体横向尺寸,从而可以获得更大的功率输出。
     目前,关于同轴腔回旋管的实验研究,主要是为国际热核聚变(ITER)提供高功率电磁辐射源,其频率最高为170GHz,功率可达2.2MW。而对此结构下更高频率辐射的回旋管的研究,尚未见诸报道。
     同轴腔回旋管要获得高功率太赫兹波输出,有两个须得解决的主要问题:一是要尽可能地增大腔体的横向尺寸以利于加工和散热,二是尽可能降低工作磁场以利于降低工程成本。本文旨在探索并用非线性方法研究基于同轴结构回旋管原理,采用高阶模式高次谐波,在较低工作磁场条件下实现单模高功率太赫兹波输出的可能性。
     本文的编排如下:
     第一章详细介绍了太赫兹辐射源(尤其是基于电子回旋脉塞机理)的研究现状以及存在的主要问题,进而给出本文的研究内容以及意义所在。
     第二章建立了同轴腔回旋管振荡器多模起振模型。首先建立了同轴腔体中各个模式的冷腔体分析模型,并利用FORTRAN语言编制了相应程序,可在给定腔体结构下计算出相应模式的谐振频率,绕射因子以及冷腔体场分布;然后给出了多个模式在冷腔场分布下的起振模型,推导了起振过程中开槽深度较浅情况下各模式在外壁和内导体上的欧姆损耗的近似表达式,并提出了相应的数值计算方法,进而编写了考虑模式竞争和欧姆损耗的多模起振程序。
     第三章利用卡尔斯鲁厄研究中心(KIT)开展的TE34.19模式基次谐波、工作频率0.17THz同轴回旋管实验数据进行数值计算,模拟了多模起振过程,所得结果与实验报导较为吻合,验证了本文多模起振模型及所编程序的可靠性。
     第四章详细设计研究了一种工作在高阶模式TE42,22、工作频率为0.22THz的一种新型的同轴腔回旋管振荡器。首先确定了其腔体参数和竞争模式,进而研究内导体开槽以及取负坡度对于抑制模式竞争的影响。数值分析表明,内导体合适的开槽以及适当的坡度选择不仅可以稀化模谱,还可以降低竞争模式的绕射因子,从而提高其起振电流。在优化后的电子束导引中心半径下,通过对考虑不同旋转方向模式的多模起振过程的模拟,表明所设计器件可以在65kV-75kV的电压范围内,稳定地工作在单一模式下,最大输出功率可达0.8MW,其腔体损耗小于腔体壁所能承受的最大值。
     第五章研究设计了一种超高阶模式高次谐波(TE43,4三次谐波)工作频率为0.34THz、功率输出上百千瓦的同轴腔回旋管振荡器。在三次谐波起振过程的研究中发现,由于模谱太密和与电子束互作用相对较弱,普通高阶模式的三次谐波难以从激烈的模式竞争中起振。而采用边廊模式(即角向模式指数远大于径向模式指数)可以有效地克服模式竞争。通过对内导体开槽深度对基波模式参数影响的分析,选取合适的开槽深度将大大稀化其与工作模式之间的频率分割度,进而有效地抑制来自基波的模式竞争。多模起振的数值分析表明,三次谐波模式可以稳定地工作在相对较小的一个加速电压范围,并获得163kW的功率输出。
Terahertz (THz) wave, which means the electromagnetic radiation between far infrared and microwave region, occupies a special position in the electromagnetic spectrum and consequently has a lot of unique characteristics. It has widely potential applications including radar, communications, material processing, imaging and so on. With its applications more and more widely, it becomes a research hotspot in this field for many countries in the world to develop an effective THz radiation source. Gyrotron—one of the fastwave gyro-devices, based on the mechanism of ECRM, has been considered to be the most promising THz radiation source to generate high power (over100kilowatt).
     Because of the low-order operating mode, the transverse size of the traditional cylindrical cavity THz gyrotron is small, which causes problems in machining, ohmic heating and further increasing of output power. Meanwhile, as far as the coaxial cavity is concerned, the high-order mode could be employed due to the suppression of competition modes even with much denser mode spectrum, which could increase the cavity diameter and output power.
     Currently, the main aim of the coaxial cavity gyrotron experiments is to provide the microwave radiation source for ITER, the highest operating frequency is0.17THz and the corresponding power is2.2MW. So far the research on the coaxial cavity gyrotron with higher operating frequency has never been reported.
     To generate the high power THz radiation by employing coaxial cavity gyrotron, two main problems have to be solved:1) Increasing the transverse size of the cavity as large as possible on benefit of machining and heating;2) Decreasing the working magnetic field as low as possible to reduce the engineering cost. This paper aims to use the nonlinear method to verify the possibility of single-mode high power THz radiation based on the coaxial cavity gyrotron with high-order modes, high harmonics and low magnetic field.
     This dissertation is organized as follows:
     In Chapter1, the detailed states of the arts of THz coaxial cavity gyrotron and existing problems are introduced, the contents and value of the work are also presented.
     In Chapter2, the multimode startup model in the coaxial cavity gyrotron oscillator is established. Firstly, the model of the cold-coaxial-cavity analysis is established, and the corresponding program is completed by employing FORTRAN language, by which the resonant frequency, diffractive factor and cold-cavity field distribution of each mode could be obtained with provided cavity parameters. Secondly, the multimode startup model with assumed cold distribution is given, the ohmic losses on inner rod and outer wall of each mode provided shallow slot depth are derived, the numerical mothed is presented and the time-dependent, multimode code with the ohmic losses taken into account is developed.
     In Chapter3, by use of the parameters of the fundermental TE34,19,0.17THz coaxial cavity experiments in KIT, the numerical calculations are performed to simulate the multimode startup scenario. The results agree well with the experimental report, which demonstrates the validity of the multimode startup model and program.
     In Chapter4, a coaxial cavity gyrotron with0.22THz operating frequency is designed in detail. The cavity parameters are selected and the corresponding competiting modes are confirmed. The influence of proper corrugated inner condunctor with slope on the mode competition is analyzed. The results indicate that it can rarefy the mode spectrum and decrease the diffractive factor of the competiting modes, which leads to the rise of the starting current. Under the optimal electron guiding-center radius, the multimode startup simulations with the different rotating modes taken into account show that the maximum output power of0.8MW could be attained for the expected mode within the region of65kV-75kV, and the maximum heating losses are under the limitation.
     In Chapter5, an ultra high-order mode, high harmonic(TE43,4,3rd harmonic) coaxial-cavity gyrotron oscillator with over100kW output power is designed. It is found that the conventional3rd high-orde mode could hardly startup because of the fierce mode competition and weak interaction with electron beam. The problem could be solved to some degree by employing the whispering gallery mode. Through the analysis of the influence of the slot depth on the resonance frequency, it is found that the mode spectrum between the operating mode and the most important competiting fundermental mode could be rarefied greatly by the proper selection of the slot depth. Nonlinear simlulation shows that the maxim output power of163kW for the operating mode is obtained, and the single-mode operation is achieved in a comparatively narrow region of accelerating voltage.
引文
[1]P. Siegel.2007 Joint 32th Int. Conf. IR/MM Waves & 15th Int. Conf. THz Electron. Dig. pp.260-261.
    [2]贾刚,汪力,张希成。太赫兹波(TeraHertz)科学与技术。中国科学基金,2002,(4):200-203
    [3]S. Mickan, D.Abbott, J. Munch, et al. Analysis of system trade-offs for terahertz imaging. Microelectroncs Journal.2000,31(7):503-514
    [4]P. H. Siegel. Terahertz Technology. IEEE Trans. Microwave Theory Tech.,2002, 50(3):910-920
    [5]D.Dragoman, M.Dragoman. Terahertz fields and applications. Progress in Quantum Electronics,2004,28(1):1-66
    [6]R. Kohler, A. Tredicucci, F. Beltram, et al. Terahertz semiconductor-heterostructure laser. Nature.2002,417(6885):156-159
    [7]H. Zhong, N. Karpowicz. Terahertz Wave Imaging for Landmine Detection. Proc of SPIE.2004,5411(4):33-44
    [8]M. R. Woodward, R. Appleby. Terahertz and millimetre wave technology in port and harbour security. Proc of SPIE.2005,5780(4):145-152
    [9]D. Adri, O. Chiko. Terahertz-wave sources and imaging applications. Meas Sci Technol.2006,17(5):161-174
    [10]D. J. Cook, B. K. Decker, G Dadusc. Through container THz sensing:applications for explosives screening. Proc of SPIE.2004,5354(4):55-62
    [11]M.Nagel, P.H.Bofiver, M.Brucherseifer, et al. Integrated THz technology for label free genetic diagnostics. Appl. Phys. Lett.,2002,80(1):154-156
    [12]T.Dekorsy, H.Auer, C.Waschke, et al. Emission of Submillimeter Electromagnetic Waves by Coherent Phonons. Phys. Rev Lett.,1995,74(5):738-741
    [13]Tadao Nagatsuma. Exploring Sub-Terahertz Waves for Future Wireless Communications. The Joint 31th International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics,2006,4
    [14]G. Gruner. Millimeter and Submillimeter Wave Spectroscopy of Solids. Topics in Applied Physics,1998,74(1):51-109
    [15]L.Xu, X.C.Zhang, D.H.Auston. Terahertz beam generation by femtosecond optical pulses in electro optic materials. Appl. Phys. Lett.,1992,61(15):1784-1786
    [16]P. U. Jepsen, R. H. Jacobsen, S.R.Keiding. Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc.,1996,13(11):2424-2436
    [17]X. C. Zhang, B. B. Hu, J. T.Darrow, et al. Generation of femtosecond electromagnetic pulses from semiconductor surfaces. Appl. Phys. Lett.,1990,56(11):1011-1013
    [18]B. S. Williams, S. Kumar, H. Callebaut, et al. Terahertz quantum cascade Laser operating up to 137K. Appl. Phys. Lett.,2003,83(25):5142-5144
    [19]G. L. Carr, M. C. Martin, W. R. McKinney, et al. High-Power terahertz radiation from relativistic electron. Nature,2002,420 (6912):153-156
    [20]James Benford, John A. Swegle, Edl Schamioglu著。高功率微波。江伟华,张弛译。北京:国防工业出版社,2008
    [21]Robert J. Barker等编著。高功率微波源与技术。《高功率微波源与技术》翻译组。北京:清华大学出版社,2005
    [22]廖复疆。真空电子技术(第二版)。北京:国防工业出版社,2008
    [23]张世昌。从磁控管到回旋管和自由电子激光。物理,1988,17(9):570-574
    [24]V. A. Flyagin, A. V. Gaponov, M. I. Petelin,et al. The gyrotron. IEEE Trans Microwave Theory Tech,1977,25:514-521
    [25]M. V. Kartikeyan, E.Borie, M. Thumm. Gyrotrons. Berlin:Springer,2004
    [26]R. A. Cairns, A. D. R. Phelps. Generation and Application of High Power Microwave. Bristol and Philadelphia:Institute of Physics Publishing,1997
    [27]S. H.Gold, G. S.Nusinovich. Review of high-power microwave source research. Rev. Sci. Instrum.1997,68(11)
    [28]M. Thumm. State-of-the Art of High Power Gyro-devices and Free Electron Masers Update 2011. KIT,2011
    [29]R. Q. Twiss. Radiation Transfer and the Possibility of Negative Absorption in Radio Astronomy. Aust J Phys.1958,11:564-579
    [30]R. Q. Twiss, J. A. Robert. Electromagnetic Radiation from Electrons Rotating in an Ionized Medium under the Action of a Uniform Magnetic Field. Aust J Phys,1958,11: 424-446
    [31]J. Schneider. Stimulated emission of radiation by relativistic electrons in a magnetic field. Phys Rev Lett,1959,2:504-508
    [32]A. V. Gaponov. Interaction of Irrectilinear Electron Beams with Electronmagnetic Waves in Transmistion Lines. Izv VUZov Radiofiz,1959,2:836-837
    [33]J. L. Hirshfield, J. M. Wachtel. Electron Cyclotron Maser. Phys Rev Lett,1964,12: 533-536
    [34]V. L. Granatstein, B. Levush, B. G. Danly, R. K. Parker. A Quarter Century of Gyrotron Research and Development. IEEE Trans Plasma Sci Tech, 1997,25(6):1322-1335
    [35]M. I. Petlin. One century of Cyclotron radiation. IEEE Trans Plasma Sci Tech,1999,27:294-302
    [36]刘盛纲。 电子回旋脉塞和回旋管的进展。 成都:四川教育出版社,1988
    [37]张世昌。 强功率毫米、亚毫米波辐射源。 微波学报,1992,(4):73-83
    [38]G. S. Nusinovich. Introduction to the Physics of Gyrotrons. Baltimore:The Johns Hopkins University Press,2004
    [39]V. L. Granatstein, P. Sprangle, M. Herndon, R. K. Parker, S. P. Schlesinger. Microwave amplification with an intense relativistic electron beam. J. Appl. Phys, 1975,46:3800-3805
    [40]K. R. Chu, A. Drobot, V. L. Granaststein, and J. L. Seftor. Characteristics and Optimum Operating Parameters of a Gyrotron Traveling Wave Amplifier, IEEE Trans. MTT,1979,27(2):178-187
    [41]J. L. Seftor, V. L. Granatstein, and et al. The electron cyclotron maser as a high power traveling-wave amplifier of millimeter waves. IEEE J. Quantum Electron.,1979, QE-15:844-853
    [42]Y. Y. Lau, K. R. Chu, L. R. Barnett and V. L. Granatstein, Gyrotron Travelling Wave Amplifier:I. Analysis of Oscillations, International Journal of Infrared and Millimeter Waves.1981,2(3):373-393
    [43]Y. Y. Lau, K. R. Chu. Gyrotron Travelling Wave Amplifier Ⅲ:A proposed wide-band fast wave amplifier. International Journal of Infrared and Millimeter Waves.1981,2:415-425
    [44]R. Larry. Barnett, Lung Hai Chang, Cheng Tu, Han Ying Chen, Kwo Ray Chu, Keung Lau, and Chuan Cheng Tu, Absolute Instability Competition Suppression in a Millimeter-Wave Gyrotron Traveling-Wave Tube Phys. Rev Lett.,1989,63(10): 1062-1066
    [45]G. S. Park, S.Y. Park, R.H.Kyser, C.M.Armstrong and A.K.Ganuly, Investigation of the Stability of a Tapered Gyro-TWT Amplifier,1991:779-781
    [46]S. H. Gold, D. A. Kirkpatrick, A. K. Fliflet, R. B. McCowan, A. K. Kinkead, D. L. Hardesty, and M. Sucy, High-voltage millimeter-wave gyro-traveling-wave amplifier, J.App1.Phys.,1991,69(9):6696-6698
    [47]C. S. Kou, Q. S. Wang, D. B. McDennott, A. T. Lin, K. R. Chu and N. C. Luhmann, Jr. High-Power Harmonic Gyro-TWT's---Part I:Linear Theory and Oscillation Study, IEEE Trans. Plasma Science,1992,20(3):155-162
    [48]Q. S. Wang, C. S. Kou, D. B. McDermott, A. T. Lin, K. R. Chu and N. C. Luhmann, Jr, High-Power Harmonic Gyro-TWT's---Part Ⅱ:Nonlinear Theory and Design, IEEE Trans. Plasma Science,1992,20(3):163-169
    [49]K. C. Leou, D. B. McDermott, F. V. Hartmann, C. K. Chong and N. C. Luhmann. Initial Operation of a Wideband Gyro-TWT Amplifier, IEDM,1993:359-362
    [50]K. C.Leou, D.B.McDermott, A.J.Balkcum, and N.C.Luhmann, Jr., Stable High-Power TE01 Gyro-TWT Amplifiers, IEEE Trans. Plasma Science,1994,22(5):585-592
    [51]Kwo Ray Chu, Larry R.Barnett, Wai Keung Lau, Lung Hai Chang, andHan Ying Chen, A Wide-Band Millimeter-Wave Gyrotron Traveling-Wave Amplifier Experiment, IEEE Trans. Electron Devices,1990,37(6):1557-1560
    [52]K. R. Chu, H. Y. Chen, C. L. Hung, et al. Theory and Experimental of Ultrahigh-Gain Gyrotron Traveling Wave Amplifier. IEEE Trans Plasma Sci Tech. 1999,27(2):391-404
    [53]D.B.McDermott, H.H.Song, YHirata, A.T.Lin, L.R.Barnett, T.H.Chang, H.L.Hsu, P.S.Marandos, J.S.Lee, K.R.Chu, and N.C.Luhmann, Jr., Design of a W-Band TE01 Mode Gyrotron Traveling-Wave Amplifier With High Power and Broad-Band Capabilities, IEEE Trans. Plasma Science,2002,30(3):894-902
    [54]A.V. Gaponov, M.I. Petelin, V.K. Yulpatov. The induced radiation of excited classical oscillators and its use in high frequency. Electronics. Radiophys. Quant. Electr.,1967,10:794-813
    [55]M. Blank, K. Felch, and et al. Demontration of a high-power long-pulse 140-GHz gyrotron oscillator. IEEE Trans Plasma Sci Tech,2004,32(3):867-876
    [56]C.Gantenbein, E.Borie, G.Dammertz, H.U.Nickel, B.Piosczyk, M.Thumm, Experimental Results and Numerical Simulations of a High Power 140GHz Gyrotron, IEEE Trans. Plasma Science,1994,22(5):861-870
    [57]K. Sakamoto, A. Kasugai, and et al. Development of long pulse and high power 170GHz gyrotron. Journal of Physics, Conference Series,2005,25:8-12
    [58]K. Sakamoto, A. Kasugai, and et al. Development of 170GHz/500kW gyrotron. International Journal of Infrared and Millimeter Waves.1997,18(9):373-393
    [59]K. Kajiwara, A. Kasugai, and et al. Reliability test of the 170GHz gyrotron for ITER. J Infrared Milli Terahz Waves,2011,32:329-336
    [60]V. E. Zapevalov, G. G. Denisov, and et al. Development of 170GHz/q MW Russian gyrotron for ITER. Fusion Engineering and Design,2001,53:377-385
    [61]G. G. Denisov, A. G. Litvak, and et al. Development in Russia of High-Power Gyrotrons for Fusion,2007
    [62]K.D.Hong, G.F.Brand, T.A.Idehara 150-600 GHz Step-Tunable Gyrotron. Journal of Applied Physics,1993,74(8):5250-5258
    [63]T. Idehara, I. Ogawa, and et al. Development of 394.6GHz CW gyrotron(gyrotron FU CW II)for DNP/Proton_NMR at 600MHz. J Infrared Milli Terahz Waves,2007, 28(6):433-442
    [64]M. Yu.Glyavin, A.G.Luchinin, G.Yu.Golubiatnikov. Generation of 1.5-kW,1-THz Coherent Radiation from a Gyrotron with a Pulsed Magnetic Field. Phys. Rev. Lett., 2008,100(1):015101
    [65]T.Idehara, H.Tsuchiya, O.Watanabe, et al. The first experiment of a THz gyrotron with a pulse magent. Int. J. Infrared and Millimeter Waves,2006,27(3):319-331.
    [66]T. Saito, T. Nakano, and et al. Performance test of CW 300GHz gyrotron Fu CW I. Int J Infrared Milli Waves,2007,28:1063-1078
    [67]T.Idehara, T.Satio, I.Ogawa, S.Mitsudo, Y.Tatematsu, La Agusu, H.Mori and S.Kobayashi, Development of Terahertz FU CW Gyrotron Serios for DNP, APPLIED MAGNETIC RESONANCE,2008,34(3-4):265-275
    [68]T.Idehara, T.Satio, H.Mori, H.Tsuchiya, La Agusu and S.Mitsudo, Long Pulse Operation of the THz Gyrotron with a Pulse Magnet, Int.J.INFRARED AND MILLIMETER WAVES,2008,29(2):131-141.
    [69]D.B.McDermott, N.C.Luhmann, A.Kupiszewski, and H.R.Jory, Small-signal theory of a large-orbit electron-cyclotron harmonic maser, Phys.Fluids,1983,26:1936-1941.
    [70]V.Bratman, Yu.K.Kalynov, V.N.Manuilov and S.V.Samsonov, Submillimeter-wave large-orbit gyrotron, Radiophys.Quantum Electron.,2005,48(10-11):731-736.
    [71]M. K. Hornstein, V.S. Bajaj, and et al. Second harmonic operation at 460GHz and Broadhand continuous frequency tuning of a gyrotron oscillator. IEEE Trans on Electron Devices,2005,52(5):798-807
    [72]T. Idehara, T. Saito, and et al. The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range-a review of novel and prospective applicationis. Thin solid films,2008,517:1503-1506
    [73]V. Bratman, M. Glyavin, and et al. Review of subterahertz and Terahertz gyrodevices at IAP RAS and FIR FU. IEEE Trans Plasma Sci Tech.2009,37(1):36-43
    [74]V.Bratman, Yu.K.Kalynov, and V.N.Manuilov, Large-Orbit Gyrotron Operation in the Terahertz Frequency Range, Phys.Rev.Lett.,2009,102(24):245101
    [75]M. Y. Glyavin, A.G. Luchinin, and et al. Design of a subterahertz, third-harmonic, continuous-wave gyrotron. IEEE Trans Plasma Sci Tech.2008,36(3):591-596
    [76]A.C. Torrezan, S.T. Han, and et al. Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance. IEEE Trans Plasma Sci Tech.2011,39(4):1061-1066
    [77]O. Dumbrajs, T. Idehara, S. Sabchevski. Design of an optimized resonant cavity for a compact sub-Terahertz gyrotron. J Infrared Milli Terahz Waves,2010,31:1115-1125
    [78]V. L. Bratman, M. Y. Glyavin, and et al. Terahertz gyrotrons at IAP RAS:status and new designs. J Infrared Milli Terahz Waves,2011,32:371-379
    [79]S.H. Kao, C.C. Chiu, K.F. Pao, K.R. Chu.Competition between harmonic cyclotron maser interactions in the Terahertz regime. Physical review letters, 2011,23:135101-1~135101-4
    [80]A. W. Fliflet, M. K. Hornstein, S. H. Gold. Enhanced stability of second-and fourth-harmonic gyrotrons driven by a frequency-doubled prebunched beam. IEEE Trans Plasma Sci Tech.2010,38(6):1150-1159
    [81]X. S. Yuan, Y. Lan, and et al. Theoretical study on a 0.6THz third harmonic gyrotron. Phys. Plasmas,2011,18:103115-1-103115-5
    [82]T. Saito, N. Yamada, and et al. Generatio of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation. Phys. Plasmas,2012,19:063106-1~ 063106-9
    [83]S.H. Kao, C.C. Chiu, K.R. Chu. A study of sub-terahertz and terahertz gyrotron oscillators. Phys. Plasmas,2012,19:023112-1~1023112-8
    [84]X. S. Yuan, Y. Lan, Y. Han, Y. Yan. Nonlinear theory for a terahertz gyrotron with a special cross-section interaction cavity. Phys. Plasmas,2012,19:053107-1 1023112-5
    [85]A. Kumar, N. Kumar, and et al. RF behavior and cavity design for 0.3THz,4 kW gyrotron for material processing application. Infrared Physics & Technology, 2012,55:337-344
    [86]S.N. Vlasov, L.I. Zagryadskaya, and I.M. Orlova. Open coaxial resonators for gyrotrons. Radioeng. Electron. Phys,1976,21:96-102
    [87]Y.V. Bykov, A.L. Goldenberg, and et al. Experimental investigation of a gyrotron with whispering-gallery modes. Radiophys. Quantum Electron,1975,18:1141-1143
    [88]Olgierd Dumbrajs, and Gregory S. Nusinovich. Coaxial Gyrotrons:Past, Present, and Future (Review). IEEE Transactions on Plasma Science,2004,32(3):934-945
    [89]V.A. Flyagin and G.S. Nusinovich. Gyrotron oscillators. Proc. IEEE, 1988,76:644-656
    [90]G.S.Nusinovich, M.E.Read, O.Dumbrajs, K.E.Kreischer.Theory of Gyrotrons with Coaxial Resonators. IEEE Trans. On Electron Devices 1994,41:433-438
    [91]Christos T.Iatrou, Stefan Kern, and Alexander B.Pavelyev, Coaxial Cavities with Corrugated Inner Conductor for Gyrotrons, IEEE Trans. MTT.1996,44(1):56-64
    [92]Christos T.Iatrou, Mode Selective Properties of Coaxial Gyrotrons Resonators, IEEE Trans. Plasma Science,1996,24(3):596-605
    [93]C.T.Iatrou, O. Braz, G.Dammertz, S. Kern, M. Kuntze, B. Piosczyk, and M.Thumm, Design and Experimental Operation of a 165-GHz,1.5-MW, Coaxial Cavity Gyrotron with Axial RF Output, IEEE Trans. Plasma Science,1997 25(3):470-479
    [94]B. Piosczyk, O. Braz, G.Dammertz, C. T. Iatrou, el al. A 1.5-MW,140-GHz, TE28,16-coaxial cavity gyrotron. IEEE Transactions on Plasma Science,1997,25(3): 460-469
    [95]B.Piosczyk, G.Dammertz, O.Dumbrajs, S.Illy, J.Jin, W.Leonhardt,G.Michel, O.Prinz, T.Rzesnicki, M.Schmid, M.Thumm and X.Yang. A 2 MW,170 GHz coaxial cavity gyrotron-experimental verification of the design of main components. Journal of Physics:Conference Series 25.2005:24-32
    [96]T. Rzesnicki, B. Piosczyk, S. Kern, et al.2.2-MW record power of the 170-GHz European Preprototype coaxial-cavity gyrotron for ITER. IEEE Trans. Plasma Sci. 2010,38(6):1141-1148
    [97]B. Piosczyk, G.Dammertz, O.Dumbrajs, el al.165-GHz coaxial cavity gyrotron. IEEE Trans. Plasma Sci.2004,32(3):853-860
    [98]B.Piosczyk, G.Dammertz, O.Dumbrajs, et al. A 2-MW 170-GHz coaxial cavity gyrotron. IEEE Trans. Plasma Sci..2004,32(3):413-417
    [99]B. Piosczyk, A. Arnold, G.Dammertz, O.Dumbrajs, el al. Coaxial cavity gyrotron—recent experimental results. IEEE Transactions on Plasma Science,2002, 30(3):819-827
    [100]B. Piosczyk, O. Braz, G.Dammertz, C. T. Iatrou, el al. Coaxial cavity gyrotron with dual RF beam output. IEEE Transactions on Plasma Science,1998,26(3):393-401
    [101]B. Piosczyk, A. Arnold, G.Dammertz, el al. Step-frequency operation of a coaxial cavity from 134 to 169.5 GHz. IEEE Transactions on Plasma Science,2000,28(3): 918-923
    [102]O.Dumbrajs, V. I. Khizhnyak, A. B. Pavelyev, et al. Design of rapid-frequency step-tunable powerful coaxial-cavity harmonic gyrotrons. IEEE Transactions on Plasma Science,2000,28(3):681-687
    [103]J. J. Barroso and R. A. Correa, Coaxial resonator for a megawatt,280 GHz gyrotron, Int. J. Infrared Millimeter Waves.1991,12:717-728
    [104]J. J. Barroso and R. A. Correa. Design of a TE coaxial cavity for a 1 MW,280 GHz gyrotron. Int. J. Infrared Millimeter Waves.1992,13:443-455
    [105]P. J. Castro, J. J. Barroso, and R. A. Correa. Cold tests of open coaxial resonators in the range 9-17 GHz. Int. J. Infrared Millimeter Waves.1993,14:383-395,
    [106]P. J. Castro, J. J. Barroso. Ohmic selection in open coaxial resonators: An experimental study Int. J. Infrared Millimeter Waves.1993,14:2191-2201
    [107]J. J. Barroso, R. A. Correa, and P. J. Castro, Gyrotron coaxial cylindrical resonators with corrugated inner conductor:theory and experiment. IEEE Trans. Microwave Theory Tech.,1998,46(9):1221-1230
    [108]R.Advani, J.P.Hogge, K.E.Kreischer, M.Pedrozzi, M.E.Read, J.R.Sirigiri, R.J.Temkin Experiment investigation of a 140-GHz coaxial gyrotron oscillator. IEEE Trans. On Plasma Science 2001,29(6):943-950
    [109]J.P.Hogge, K.E.Kreischer, M.E.Read Results of Testing a 3 MW,140 GHz Coaxial Gyrotron. IEEE International Conference On Plasma Science Boston, USA,August 3-5,1996:268
    [110]M.E.Read, Gregory S.Nusinovich, O.Dumbrajs, CzBird, J.P.Hogge, Kenneth Kreischer, and Monica Blank, Design of a 3-MW 140-GHz Gyrotron with a Coaxial Cavity, IEEE Trans. Plasma Science,1996,24(3):586-594
    [111]Y. Hirata, K. Hayashi, and et al. Design of a 1-MW, CW coaxial gyrotron with two Gaussian beam output. Int. J. Infrared Millimeter Waves,1995,16:713-733
    [112]V.E. Zapevalov, G.G. Denisov, et al. Development of 170GHz/1MW Russian gyrotron for ITER. Fusion Engineering and Design,2001,53:377-385
    [113]Diwei Liu, Yang Yan, Shenggang Liu, Analysis of the characteristics of a coaxial gyrotron cavity with a tilted inner rod. IEEE Transactions on Plasma Science,2012, 59(3):841-845
    [114]R. L. Jaynes, R. M. Gilgenbach, W. Peters, et al. Long-pulse, high-power, large-orbit, coaxial gyrotron oscillator experiments. IEEE Transactions on Plasma Science,2000, 28(3):945-951
    [115]O.Dumbrajs, G. I. Zaginaylov, Ohmic losses in coaxial gyrotron cavities with corrugated insert. IEEE Transactions on Plasma Science,2004,32(3):861-866
    [116]Z. C. Ioannidis, O.Dumbrajs, I. G. Tigelis, Eigenvalues and ohmic losses in coaxial gyrotron cavity. IEEE Transactions on Plasma Science,2006,34(4):1516-1522
    [117]Z. C. Ioannidis, K. A. Avramides, G. P. Latsas, I. G. Tigelis,Azimuthal mode coupling in coaxial waveguides and cavities with longitudinally corrugated insert. IEEE Transactions on Plasma Science,2011,39(5):1213-1221
    [118]O. Dumbrajs, A novel method of improving performance of coaxial gyrotron resonators. IEEE Trans. Plasma Sci.,2002,30(3):836-839
    [119]M. Glyavin, V. Khizhnyak, A. Luchinin, T. Idehara and T. Saito, The design of the 394.6 Ghz continuously tunable coaxial gyrotron for DNP spectroscopy, Int. J. Infrared Millimeter Waves.2008,29:641-648
    [120]Rui Liu, Hongfu Li, A novel method for calculation of eigenmodes of gyrotron resonators. Int. J. Infrared Milli Terahz Waves,2011,32:754-762
    [121]Shi-Chang Zhang, Study of Frequency of a Coaxial-Cavity Gyrotron Oscillator, Proceedings of APMC2001, Taipei, Taiwan, R.O.C.,2001:791-794
    [122]Hung C L, Yeh Y S. "The propagation constants of higher-order modes in coaxial waveguide with finite conductivity." Int J Infrared and Millim waves.2005,26:29-39
    [123]Hung C L, Yeh Y S. "Spectral domain analysis of coaxial cavity " Int J Infrared and Millim waves.2003,24:2025-2041
    [124]V. E. Zapevalov, V. I. Khizhnyak, M. A. Moiseev, et al. Advanced coaxial cavity gyrotrons. Infrared and Millimeter Waves,2002. Conference:335-336
    [125]Shi-Chang Zhang and Manfred Thumm, Eigenvalue Equations and Numerical Analysis of a Coaxial Cavity with Misaligned Inner Rod, IEEE Trans. MTT.2000, 48(1):8-14
    [126]Shi-Chang Zhang and Manfred Thumm, Eigenfrequency of a 140GHz/1.5MW Coaxial-Cavity Gyrotron Oscillator with Structural Misalignment Taken into Account, 1999:836-839
    [127]Shi-chang Zhang and Manfred Thumm. Gyrokinetic description of the structural eccentricity influence on the starting current of a coaxial-cavity gyrotron. Physics of Plasmas.1999,6(5):1622-1626
    [128]Shi-Chang Zhang, Comparative Study of Coaxial-Cavity and Cylindrical-Cavity Gyrotron Oscillators with Electron-Beam Misalignment Taken into Account,1999: 833-835
    [129]Shi-Chang Zhang and Manfred Thumm, Kinetic description of the influence of electron-beam misalignment on the performance of a coaxial-cavity gyrotron, Phys.Plasmas,1996,2(7):2760-2765
    [130]Shi-Chang Zhang. Starting Current of a 140GHz/1.5MW Coaxial Cavity Gyrotron Oscillator, Asia Pacific Microwave Conference,1997:341-344
    [131]S. G. Liu, X. S. Liu, et al. The coaxial gyrotron with two electron beams I:Linear theory and nonlinear theory. Physics of Plasmas,2007,14(10):103113
    [132]S. G. Liu, X. S. Liu, et al. The coaxial gyrotron with two electron beams II:Dual frequency operation. Physics of Plasmas,2007,14(10):103114
    [133]A. K. Avramides, T. C. Iatrous, and L. J. Vomvoridis. Design Considerations for Powerful Continuous-Wave Second-Cyclotron-Harmonic Coaxial-Cavity Gyrotrons, IEEE.Trans.Plasma Science,2004:917-928
    [134]D. B. McDermott, N. C. Luhmann, et al. Operation of a millimeter-wave harmonic gyrotron. Int J. Infrared and Millimeter waves,1983,4(4):639-664
    [135]K. R. Chu, D. Dialetis. Theory of harmonic gyrotron oscillator with slotted resonant structure. Int J. Infrared and Millimeter waves,1984,5(1):37-56
    [136]B. G. Danly, R. J. Temkin. Generalized nonlinear harmonic gyrotron theory. Phys Fluids.1986,29:561-567
    [137]O. Dumbrajs, G. S. Nusinovich, A. B. Pavelyev. Competition of Modes resonant with arbitrary cyclotron harmonics in a gyrotron with nonfixed axial structure of the high-frequency field. IEEE Trans on Plasma Sci.1990,18(3):301-305
    [138]S. S. Hakkarainen, K.E. Kreischer, et al. Submillimeter-wave harmonic gyrotron experiment. IEEE Trans on Plasma Sci.1990,18(3):334-342
    [139]T. Idehara, T. Tatsukawa, I. Ogawa. Competition between fundamental and second-harmonic operations in a submillimeter wave gyrotron. Appl Phys Lett.1991, 15(58):1594-1596
    [140]G. F. Brand, T. Idehara, T. Tatsukawa, et al. Mode competition in a high harmonic gyrotron. Int J Electronics.1992,72:745-758
    [141]G. P. Saraph, T. M. Antonsen, G. S. Nusinovich, et al. "Nonlinear theory of stable,efficient operation of a gyrotron at cyclotron harmonics." Phys Fluids B.1993, 5(12):4473-4485
    [142]V. L. Bratman, A. E. fedotov, et al. Moderately relativistic high-harmonic gyrotrons for millimeter/submillimeter wavelength band. IEEE Trans on Plasma Sci.1999, 27(2):456-461
    [143]T. Idehara, I. Ogawa, et al. A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet. IEEE Trans on Plasma Sci.2004,32(3):903-909
    [144]T. Idehara, T. Tatsukawa, et al. Development of a second cyclotron harmonic gyrotron operating at submillimeter wavelengths. Phys. Fluids B,1992,4:267-273
    [145]T. Idehara, T. Tatsukawa, et al. Development of a highfrequency, secondharmonic gyrotron tunable up to 636 GHz. Phys. Fluids B,1993,5:1377-1379
    [146]T. Notake, T. Saito, et al. Development of a novel high power sub-THz second harmonic gyrotron. Physical Review Letters,2009,27:225002-1-225002-4
    [147]Y. Huang, H.F. Li, et al. Third-harmonic complex caivty gyrotron self-consistent nonlinear analysis. IEEE Trans on Plasma Sci.1997,25(6):1406-1411
    [148]喻胜,李宏福,谢仲柃等。”渐变复合腔回旋管高次谐波注—波互作用非线性模拟.”物理学报.2000,49(12):2455-2459
    [149]李宏福,杜品忠,杨仕文等。 ”突变复合腔回旋管自洽场理论与模拟.”物理学报.2000,49(2):312-317
    [150]Shi-Chang Zhang. Third Cyclotron Harmonic Gyrotron Oscillator, Proceedings of APMC2001, Taipei, Taiwan, R. O. C.,2001:867-869
    [151]S.J.Cooke, A.W.Cross, W.He, and A.D.R.Phelps. Experimental Operation of a Cyclotron Autoresonance Maser Oscillator at the Second Harmonic, Phys. Rev. Lett.,1996,77(23):4836-4839
    [152]C. L. Hung. Stable high-power second-harmonic coaxial-waveguide gyrotron traveling-wave-tube amplifier. IEEE Trans. Plasma Sci,2012,40(6):1545-1550
    [153]张世昌。2008年国家自然科学基金项目申请书《基于相对论电子束微波激射的高功率太赫兹电磁波辐射源》。项目批准号:60871023
    [154]A. W. Fliflet. Linear and non-linear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes. Int.J.Electronics.1986,61(6): 1049-1080
    [155]张世昌。回旋管及回旋潘尼管的动力学理论。成都电讯工程学院学报,1986,15(4):12-24
    [156]Shi-chang Zhang and Yaowu Liu. Physical basis of general dispersion equation of free-electron masers. J.Phys.D:Appl. Phys.2001,34:2369-2371
    [157]S.C.Zhang,M. Thumm. Gyrokinetics of Coaxial-Cavity Electron Cyclotron Maser. Int. J. Infrared Millimeter Waves.1999,20(2):157-170
    [158]P.Sprangle, and W. M.Manheimer. Coherent nonlinear theory of a cyclotron instability. Phys. Fluids,1975,18:224-230.
    [159]P.Sprangle, and A.T.Drobot, The linear and self consistent nonlinear theory of the electron cyclotron maser instability. IEEE. Trans, microwave Theory Tech.1977,25: 528-544.
    [160]张世昌。自由电子脉塞的一种统一理论——回旋动力学。中国科学(A辑),1991,(1):55-64
    [161]刘盛纲。相对论电子学。 北京:科学出版社,1987
    [162]Shenggang Liu. Shichang Zhang. Zhonghai Yang. Xiaodong Cheng, and Zhengbiao Ouyang. Electrostatic electron cyclotron resonance maer (linear theory). J.Appl.Phys.1986,59(11):3621-3626
    [163]A.W. Fliflet, R.C. Lee, M.E. Read. Self-consistent field model for the complex cavity gyrotron. Int J Electronics.1988,65:273-283
    [164]A.W. Fliflet, M.E. Read, K.R. Chu, et al. A self-consistent field theory for gyrotron oscillators:application to a low Q gyromonotron. Int J Electronics.1982,53(6): 505-521
    [165]A. W. Fliflet, W.M. Manheimer. Nonlinear theory of phase-locking gyrotron oscillators driven by an external signal. Phys Rev A.1989,39:3432-3443
    [166]傅文杰。太赫兹电子回旋脉塞器件研究。电子科技大学博士学位论文,2010年
    [167]A.W. Fliflet, R. C. Lee, S. H. Gold, et al. Time-dependent multimode simulation gyrotron oscillators. Phys.Rev.A.1991,43(11):115-125
    [168]S. H. Gold, A. W. Fliflet. Multimode simulation of high frequency gyrotrons. Int J Electronics.1992,72:779-794
    [169]G. S. Nusinovich. Review of the theory of mode interaction in gyrodevices. IEEE Trans on Plasma Sci.1999,27:313-326
    [170]E. Borie, B. Jodicke. Self-consistent theory of mode competition for gyrotrons. Int J Electronics.1992,72:721-744
    [171]D. R. Whaley, M. Q. Tran, T. M. Tran, et al. Mode Competition and Startup in cylindrical Cavity Gyrotrons Using High-Order Operating Modes. IEEE Trans on Plasma Sci.1994,22:850-860
    [172]S. Y. Cai, T. M. Antonsen, J. G. Saraph, et al. Multifrequency theory of high power gyrotron oscillators. Int J Electronics.1992,72:759-777
    [173]O. Dumbrajs, G S. Nusinovich. Cold-Cavity and Self-Consistent Approaches in the Theory of Mode Competition in Gyrotrons. IEEE Trans on Plasma Sci.1992,20(3): 133-138
    [174]T. Idehara, Y. Shimizu. Mode cooperation in a submillimeter wave gyrotron. Phys Plasma Sci.1994,10:3145-3147
    [175]S. H.Gold, A. W. Fliflet. Multimode simulation of high power gyrotrons. Int J Electronics.1992,72:779-794
    [176]G. S. Nusinovich, O. V. Sinitsyn, L. Velkovich, et al. Startup scenarios in high-power gyrotrons. IEEE Trans on Plasma Sci.2004,32(3):841-852
    [177]O. Dumbrajs, A. Mobius. Competition between co-and counter-rotating modes in gyrotrons. Int J Electronics.1992,72:683-686
    [178]O. Dumbrajs, M. Y. Glyavin, V. E. Zapevalov, et al. Influence of reflections on mode competition in gyrotrons. IEEE Trans on Plasma Sci.2000,28(3):588-596
    [179]K. E. Kreischer, R. J. Temkin, H. R. Fetterman, et al. Multimode oscillation and mode competition in high-frequency gyrotrons. IEEE Trans on Microwave theory and Tech.1984,32(5):481-490
    [180]B. Levush, T. M. Antonsen. Mode competition and control in high-power gyrotron oscillators. IEEE Trans on Plasma Sci.1990,18(3):260-272
    [181]M. Botton, T. M. Antonsen, B. Levuch. MAGY:a time-dependent code for simualtion of slow and fast microwave souces. IEEE Trans on Plasma Sci.1998,26(3):882-892
    [182]张世昌。 自由电子激光导论。 成都:西南交通大学出版社,1994
    [183]黄勇。35GHz三次谐波复合腔回旋管理论及模拟研究。电子科技大学博士论文,2000
    [184]顾茂章,张克潜。微波技术。 北京:清华大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700