用户名: 密码: 验证码:
潜油电泵机组斜井通过能力与易失效部件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据管柱能够靠自身重力下放到井下的四个判别条件:刚度条件、接触条件、强度条件、摩阻力条件和由于潜油电泵机组在斜井内受到井眼曲率变化引起机组发生大变形以及机组下放受到的机械阻力,提出了采用强度条件和摩阻力条件来评价电泵机组斜井通过能力,并建立了潜油电泵机组斜井受力变形分析的三维计算有限元模型。应用ANSYS软件的大变形、接触非线性理论对电泵机组在斜井内的受力进行了分析,计算出WIDD-C17井,130电泵机组,在30°井斜角时能通过的极限曲率为6°/30m,此时下放推力为1.75kN。最后应用ANSYS软件的二次开发功能APDL编制了潜油电泵机组斜井通过能力评价的专用程序,可以根据给定的井眼轨道、电泵机组,模拟计算机组在不同曲率井段内的受力变形状态,图形显示电泵机组复合应力等结果,并重新对机组在不同井眼曲率的通过能力进行了评价。在电泵机组通过斜井段后,由于其潜油电泵轴和泵接头连接螺钉易失效,因此本文对电泵轴和泵接头连接螺钉进行了有限元分析。通过对电泵轴与花键套接触的有限元分析,得到了电泵轴的应力分布情况,泵轴最大应力发生在花键轴与过渡段连接处。泵轴与花键套由不同材料改为相同材料蒙乃尔K-500,花键根部的应力集中系数下降了13.72%;花键轴键侧根部圆弧由外圆弧改为内圆弧设计,花键根部应力集中系数下降了10.77%,为电泵轴花键段的设计和花键套材料的选用提供了依据。针对潜油电泵机组连接螺钉在承受不同扭矩作用时的受力情况,以及对螺钉不同的排列时所能传递扭矩和各螺钉受力情况的分析,得到了潜油电泵泵接头连接螺钉传递扭矩的规律,为判断螺钉的失效和装配提供了理论方法。
This article according to rely on its own gravity into down hole string of four criterion: stiffness, contact, strength, friction conditions and because ESP unit to receive hole the curvature change in the deviated hole to cause the unit to have the mechanical resistance which the big distortion as well as the unit down received, proposed used the intensity condition and friction condition appraises the electric pump unit deviated hole the traffic capacity, and the establishment of an electric submersible pump deviated hole stress deformation analysis by the 3-D finite element model.Using the ANSYS software big distortion, the contact non-linearized theory have carried on the analysis to the electric pump unit's deviated hole stress, calculates the WIDD-C17 well, 130 electric pump units, when Well pass through an angle of 30°can through the limit curvature for 6°/30m, this time the thrust of the decentralization is 1.75kN. Finally established using ANSYS software re-development function APDL has electric submersible pump unit deviated hole the traffic capacity appraisal specific program, might act according to the hole track, the electric pump unit which assigned, might simulation state of the unit in different curvature force deformation, and graphical display the results of electric pump unit compound stress and so on, and has carried on the appraisal to the unit in the different hole curvature the traffic capacity again. In electric pump unit after deviated section, because electric submersible pump axis and the pump joint bolt is extremely easy to expire, therefore this article has carried on the finite element analysis to the electricity pump axis and the pump joint bolt. Through finite element analysis which contacts to the electricity pump axis and the spline set, obtained the electricity pump axis stress distribution situation, spline axis with the maximum stress in the transition of the junction. Pump axis and Spline set into the same materials MonelK-500 from different materials, spline root stress concentration factor dropped 13.72%; Key spline axis adjacent to the root change into the inside circular arc from the outside arc design, spline root stress concentration factor decreased by 10.77%. It has provided the basis for the design of the spline axis and material selection of spline sets. In view of stress situation of the electric submersible pump unit to join the bolt when it is in withstanding different torque function, as well as bolt can transmit the torque and various bolts stress situation analysis when they are different arrangement, obtained the rule of the joint bolt of the electric submersible pump connection transfer torque, for judged the expiration and the unit of the bolt has provided the theory method.
引文
[1]徐兴平,李炳辉.水平井中电潜泵的力学分析[J].石油大学学报(自然科学版),1998,22(1):48~50.
    [2]董社霞,孙宝泉,季公明.电潜泵采油系统故障原因及改进措施[J].石油机械,1998,26(10):27~29.
    [3]刘振国,刘海宁,朱晶,等.电泵机组失效原因及预防措施[J].油气田地面工程,2005,24(6):26.
    [4]孙永华,高淑萍,申学义.大庆油田分支水平井钻井完井技术研究与应用[J].钻采工艺,2006,29(6):24~26.
    [5]M.Taufan,R.Adriansyah,and D.Satriana,P.T. Caltex Pacific Indonesia.Electrical Submersible Progressive Cavity Pump(ESPCP)Application in kulin Horizontal Wells [C]. SPE93594,2005.
    [6]申学义.大庆油田分支水平井钻井完井技术[J].钻采工艺,2001,24(5):12~14.
    [7]Li,Kuiyuan.The Application Experience of Electrical Submersible Pump(ESP)in Offshore Oilfields[C].Bohai Bay,China,SPE29952,1995.
    [8]檀朝东,曹书喻.斜井抽油系统优化设计技术研究及应用[J].石油机械,2006,34(3):9~12.
    [9]Scott,P.A.,Bowring,M,Subsea Intervention Systems Ltd.;Coleman,B.,LaSalle Engineering Ltd. Electrical Submersible Pumps in Subsea Completions[C]. SPE23050,1991.
    [10]孙栋.斜井采油工艺技术浅析[J].油气井测试,2004,13(5):55~57.
    [11]Saveth,K.J.,Consultant. Field Study of Efficiencies Between Progressing Cavity, Reciprocating and Electric Submersible Pumps [C]. SPE25448,1993.
    [12]郑俊德,杨长軲.水平井、分支井采油工艺现状分析与展望[J].石油钻采工艺,2005,27(6):93~96.
    [13]Rui Pessoa,PDVSA-Intevep,Mauricio Prado.The University of Tulsa.Experimental Investigation of Two-Phase Flow Performance of Electrical Submersible Pump Stages[C]. SPE71552,2001.
    [14]Powers,Maston L.,Consultant. Mechanics of an Electric Submersible Pump Failure Mode [C]. SPE39813,1998.
    [15]Patterson,M.M.,Consultant.On the Efficiency of Electrical Submersible Pumps Equipped With Variable Frequency Drives:A Field Study[C]. SPE25445,1996.
    [16]S.J.Sawaryn,K.N. Grames,Centrilift Baker-Hughes,et al.The Analysis and Prediction of Electric Submersible Pump Failures in the Milne Point Field[C]. Alaska,SPE74685,2002.
    [17]王淼峰,师国臣,曹刚.潜油电泵在水平井中应用的可行性分析[J].钻采工艺,2005,28(4):95~96.
    [18]刘永辉,李颖川,刘建仪,等.定向井潜油电泵举升系统工艺设计[J].天然气工业,2004,24(11):70~72.
    [19]Mark Horn,Frederic Coudeville,Eugene Bespalov,et al.Otter:A 21-Kilometer Subsea Tieback With Dual Electric Submersible Pumps[C]. SPE87902,2004.
    [20]W.J.Bailey,I.S Weir,J.Hogan. Survival Analysis:The Statistically Rigorous Method for Analyzing Electrical Submersible Pump System Performance[C]. SPE96722,2005.
    [21]席文厚,朱善正,李勇梅.斜井用潜油电泵机组的研制及应用[J].石油机械,2000,28(4):35~37.
    [22]王增进.国内外斜井举升工艺现状[J].石油钻采工艺,1994,16(3):84~89.
    [23]朱善正,席文厚,李灵芳.102 系列斜井潜油电泵机组抗弯性能试验[J].石油机械,2000,28(5):12~14.
    [24]朱宗元,李邦俊,李玉青.潜油电泵轴断裂失效分析[J].理化检验-物理分册,2000,36(1):34~36.
    [25]王鸿,李劲,刘学勇,等.电动潜油泵泵轴失效的测试与分析[J].石油机械,2003,31(9):39~43.
    [26]蒋晔良.泵轴失效分析[J].江西机械制造与自动化,1999,(4):26~28.
    [27]彭惠芬,刘巨保.潜油电泵轴断裂失效分析[J].油气田地面工程,2006,25(2):44.
    [28]彭惠芬,刘巨保.潜油电泵轴可靠性[J].油气田地面工程,2006,25(1):46.
    [29]史官波.接触摩擦在螺钉连接中的应用[J].山西建筑,2005,31(2):27~28.
    [30]刘巨保.石油设备有限元分析[M].北京:石油工业出版社,1996.61~72.
    [31]梅思杰,邵永实,刘军,等.潜油电泵技术[M].第一版.北京:石油工业出版社,2004. 49~56.
    [32]白广文.潜油电泵技术(机械部分)[M].北京:石油工业出版社,1993.118~125,159~163,195~197.
    [33]邵永实,师世刚,刘军.潜油电泵技术服务手册[M].北京:石油工业出版社,2004.2~6.
    [34]白广文.潜油电泵技术(电气部分)[M].北京:石油工业出版社,1993.39~44.
    [35]朱伯芳.有限单元法原理与应用[M].第二版.北京:中国水利水电出版社,1998.390~400.
    [36]美国 ANSYS 公司中国分公司.ANSYS 非线性分析指南,2000.
    [37] ANSYS Theory Manual,ANSYS 9.0 Help System.
    [38]杨义俊.基于 ANSYS 的金属软管非线性有限元应力分析[D].2004.21~26.
    [39]刘鸿文.材料力学[M].第 4 版.北京:高等教育出版社,2004.176~186.
    [40]宋勇,艾宴清,梁波.精通 ANSYS7.0 有限元分析[M].第一版.北京:清华大学出版社,2003.333~334.
    [41]博弈创作室.APDL 参数化有限元分析技术及其应用实例[M].第一版.北京:中国水利水电出版社,2004.1~3.
    [42]李耀刚,路春光.轴类零件强度校核[J].机械设计,1997,(1):27~28.
    [43]单涛,马玉宝.电潜泵连接螺钉预紧扭矩的确定[J].中国石油大学胜利学院学报,2006,20(1):15~19.
    [44]李鸿博.高强螺钉摩擦型连接的计算方法[J].工程建设与设计,2005,(10):29~31.
    [45]王春寒.在 ANSYS 软件中高强螺钉预紧力的施加方法[J].四川建筑,2006,26(1):140~141.
    [46]张红兵,杜建红.用有限元法对螺钉联接进行抗疲劳设计[J].华北工学院学报,1999,20(3):207~209.
    [47]董刚,李建功,潘凤胀.机械设计[M].北京:机械工业出版社,1999.
    [48]叶红,颜廷武,刘元胜.法兰连接中的螺钉预紧力[J].有色矿冶,2005,21(3):46~48.
    [49]李会勋,胡迎春,张建中.利用 ANSYS 模拟螺钉预紧力的研究[J].山东科技大学学报,2006,25(1):57~59.
    [50]初泰安.螺钉拧紧方法与预紧力控制[J].化工设备与管道,2005,3(42):8~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700