用户名: 密码: 验证码:
人工蜂群混合优化算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工蜂群(简称ABC)算法是一类新的仿生智能优化算法。由于其特有的分工协作、信息交流等机制,自其问世以来就受到了人们广泛的关注。ABC算法结构简单、概念清晰,而且容易实现、全局优化性能好,有广阔的应用前景。尽管如此,基本的人工蜂群算法仍有诸多不足,例如后期收敛速度慢、局部搜索能力弱、不能处理离散和约束问题等。本文对人工蜂群算法进行深入研究,结合其他生物智能算法的机制,提出了多种人工蜂群混合算法并用于求解工程背景的优化问题。
     本文的主要研究工作如下:
     (1)针对具有离散和连续变量、多重约束的机组组合调度优化问题,结合遗传算法(简称GA)在求解离散问题方面的优势和ABC算法较强的实数优化能力,提出一种基于约束分解和修复的ICGA-ABC算法。该算法使用整型编码(简称1C)的染色体更直观地表达调度解并减小编码长度;通过在遗传进化中嵌入修复操作提高搜索可行解的能力,避免大规模时的“组合爆炸”问题;使用ABC算法快速求解简化后的实数域“经济负载分配”问题。将ICGA-ABC用于多个不同规模机组组合调度问题的求解,结果表明与LR、 BCGA、 ICBF等方法相比,本文所提出的算法可获得更高质量的调度解,有效减小了总发电成本。
     (2)针对人工蜂群算法在搜索后期局部优化能力差、收敛速度慢的问题,受生物界中大肠杆菌觅食行为的启发,将细菌趋药性作为局部搜索策略嵌入到人工蜂群算法的“观察蜂相”中,提出了一种混合ABC算法(称为HABC)。在选择操作上,该算法引入自适应Boltzmann概率,有利于种群维持多样性、避免陷入局部最优、加快收敛速度。通过对8个典型测试函数的求解,结果表明所提算法在求解精度及可靠性方面都有显著提高。将该算法用于求解质子交换膜燃料电池模型参数估计问题,对两个电池实例的实验结果表明所建模型的预测值与实验值的误差更小,能更好地反映实际系统的非线性特性。
     (3)受RNA分子操作的启发,将RNA分子操作算子引入人工蜂群算法中以提高种群多样性、避免重复搜索和早熟收敛,提出了一种RNA-ABC算法。结合使用Oracle罚函数法和通用的离散量转换技术,可以将复杂约束转化为无约束问题。通过对8个典型非线性约束优化问题的寻优测试,验证了所提方法的有效性。使用RNA-ABC算法求解炼油厂短期汽油调合调度优化问题,所得的调合配方能获得比其他方法更高的调合利润。
     (4)为提高人工蜂群算法的搜索效率,特别是增强对高维问题的寻优能力,将差分进化算法(简称DE)中的几种变异操作和交叉算子引入到“雇佣蜂相”,提出了一种具有竞争型差分操作的混合ABC算法(称为DABC)。该算法使用新的组合式向量产生策略并引入竞争,以增强雇佣蜂对搜索的引领作用,提高算法性能。通过对测试函数的寻优,验证了所提出的算法求解较高维问题时在搜索速度上的提升。将该算法用于桥式吊车系统的RBF神经网络优化建模,实验结果表明,使用DABC算法可以获得具有良好拟合精度和泛化能力的RBF网络模型。
Artificial bee colony (ABC) algorithm is a kind of relatively new bionic intelligent algorithm. Due to its unique mechanisms, such as division of labor, information exchange, it has attracted widespread attention since it proposed. Artificial bee colony algorithm has simple structure and clear concept, furthermore, it is easy to implement and possess excellent global optimization performance. Therefore, it has broad application prospects. However, the classical ABC algorithm also has some drawbacks and deficiencies, such as slow convergence speed at later stage, weak local search capability, and it could not deal with discrete variables and problems with constraints. Inspired by the behavior of biological intelligence, the ABC algorithm is studied and improved in this dissertation, and then the proposed algorithms are applied to solve some complex engineering optimization problems.
     The main contributions of this dissatation are summarized as follows:
     (1) To solve complex unit-commitment scheduling problems with mixed variables and heavy constraints, the superiorities of Genetic Algorithm (GA) in discrete problems and ABC algorithm in continuous problems are combined and the ICGA-ABC algorithm based on repair operation is proposed. This algorithm adopted integer-coded (IC) chromosomes to represent the scheduling solutions intuitively, with shorter string lengths. The proposed repair operation improves the search capabilities of feasible solutions, and avoided the potential "combination explosion" The UC problem is then simplified to an Economic Load Distribution (ELD) problem and ABC is adopted to solve it efficiently. The ICGA-ABC is used to solve more UC problems with different numbers of generators, and the results show that it can obtain better schedulings than that of LR, BCGA and ICBF, which could result in the reduction of total power production cost.
     (2) The convergence speed of ABC algorithm will slow down much at later stage. Inspired by the foraging behavior of E.coli, chemotaxis effect is embedded into the ABC algorithm as local search strategy and the HABC algorithm is proposed. For selection operation, adaptive Boltzmann probability is adopted to adjust selective pressures, which could improve population diversity, avoid premature convergence, and accelerate the convergence velocity. The performances of proposed HABC are validated by8typical benchmark functions. The HABC is firstly applied to solve the parameter estimation problems of the PEM Fuel Cell model, and the results show that the optimized model by HABC can predict experimental data points more accurately, and can reflect the nonlinear property of the system better.
     (3) Inspired by RNA molecular, the three RNA operators are introduced into the ABC algorithm to improve population diversity and avoid trapping into local minima. The RNA-ABC algorithm is combined with Oracle penalty function technology to solve optimization problems with complex constraints. Discrete variables are changed to continuous ones and equality constraints are transformed to inequality constraints, which results in that Oracle penalty method can adaptively handle all kinds of constraints. The performance of the proposed algorithm has been validated by8typical benchmark functions with complex nonlinear constraints. The proposed algorithm is applied to solve short-term gasoline-blending scheduling problem. The experimental results show that the proposed approach can obtain better recipes than two other methods, and can reach a higher profit.
     (4) In order to improve the efficiency of artificial bee colony algorithm, especially for high-dimensional optimization problems, a variety of mutation and crossover operators from Differential Evolution (DE) algorithm are introduced into the employed bee phase of ABC, and the DABC algorithm based on the competition is proposed. Combined with the new vector generation policy and competitive mechanism, the leading role of employed bee phase has been enhanced, and the performance is improved. Numerical experiment on some typical benchmark functions demonstrate that the hybrid algorithm has speed up the search process of solving high-dimensional problems. Then, the proposed algorithm is used to train and optimize the RBF neural network model for modeling the overhead cranes system. The experimental results show that the DABC algorithm can obtain satisfactory RBF network model with excellent fitting accuracy and generalization ability.
引文
[1]《运筹学》教材编写组.运筹学:第3版[M].北京:清华大学出版社,2005.
    [2]DARWIN C. The variation of animals and plants under domestication[M]. London:John Murray,1868.
    [3]HOLLAND J.H. Adaptation in natural and artificial systems[M]. Ann Arbor:University of Michigan Press,1975.
    [4]FOGEL L.J., OWENS A.J., WALSH M.J. Artificial intelligence through simulated evolution[M]. New York:John Wiley & Sons,1966.
    [5]SCHWEFEL H.P. Numerical optimization of computer models[M]. Chichester:Wiley, 1981.
    [6]KOZA J.R. Genetic programming:on the programming of computers by means of natural selection[M]. Massachusetts:MIT Press,1992.
    [7]PAUN G., ROZENBERG G., SALOMAA A. DNA computing:New computing paradigms[M]. New York:Springer,1998.
    [8]PAUN G. From cells to computers:computing with membranes (P systems)[J]. Biosystems,2001,59(3):139-158.
    [9]ZEIDENBERG M. Neural network models in artificial intelligence[M]. Chichester:E. Horwood,1990.
    [10]KENNEDY J., EBERHART R. Particle swarm optimization[C]. In:Proceedings of IEEE International Conference on Neural Networks,1995,4:194-1948.
    [11]STORN R., PRICE K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization,1997, 11(4):341-359.
    [12]COLORNI A., DORIGO M., MANIEZZO V., et al. Distributed optimization by ant colonies[C]. In:Proceedings of European Conference on Artificial Life, Paris:Elsevier, 1991:134-142.
    [13]KARABOGA D., BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing,2008,8(1):687-697.
    [14]PASSINO K. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine,2002,22(3):52-67.
    [15]段海滨,张祥银,徐春芳.仿生智能计算[M].北京:科学出版社,2011.
    [16]EL-ABD M. Performance assessment of foraging algorithms vs. evolutionary algorithms[J]. Information Sciences,2012,182(1):243-263.
    [17]KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri, Turkiye:Erciyes University, Engineering Faculty, Computer Engineering Department, Tech. Rep. TR06,2005.
    [18]FRISCH K.V. The dance language and Orientation of Bees[M]. Cambridge,MA:Harvard Univ. Press,1967.
    [19]张超群,郑建国,王翔.蜂群算法研究综述[J].计算机应用研究,2011,28(9):3201-3205,3214.
    [20]ABBASS H.A. MBO:Marriage in honey bees optimization-A haplometrosis polygynous swarming approach[C]. In:Proceedings of the 2001 Congress on Evolutionary Computation,2001,1:207-214.
    [21]SEELEYT.D. The wisdom of the hive:The social physiology of honey bee colonies[M]. Cambridge,MA:Harvard Univ. Press,1995.
    [22]TEODOROVIC D., DELL'ORCO M. Bee colony optimization-a cooperative learning approach to complex transportation problems[J]. Advanced OR and AI Methods in Transportation,2005:51-60.
    [23]YANG X.S. Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms[M]//Artificial Intelligence and Knowledge Engineering Applications:A Bioinspired Approach. Berlin Heidelberg:Springer,2005,3562:317-323.
    [24]BASTURK B., KARABOGA D. An artificial bee colony (abc) algorithm for numerical function optimization [C]. In Proceedings of IEEE swarm intelligence symposium, 2006:12-14.
    [25]KARABOGA D., BASTURK B. A powerful and efficient algorithm for numerical function optimization:Artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization,2007,39(3):459-471.
    [26]KARABOGA D., AKAY B. A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems[J]. Applied Soft Computing,2011, 11(3):3021-3031.
    [27]AKAY B., KARABOGA D. Solving integer programming problems by using artificial bee colony algorithm[M]//AI* IA 2009:Emergent Perspectives in Artificial Intelligence. Berlin Heidelberg:Springer,2009:355-364.
    [28]KARABOGA D., GORKEMLI B., OZTURK C., et al. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications[J]. Artificial Intelligence Review, 2012:1-37.
    [29]BITAM S., BATOUCHE M., TALBI E. A survey on bee colony algorithms[C]. In:Proceedings of IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW),2010:1-8.
    [30]KARABOGA D., AKAY B. A survey:algorithms simulating bee swarm intelligence[J]. Artificial Intelligence Review,2009,31:61-85.
    [31]KARABOGA D., OZTURK C. A novel clustering approach:Artificial Bee Colony (ABC) algorithm[J]. Applied Soft Computing,2011,11(1):652-657.
    [32]KARABOGA D., OZTURK C. Neural networks training by artificial bee colony algorithm on pattern classification[J]. Neural Network World,2009,19(3):279-292.
    [33]LI B., ZENG J.C. Comparison and analysis of the selection mechanism in the Artificial Bee Colony algorithm[C]. In:Proceedings of 9th International Conference on Hybrid Intelligent Systems,2009:411-416.
    [34]ADERHOLD A., DIWOLD K., SCHEIDLER A., et al. Artificial Bee Colony optimization:A new selection scheme and its performance[M]//Nature Inspired Cooperative Strategies for Optimization. Berlin Heidelberg:Springer,2010:283-294.
    [35]HO S.L., YANG S.Y. An artificial bee colony algorithm for inverse problems[J]. International Journal of Applied Electromagnetics and Mechanics,2009,31 (3):181-192.
    [36]GUO P., CHENG W.M., LIANG J. Global artificial bee colony search algorithm for numerical function optimization[C]. In:Proceedings of 7th International Conference on Natural Computation(ICNC),2011:1280-1283.
    [37]LEE W.P., CAI W.T. A novel artificial bee colony algorithm with diversity strategy[C]. In:Proceedings of 7th International Conference on Natural Computation (ICNC), 2011:1441-1444.
    [38]ALAM M.S., UI KABIR M.W., ISLAM M.M. Self-adaptation of mutation step size in Artificial Bee Colony algorithm for continuous function optimization[C]. In: Proceedings of 13th International Conference on Computer and Information Technology (ICCIT),2010:69-74.
    [39]STANAREVIC N. Comparison of different mutation strategies applied to artificial bee colony algorithm[C]. In:Proceedings of the 5th European conference on European computing conference,2011:257-262.
    [40]RAJASEKHAR A., ABRAHAM A., PANT M. Levy mutated Artificial Bee Colony algorithm for global optimization[C]. In:Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (SMC),2011:655-662.
    [41]ZOU W.P., ZHU Y.L.. CHEN H.N., SHEN H. Artificial Bee Colony algorithm based on Von Neumann topology structure[C]. In:Proceedings of 3rd International Conference on Computer and Electrical Engineering (ICCEE2010),2010:1-8.
    [42]KARABOGA D., BASTURK B. Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems[M]//Foundations of Fuzzy Logic and Soft Computing. Berlin Heidelberg:Springer,2007:789-798.
    [43]BRAJEVIC I., TUBA M., SUBOTIC M. Improved artificial bee colony algorithm for constrained problems[C]. In:Proceedings of 11th WSEAS international conference on nural networks, evolutionary computing and fuzzy systems,2010:185-190.
    [44]MEZURA-MONTES E., VELEZ-KOEPPEL R.E. Elitist Artificial Bee Colony for constrained real-parameter optimization[C]. In:Proceedings of IEEE Congress on Evolutionary Computation (CEC),2010:1-8.
    [45]STANAREVIC N., TUBA M., BACANIN N. Enhanced artificial bee colony algorithm performance[C]. In:Proceedings of 14th WSEAS international conference on Computers: part of the CSCC multiconference-Volume II,2010:440-445.
    [46]BRAJEVIC I., TUBA M., SUBOTIC M. Performance of the improved artificial bee colony algorithm on standard engineering constrained problems[J]. Int J Math Comput Simul,2011,5(2):135-143.
    [47]AKAY B., KARABOGA D. Artificial bee colony algorithm for large-scale problems and engineering design optimization [J]. Journal of Intelligent Manufacturing,2012, 23(4):1001-1014.
    [48]HEDAYATZADEH R., HASANIZADEH B., AKBARI R., et al. A multi-objective Artificial Bee Colony for optimizing multi-objective problems[C]. In:Proceedings of 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 2010:277-281.
    [49]OMKAR S.N., SENTHILNATH J., KHANDELWAL R., et al. Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures[J]. Applied Soft Computing,2011.11(1):489-499.
    [50]RUBIO-LARGO A., VEGA-RODRiGUEZ M., G6MEZ-PULIDO J., et al. Tackling the static RWA problem by using a multiobjective Artificial Bee Colony algorithm[M]//Advances in Computational Intelligence. Berlin Heidelberg:Springer, 2011:364-371.
    [51]GONZALEZ-ALVAREZ D., VEGA-RODRiGUEZ M., G6MEZ-PULIDO J.. et al. Finding Motifs in DNA sequences applying a Multiobjective Artificial Bee Colony (MOABC) Algorithm[M]//Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Berlin Heidelberg:Springer,2011:89-100.
    [52]OMKAR S.N., NAIK G.N., PATIL K., et al. Vector evaluated and objective switching approaches of Artificial Bee Colony algorithm (ABC) for multi-objective design optimization of composite plate structures[J]. International Journal of Applied Metaheuristic Computing,2011,2(3):1-26.
    [53]ZOU W.P., ZHU Y.L., CHEN H.N., et al. Solving multiobjective optimization problems using Artificial Bee Colony algorithm[j]. Discrete Dynamics in Nature and Society,2011, 2011:1-37.
    [54]LIN J.H., LIN M.R.. HUANG L.R. A novel bee swarm optimization algorithm with chaotic sequence and psychology model of emotion[C]. In:Proceedings of 9th WSEAS International Conference on Systems Theory And Scientific Computation(ISTASC'09), 2009:87-92.
    [55]ALATAS B. Chaotic bee colony algorithms for global numerical optimization[J]. Expert Systems with Applications,2010,37(8):5682-5687.
    [56]ZHANG Y., WU L., WANG S., et al. Chaotic Artificial Bee Colony used for cluster analysis[M]//Intelligent Computing and Information Science. Berlin Heidelberg:Springer,2011:205-211.
    [57]AYAN K., KILIC U. Solution of multi-objective optimal power flow with chaotic artificial bee colony algorithm[J]. International Review of Electrical Engineering,2011, 6(3):1365-1371.
    [58]WU B., FAN S.H. Improved Artificial Bee Colony algorithm with chaos[M]//Computer Science for Environmental Engineering and EcoInformatics. Berlin Heidelberg:Springer, 2011:51-56.
    [59]YAN G., LI C. An effective refinement artificial bee colony optimization algorithm based on chaotic search and application for pid control tuning[J]. Journal of Computational Information Systems,2011,7(9):3309-3316.
    [60]NARASIMHAN H. Parallel artificial bee colony (PABC) algorithm[C]. In:Proceedings of World Congress on Nature Biologically Inspired Computing(NaBIC),2009:306-311.
    [61]SUBOTIC M, TUBA M., STANAREVIC N. Parallelization of the artificial bee colony (ABC) algorithm[C]. In:Proceedings of 11th WSEAS International Conference on Nural Networks, Evolutionary Computing and Fuzzy Systems,2010:191-196.
    [62]PARPINELLI R.S., BENITEZ C.M.V., LOPES H.S. Parallel approaches for the artificial bee colony algorithm[M]//Handbook of Swarm Intelligence.Berlin Heidelberg:Springer, 2010:329-345.
    [63]EL-ABD M. A cooperative approach to the artificial bee colony algorithm[C]. In: Proceedings of 2010 IEEE Congress on Evolutionary Computation (CEC),2010:1-5.
    [64]ZOU W.P., ZHU Y.L., CHEN H.N., et al. A clustering approach using cooperative artificial bee colony algorithm[J]. Discrete Dynamics in Nature and Society.2010, 2010:1-16.
    [65]LIU X., CAI Z. Artificial bee colony programming made faster[C]. In:Proceedings of 5th International Conference on Natural Computation (ICNC'09),2009:154-158.
    [66]ZHU G., KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation,2010, 217(7):3166-3173.
    [67]XU X.J., LEI X.J. Multiple sequence alignment based on abc_sa[M]//Artificial Intelligence and Computational Intelligence.Berlin Heidelberg:Springer,2010:98-105.
    [68]GAO W.F., LIU S.Y. Improved artificial bee colony algorithm for global optimization[J]. Information Processing Letters,2011,111 (17):871-882.
    [69]GAO W.F., LIU S.Y. A modified artificial bee colony algorithm[J]. Computers & Operations Research,2012,39(3):687-697.
    [70]BANHARNSAKUN A., ACHALAKUL T., SIRINAOVAKUL B. The best-so-far selection in artificial bee colony algorithm[J]. Applied Soft Computing,2011, 11(2):2888-2901.
    [71]KARABOGA D., AKAY B. Proportional-Integral-Derivative controller design by using Artificial Bee Colony, Harmony Search, and the Bees Algorithms[J]. Journal of Systems and Control Engineering,2010,224(7):869-883.
    [72]SHAYEGHI H., GHASEMI A. Market based lfc design using artificial bee colony[J]. International Journal on Technical and Physical Problems of Engineering,2011, 3(6):1-10.
    [73]GAO F., QI Y.B., YIN Q.. et al. Online synchronization of uncertain chaotic systems by artificial bee colony algorithm in a non-lyapunov way[C]. In:Proceedings of International Conference on Computational Intelligence and Software Engineering (CiSE),2010:1-4.
    [74]GAO F., QI Y.B., YIN Q., et al. An novel optimal pid tuning and on-line tuning based on artificial bee colony algorithm[C]. In:Proceedings of International Conference on Computational Intelligence and Software Engineering (CiSE),2010:1-4.
    [75]UDGATA S.K., SABAT S.L., MINI S. Sensor deployment in irregular terrain using artificial bee colony algorithm[C]. In:Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC),2009:1309-1314.
    [76]OZTURK C., KARABOGA D., GORKEMLI B. Artificial bee colony algorithm for dynamic deployment of wireless sensor networks[J]. Turk J Electr Eng Comput Sci, 2012,20(2):1-8.
    [77]MINI S., UDGATA S.K., SABAT S.L. Artificial bee colony based sensor deployment algorithm for target coverage problem in 3-D terrain[M]//Distributed Computing and Internet Technology, Berlin Heidelberg:Springer,2011:313-324.
    [78]RAO R.V., PAWAR P.J. Modelling and optimization of process parameters of wire electrical discharge machining[J], Journal of Engineering Manufacture,2009, 223(11):1431-1440.
    [79]RAO R.V., PAWAR P.J. Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms[J]. Applied Soft Computing,2010,10(2):445-456.
    [80]RAO R.V., PATEL V.K. Optimization of mechanical draft counter flow wet-cooling tower using artificial bee colony algorithm[J]. Energy Conversion and Management, 2011,52(7):2611-2622.
    [81]HADIDI A., AZAD S.K., AZAD S.K. Structural optimization using artificial bee colony algorithm[C]. In:Proceedings of 2nd International Conference on Engineering Optimization,2010:1-10.
    [82]SONMEZ M. Artificial Bee Colony algorithm for optimization of truss structures[J]. Applied Soft Computing,2011,11 (2):2406-2418.
    [83]MANDAL S.K., CHAN F.T., TIWARI M. Leak detection of pipeline:An integrated approach of rough set theory and artificial bee colony trained SVM[J]. Expert Systems with Applications,2012,39(3):3071-3080.
    [84]YAO B.Z., YANG C.Y., HU J.J., et al. The optimization of urban subway routes based on artificial bee colony algorithm[J]. Key technologies of railway engineering-high speed railway, heavy haul railway and urban rail transit,2010:747-751.
    [85]BAHAMISH H.A.A., ABDULLAH R., SALAM R.A. Protein tertiary structure prediction using artificial bee colony algorithm[C]. In:Proceedings of 3rd Asia International Conference on Modelling & Simulation,2009:258-263.
    [86]LIN C.J., LEE C.Y. An efficient artificial bee colony algorithm for 3d protein folding simulation[C]. In:Proceedings of 17th National Conference on Fuzzy Theory and its Applications.2009:705-710.
    [87]BAHAMISH H.A.A., ABDULLAH R. Prediction of c-peptide structure using artificial bee colony algorithm[C]. In:Proceedings of International Symposium in Information Technology (ITSim),2010:754-759.
    [88]KARABOGA D., OZTURK C. Fuzzy clustering with artificial bee colony algorithm[J]. Scientific Research and Essays,2010,5(14):1899-1902.
    [89]ZHANG C, OUYANG D., NING J. An artificial bee colony approach for clustering[J]. Expert Systems with Applications,2010,37(7):4761-4767.
    [90]CELIK M., KARABOGA D., KOYLU F. Artificial bee colony data miner (abc-miner)[C]. In:Proceedings of International Symposium on Innovations in Intelligent Systems and Applications (INISTA),2011:96-100.
    [91]HSIEH T.J., YEH W.C. Knowledge discovery employing grid scheme least squares support vector machines based on orthogonal design bee colony algorithm [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2011, 41(5):1198-1212.
    [92]ZHANG Y.F., SU Z.G., WANG P.H. A convenient version of TS fuzzy model with enhanced performance[C]. In:Proceedings of 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),2011:1074-1079.
    [93]BABU M.S.P., RAO N.T. Implementation of artificial bee colony (abc) algorithm on garlic expert advisory system[J]. Int J Comput Sci Res,2010, 1(1):69-74.
    [94]SUGUNA N., THANUSHKODI K.G. An independent rough set approach hybrid with artificial bee colony algorithm for dimensionality reduction[J]. American Journal of Applied Sciences,2011,8(3):261-266.
    [95]SHUKRAN M.A.M., CHUNG Y.Y., YEH W.C., et al. Artificial bee colony based data mining algorithms for classification tasks[J]. Modern Applied Science,2011, 5(4):217-231.
    [96]KARABOGA D., AKAY B. Artificial bee colony (abc) algorithm on training artificial neural networks[C]. In:Proceedings of IEEE 15th Signal Processing and Communications Applications,2007:1-4.
    [97]OMKAR S., SENTHILNATH J. Artificial bee colony for classification of acoustic emission signal source[J]. International Journal of Aerospace Innovations,2009, 1(3):129-143.
    [98]OZKAN C., KISI O., AKAY B. Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration[J]. Irrigation Science,2011,29(6):431-441.
    [99]HSIEH T.J., HSIAO H.F., YEH W.C. Forecasting stock markets using wavelet transforms and recurrent neural networks:an integrated system based on artificial bee colony algorithm[J]. Applied soft computing,2011,11 (2):2510-2525.
    [100]SHAH H., GHAZALI R., NAWI N.M. Using artificial bee colony algorithm for MLP training on earthquake time series data prediction[J]. Journal of Computing,2011, 3(6):135-142.
    [101]YEH W.C., HSIEH T.J. Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation[J]. Neural Computing and Applications, 2012,21(2):365-375.
    [102]BEN ALA T.R., JAMPALA S.D., VILLA S., et al. A novel approach to image edge enhancement using artificial bee colony optimization algorithm for hybridized smoothening filters[C]. In:Proceedings of World Congress on Nature & Biologically Inspired Computing,2009:1071-1076.
    [103]NEBTI S., BOUKERRAM A. Handwritten digits recognition based on swarm optimization methods[M]//Networked Digital Technologies, Berlin Heidelberg:Springer. 2010:45-54.
    [104]XU C., DUAN H. Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft[J]. Pattern Recognition Letters, 2010,31(13):1759-1772.
    [105]MA M., LIANG J., GUO M., et al. Sar image segmentation based on artificial bee colony algorithm[J]. Applied Soft Computing,2011,11 (8):5205-5214.
    [106]AKAY B., KARABOGA D. Wavelet packets optimization using artificial bee colony algorithm[C]. In:Proceedings of IEEE Congress on Evolutionary Computation (CEC), 2011:89-94.
    [107]ZHAO D., GAO H., DIAO M., et al. Direction finding of maximum likelihood algorithm using artificial bee colony in the impulsive noise[C]. In:Proceedings of International Conference on Artificial Intelligence and Computational Intelligence (AICI), 2010:102-105.
    [108]HORNG M.H., JIANG T.W. Multilevel image thresholding selection using the artificial bee colony algorithm[M]//Artificial Intelligence and Computational Intelligence, 2010:318-325.
    [109]CHIDAMBARAM C., LOPES H.S. An improved artificial bee colony algorithm for the object recognition problem in complex digital images using template matching[J]. International Journal of Natural Computing Research,2010, 1(2):54-70.
    [110]ZHANG Y., WU L. Face pose estimation by chaotic artificial bee colony[J]. International Journal of Digital Content Technology and its Applications,2011,5(2):55-63.
    [111]KILIC H., KOC E., CERECI I. Search-based parallel refactoring using population-based direct approaches[M]//Search Based Software Engineering, Berlin Heidelberg:Springer, 2011:271-272.
    [112]ADISRIKANTH, KULKARNI N.J., NAVEEN K.V., et al. Test case optimization using Artificial Bee Colony Algorithm[M]//Advances in Computing and Communications,Berlin Heidelberg:Springer,2011:570-579.
    [113]DAHIYA S.S., CHHABRA J.K., KUMAR S. Application of artificial bee colony algorithm to software testing[C]. In:Proceedings of 21st Australian Software Engineering Conference,2010:149-154.
    [114]PACURIB J.A., SENO G.M.M., YUSIONG J.P.T. Solving sudoku puzzles using improved artificial bee colony algorithm[C]. In:Proceedings of 4th International Conference on Innovative Computing, Information and Control (ICICIC),2009:885-888.
    [115]BACANIN N., TUBA M., BRAJEVIC I. Performance of object-oriented software system for improved artificial bee colony optimization[J]. International Journal of Mathematics and Computers in Simulation,2011,5(2):154-162.
    [116]PAN Q.K., TASGETIREN M.F., SUGANTHAN P., et al. A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem[J]. Information Sciences, 2011,181(12):2455-2468.
    [117]TASGETIREN M.F., PAN Q.K., SUGANTHAN P., et al. A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops[J]. Information Sciences,2011,181(16):3459-3475.
    [118]ZHANG Z., HUO Z., XIAO Z. PID control with fuzzy compensation for hydroelectric generating unit[C]. In:Preceedings of International Conference on Power System Technology,2002:2348-2352.
    [119]梁宏柱,叶鲁卿,孟安波.参数自适应模糊P1D控制器及其在水电机组调速器中的应用[J].水电自动化与大坝监测,2003,27(6):26-29.
    [120]钱殿伟,陈海耿.水轮机调节系统的一种智能控制策略[J].水利水电科技进展,2005,25(3):24-26.
    [121]ZHANG J.M., WANG N., WANG S.Q. A neuron model-free controller with immune tuning gain for hydroelectric generating units[C]. In:Proceedings of the American Control Conference,2004:2057-2062.
    [122]DU Y.P., WANG N. Neuron model-free control with fuzzy tuning parameters for hydraulic turbine generators[C]. In:Proceedings of 31st Annual Conference of IEEE Industrial Electronics Society (IECON),2005:299-303.
    [123]乔俊飞,孙雅明,杜红卫.水轮发电机组的一种自适应调速方法[J].中国电机工程学报,2000,20(10):1-4,9.
    [124]王宁.神经元网络控制理论及应用研究[D].武汉:华中理工大学博士学位论文,1992.
    [125]PADHY N. Unit commitment-a bibliographical survey[J]. IEEE Transactions on Power Systems,2004,19(2):1196-1205.
    [126]DAMOUSIS I, BAKIRTZIS A, DOKOPOULOS P. A solution to the unit-commitment problem using integer-coded genetic algorithm[J]. IEEE Transactions on Power Systems, 2004,19(2):1165-1172.
    [127]SUN L.Y., ZHANG Y., JIANG C.Y. A matrix real-coded genetic algorithm to the unit commitment problem[J]. Electric Power Systems Research,2006,76(9):716-728.
    [128]KAZARLIS S., BAKIRTZIS A., PETRIDIS V. A genetic algorithm solution to the unit commitment problem[J]. IEEE Transactions on Power Systems,1996, 11(1):83-92.
    [129]ESLAMIAN M, HOSSEINIAN S., VAHIDI B. Bacterial foraging-based solution to the Unit-Commitment problem[J]. IEEE Transactions on Power Systems,2009, 24(3):1478-1488.
    [130]WOOD A., WOLLENBERG B. Power generation, operation and control,2rd edition[M]. New York:Wiley,1996.
    [131]CHANDRASEKARAN K., HEMAMALINI S., SIMON S.P., et al. Thermal unit commitment using binary/real coded artificial bee colony algorithm[J]. Electric Power Systems Research,2012,84(1):109-119.
    [132]MICHALEWICZ Z. Genetic algorithm+Data structures= Evolution Programs[M]. New York:Springer-Verlag,1996.
    [133]JUSTE K, KITA H, TANAKA E, et al. An evolutionary programming solution to the unit commitment problem[J]. IEEE Transactions on Power Systems,1999,14(4):1452-1459.
    [134]TING T, RAO M, LOO C. A novel approach for unit commitment problem via an effective hybrid particle swarm optimization[J]. IEEE Transactions on Power Systems, 2006,21(1):411-418.
    [135]EBRAHIMI J, HOSSEINIAN S, GHAREHPETIAN G. Unit Commitment Problem Solution Using Shuffled Frog Leaping Algorithm[J]. IEEE Transactions on Power Systems,2011,26(2):573-581.
    [136]WOLPERT D., MACREADY W. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):67-82.
    [137]MULLER S., MARCHETTO J., AIRAGHI S., et al. Optimization based on bacterial chemotaxis[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):16-29.
    [138]GOLDBERG D.E., DEB K. A comparative analysis of selection schemes used in genetic algorithms[J]. Urbana,1991,51:69-93.
    [139]BACK T. Selective pressure in evolutionary algorithms:a characterization of selection mechanisms[C]. In:Proceedings of ls1 IEEE Conference on Evolutionary Computation, 1994:57-62.
    [140]KUO T., HWANG S.Y. A genetic algorithm with disruptive selection[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1996, 26(2):299-307.
    [141]YANG S.P., WANG N. A novel P systems based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model[J]. International Journal of Hydrogen Energy,2012,37(10):8465-8476.
    [142]WANG R.L., OKAZAKI K. An improved genetic algorithm with conditional genetic operators and its application to set-covering problem[J]. Soft Computing,2007, 11(7):687-694.
    [143]ZHOU F, ZHANG G.X., RONG H.N., et al. A particle swarm optimization based on P systems[C]. In:Proceedings of 6th International Conference on Natural Computation (ICNC),2010:3003-3007.
    [144]LARMINIE J., DICKS A. Fuel cell systems explained,2nd ed.[M].West Sussex, England:John Wiley & Sons,2003.
    [145]BARBIR F., YAZICI S. Status and development of PEM fuel cell technology[J]. International Journal of Energy Research,2008,32(5):369-378.
    [146]MOCK P., SCHMID S.A. Fuel cells for automotive powertrains-A techno-economic assessment[J]. Journal of Power Sources,2009,190(1):133-140.
    [147]CORREA J., FARRET F., CANHA L., et al. An electrochemical-based fuel-cell model suitable for electrical engineering automation approach[J]. IEEE Transactions on Industrial Electronics,2004,51(5):1103-1112.
    [148]CORREA J., FARRET F., POPOV V., et al. Sensitivity analysis of the modeling parameters used in Simulation of proton exchange membrane fuel cells[J]. IEEE Transactions on Energy Conversion,2005,20(1):211-218.
    [149]KADJO A.J., BRAULT P., CAILLARD A., et al. Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation [J]. Journal of Power Sources,2007,172(2):613-622.
    [150]OUTEIRO M.T., CHIBANTE R., CARVALHO A.S., et al. A new parameter extraction method for accurate modeling of PEM fuel cells[J]. International Journal of Energy Research,2009,33(11):978-988.
    [151]HUANG S.R., WU C.C., LIN C.Y., et al. Parameter optimization of the biohydrogen real time power generating system using differential evolution algorithm[J]. International Journal of Hydrogen Energy,2010,35(13):6629-6633.
    [152]CHAKRABORTY U.K., ABBOTT T.E., DAS S.K. PEM fuel cell modeling using differential evolution[J]. Energy,2012,40(1):387-399.
    [153]MO Z.J., ZHU X.J., WEI L.Y., et al. Parameter optimization for a PEMFC model with a hybrid genetic algorithm[J]. International Journal of Energy Research,2006, 30(8):585-597.
    [154]OHENOJA M., LEIVISKA K. Validation of genetic algorithm results in a fuel cell model[J]. International Journal of Hydrogen Energy,2010,35(22):12618-12625.
    [155]ZHANG L., WANG N. An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012(0):219-228.
    [156]YE M.Y., WANG X.D., XU Y.S. Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization[J]. International Journal of Hydrogen Energy,2009,34(2):981-989.
    [157]ZHONG Z.D., ZHU X.J., CAO G.Y. Modeling a PEMFC by a support vector machine[J]. Journal of Power Sources,2006,160(1):293-298.
    [158]杨世品.P系统优化算法及应用研究[D].杭州:浙江大学博士学位论文,2012.
    [159]AMPHLETT J.C., BAUMERT R., MANN R.F., et al. Performance modeling of the Ballard Mark Ⅳ solid polymer electrolyte fuel cell Ⅱ. Empirical model development[J]. Journal of the Electrochemical Society,1995,142(1):9-15.
    [160]YAO K., KARAN K., MCAULEY K., et al. A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells[J]. Fuel Cells, 2004,4(1-2):3-29.
    [161]CHEDDIE D., MUNROE N. Review and comparison of approaches to proton exchange membrane fuel cell modeling[J]. Journal of Power Sources,2005,147(1):72-84.
    [162]OLIVEIRA V, FALCAO D., RANGEL C., et al. A comparative study of approaches to direct methanol fuel cells modelling[J]. International Journal of Hydrogen Energy,2007, 32(3):415-424.
    [163]MANN R.F., AMPHLETT J.C., HOOPER M.A., et al. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell[J]. Journal of Power Sources,2000,86(1-2):173-180.
    [164]PARK S.K., CHOE S.Y. Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects[J]. Journal of Power Sources,2008, 179(2):660-672.
    [165]ZHANG Y., ZHOU B. Modeling and control of a portable proton exchange membrane fuel cell-battery power system [J]. Journal of Power Sources,2011,196(20):8413-8423.
    [166]KIM J., LEE S., SRINIVASAN S., et al. Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation[J], Journal of The Electrochemical Society, 1995,142(8):2670-2674.
    [167]CHEN X., WANG N. Optimization of short-time gasoline blending scheduling problem with a DNA based hybrid Genetic Algorithm[J]. Chemical Engineering and Processing, 2010:1076-1083.
    [168]TAO J.L., WANG N. DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes[J]. Computers & Chemical Engineering,2007,31(12):1602-1618.
    [169]WANG K.T., WANG N. A protein inspired RNA genetic algorithm for parameter estimation in hydrocracking of heavy oil[J]. Chemical Engineering Journal,2010, 167(1):228-239.
    [170]CHEN X., WANG N. A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction[J]. Chemical Engineering Journal,2009,150(2-3):527-535.
    [171]SCHLUTER M., GERDTS M. The oracle penalty method[J]. Journal of Global Optimization,2010,47(2):293-325.
    [172]SCHLUTER M., EGEA J.A., BANGA J.R. Extended ant colony optimization for non-convex mixed integer nonlinear programming[J]. Computers & Operations Research, 2009,36(7):2217-2229.
    [173]SCHLUTER M., EGEA J.A., ANTELO L.T., et al. An extended Ant Colony Optimization Algorithm for integrated process and control system design[J]. Industrial & Engineering Chemistry Research,2009,48(14):6723-6738.
    [174]董明刚.基于差分进化的优化算法及应用研究[D].杭州:浙江大学博士学位论文,2012.
    [175]陶吉利.基于DNA计算的遗传算法及应用研究[D].杭州:浙江大学博士学位论文,2007.
    [176]王康泰.RNA遗传算法及应用研究[D].杭州:浙江大学博士学位论文,2011.
    [177]李书超,许进.基于DNA计算的RNA数字编码[J].计算机工程与应用,2003,39(5):45-47.
    [178]吴剑锋,朱学愚,刘建立.基于遗传算法的模拟退火罚函数方法求解地下水管理模型[J].中国科学E辑,1999,29(5):474-480.
    [179]DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer methods in applied mechanics and engineering,2000,186(2):311-338.
    [180]TAO J.L., WANG N. DNA Double Helix Based Hybrid GA for the Gasoline Blending Recipe Optimization Problem[J]. Chemical Engineering Technology,2008, 31(3):440-451.
    [181]SUMMANWAR V., JAYARAMAN V., KULKARNI B., et al. Solution of constrained optimization problems by multi-objective genetic algorithm[J]. Computers & chemical engineering,2002,26(10):1481-1492.
    [182]SHOPOVA E.G., VAKLIEVA-BANCHEVA N.G. BASIC--A genetic algorithm for engineering problems solution[J]. Computers & chemical engineering,2006, 30(8):1293-1309.
    [183]MICHALEWICZ Z. Genetic algorithms, numerical optimization, and constraints[C]. In: Proceedings of the 6th International Conference on Genetic Algorithms,1995:151-158.
    [184]ZHAO X.Q., RONG G. Blending scheduling under uncertainty based on particle swarm optimization algorithm[J]. Chinese Journal of Chemical Engineering,2005, 13(4):535-541.
    [185]SINGH A., FORBES J., VERMEER P., et al. Model-based real-time optimization of automotive gasoline blending operations[J]. Journal of Process Control,2000, 10(1):43-58.
    [186]GLISMANN K., GRUHN G. Short-term scheduling and recipe optimization of blending processes[J]. Computers & chemical engineering,2001,25(4):627-634.
    [187]张建明,冯建华.两群微粒群算法及其在油品调和优化中的应用[J].化工学报,2008,59(7):1721-1726.
    [188]陈霄.DNA遗传算法及应用研究[D].杭州:浙江大学博士论文,2010.
    [189]高卫峰,刘三阳,姜飞,张建科.混合人工蜂群算法[J].系统工程与电子技术,2011,33(5):1167-1170.
    [190]WANG Y., CAI Z., ZHANG Q. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE Transactions on Evolutionary Computation,2011,15(1):55-66.
    [191]STORN R., PRICE K.V. Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces. Berkeley, CA, Tech. Rep. TR-95-012, 1995.
    [192]STORN R., PRICE K.V., LAMPINEN J. Differential evolution-A practical approach to global optimization[M]. Berlin, Germany:Springer-Verlag,2005.
    [193]王勇.基于进化算法求解复杂连续优化问题的研究[D].长沙:中南大学博士学位论文,2011.
    [194]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729.
    [195]DAS S., SUGANTHAN P. N. Differential evolution:A survey of the state-of-the-art [J]. IEEE Transactions on Evolutionary Computation,2011,15(1):4-31.
    [196]BISWAS A., DAS S., ABRAHAM A, DASGUPTA S. Analysis of the reproduction operator in an artificial bacterial foraging system[J]. Applied Mathematics and Computation,2010,215(9):3343-3355.
    [197]马博军.欠驱动非线性桥式吊车自动控制系统研究[D].天津:南开大学博士论文,2009.
    [198]SUN N., FANG Y.C., ZHANG Y.D., MA B.J. A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes[J]. IEEE Transactions on Mechatronics,2012,17(1):166-173.
    [199]YU J., LEWIS F.L., HUANG T. Nonlinear feedback control of a gantry crane[C]. In: Proceedings of the.American Control Conference,1995,6:4310-4315.
    [200]PARK H., CHWA D., HONG K. A feedback linearization control of container cranes: Varying rope length[J]. International Journal of Control Automation and Systems,2007, 5(4):379-387.
    [201]MOODY J.,DARKEN C.J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation,1989, 1(2):281-294.
    [202]PARK J., SANDBERG Ⅰ. Universal approximation using radial basis function networks[J]. Neural Computing,1991,3(2):246-257.
    [203]王旭东,邵惠鹤.RBF神经网络理论及其在控制中的应用[J].信息与控制,1997,26(4):272-284.
    [204]TAO J.L., WANG N. Splicing System Based Genetic Algorithms for Developing RBF Networks Models[J]. Chinese Journal of Chemical Engineering,2007,15(2):240-246.
    [205]侯媛彬,汪海,王立琦.系统辨识及其MATLAB仿真[M].北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700