用户名: 密码: 验证码:
TA15合金TIG焊及焊后氢处理对接头组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了不同TIG焊接工艺参数及焊后氢处理对TA15合金焊接接头组织和性能的影响;并初步建立了TA15合金TIG焊接接头组织转变模型及熔合区气孔形成机制。利用金相显微镜、透射电子显微(TEM)镜观察了焊缝的组织形貌。利用扫描电镜(SEM)观察了拉伸断口形貌。在CMT5305型电子万能力学试验机和HV-5型维氏硬度计上进行力学性能测试。
     研究结果表明,减小焊接电流或者加快焊接速度将引起熔池面积变小,焊接接头处出现气孔、减薄,熔合区出现冷裂纹。增大焊接电流使焊缝区组织粗大,晶粒内部针状马氏体增多,接头硬度、强度和塑性都有所提高。开坡口使接头熔池面积变小,熔宽减小。焊缝铸造组织和热影响区晶粒有所细化,晶界明显,α′相增多。两次重熔组织粗大,焊缝区β晶粒内α相网篮状排列,强度和塑性略有提高,但随着重熔次数的增加,组织更加粗大,强度和塑性都呈下降趋势。装配间隙会引起严重地焊接变形与减薄,开坡口对消除缺陷有一定的作用。拉伸断口有明显的撕裂棱和平台区域,断裂方式是沿晶断裂,有较浅的、不均匀的韧窝区域。
     TA15合金TIG焊缝以联生结晶形成的β柱状晶为主,垂直于熔合线竖直向焊缝表面以平面晶方式生长。焊缝精细结构主要是板条α′钛马氏体。气孔特征研究表明,钛合金TIG焊产生形状规则,尺寸小、孔壁光滑的冶金特征气孔,乃气体依附“气孔核”聚集长大所致,与表面污染有关。
     经过700℃/3h渗氢处理,TA15合金中形成平行排列的条状δ氢化物,对组织形貌产生了模糊作用,焊缝区大晶粒的内部产生了大量的针状马氏体α"相,具有一定的方向性。共析处理使亚稳β(H)和α"相逐渐分解为α和δ氢化物。真空除氢过程中δ氢化物分解、H2逸出,钛合金发生再结晶。氢处理使焊接件组织很大程度地细化,由平面柱状晶向等轴晶转变,晶内非平衡相减少,力学性能有较大提高。经过700℃/3h渗氢+300℃/8h共析+750℃/8h真空去氢的焊接件强度提高25.7%,塑性提高37.6%。氢处理焊接件拉伸断口宏观上比较平坦,平台区域很难观察到析出的针状α相,仍属于沿晶断裂。
The effect of different TIG welding parameter and succeeding hydrogen treatment on microstructure and mechanical properties of TA15 titanium alloy weld specimen was studied in this paper. The model on microstructure change of TIG welded joint in TA15 titanium alloy and the mechanism on porosity formed in fusion area were theorized. The microstructure was observed by an optical microscope and a transmission electron microscope (TEM). The surface morphology of tensile fracture was observed by a scanning electron microscope (SEM). The mechanical properties were carried out on a CMT5305 electron uniwersal mechanics testing machine and HV-5 Vickers hardness tester.
     The results showed that as reducing weld electric current or increasing weld speed, the acreage of fused bath became smaller, and porosity was observed in welded joint, and cold cracking was observed in fusion area, and grains became bigger in weld bead, and acerose martensite phase increased in grain inside. Hardness and strength and ductility of weld joint had been increased. The acreage of fused bath and weld width became smaller with getting a bevel on joint. The microstructure of weld bead and HAZ was fined, and the boundary of grains was bloomed, and phaseα′increased. After twice remelting treating, phaseαarranded as net-basket in phaseβgrains inside, and trength and ductility of weld joint had advanced slightly. But grains became more coarse and trength and ductility dropped with more times remelting. The fit-up gap resulted in badly deformation. There were visible tearing arris and flatness on the surface morphology of tensile fracture. The mechanism of cracking was intercrystalline cracking. Some shallow and asymmetrical dimples were observed.
     The weld crystallization of TA15 titanium alloy TIG welding is characterized by adnate and epitaxial growth. The grains growth as flat grain in the weld bead directed to the center of weld surface perpendicular to the fusion line. The microstructure of weld bead was batten martensite phaseα′. The microstructure of porosity showed that porosity observed in welds of TA15 titanium alloy TIG welding was small round metallurgical porosity with smooth inner wall, which results from the gas accumulating around the“pore nucleus” relative to the surface contamination.
     The results showed thatδ-hydride formed after hydrogenising at 700℃for 3h, and it has a face-centered cubic structure. And these hydrides brought a strong fuzzy effect on microstructure. A lot of rhombic martensite phaseα" generated in grain of the weld bead. Metastable phaseβ(H) and phaseα" would gradually decompose toαandδphase with eutectoid treatment. Hydrogen was removed and recrystallization accured in the process of annealing in vacuum. After hydrogen treatment, the refinement effect to big grains in the fusion area was very obviously, which was changed from flat grain to equiaxed grain. Non-equilibrium phase had reduced in grain. Residual stress had disappeared. Mechanical properties had increased obviously. After hydrogenization at 700℃for 3h and eutectoid at 300℃for 8h and annealing at 750℃for 8h in vacuum, the tensile strength of test sample increased as 25.7%, and the plasticity increased as 37.6%. After hydrogen treatment, the surface morphology of tensile fracture was relative flatness in macroscopy. The small needle phaseαwas observed hardly at flat area. The mechanism of cracking was intercrystalline cracking also.
引文
1王永兰,王桂生. BT20钛合金的金相显微组织.稀有金属, 1998, 3
    2李兴无,沙爱学,张旺峰. TA15合金及其在飞机结构中的应用前景.钛工业进展. 2003, 20(4):90~94
    3孙东立,韩潇,王清,吴涛,李中华.氢处理对钛合金组织性能的影响及其机理.宇航工艺材料.2005, 3:11~16
    4曹建玲,沈保罗,高升吉等. Ti-Al-Zr合金的氢致延迟断裂行为.中国有色金属学报. 2002, (12):74~77
    5 C.L.Briant, Z.F.Wang, N.Chollocoop. Hydrogen Embrittlement of Commercial Purity Titanium. Corrosion Science. 2002, 44:1875-1888
    6曾乐.现代焊接技术手册.上海科学技术出版社, 1993:105~106
    7中国机械工程学会焊接学会.焊接手册:材料的焊接.北京:机械工业出版社, 2001
    8中国机械工程学会焊接学会.焊接手册:焊接方法及设备.北京:机械工业出版社, 2001, 8
    9刘黎明,杜鑫,张兆栋. TA15钛合金接头活性剂补焊的组织特征.中国有色金属学报, 2005, 12, 15(12):1910-1916
    10 Lucas W, Howse D. Activating Flux-Increasing the Performance and Productivity of the TIG and Plasma Processes. Welding and Metal Fabrication, 1996, (1):11-17
    11 Howse D. S, Lucas W. Investigation into Arc Constriction by Active Fluxes for Tungsten Inert Gas Welding. Science and Technology of Welding and Joining, 2000, 5(3):189-193
    12康浩方.国内外钛设备的焊接技术研究现状.钛工业进展, 2003, 20(4-5): 70-73
    13 Castro M. B. G, Dos Santos J. F, Quintino. M. L. Plasma Arc Welding of the Super Alloys Inconel 625 and 718: Parameter Areas and Mechanical Properties. Int. J. for the Joining of Materials, 2003, 15(1/2):1-8
    14 Martikainen. J. K, Moisio. I. J. Investigation of the Effect of Welding Parameters on Weld Quality of Plasma Arc Keyhole Welding of Structural Steels. Welding Journal, 1993, 7:329-340
    15 Einar H. New Applications of Plasma Keyhole Welding. Welding in the World, 1994, 34:285-291
    16钟飞,史耀武,李晓延. BT2钛合金激光焊接接头的断裂韧性研究.材料工程, 2005, (4):33-37
    17熊亮同,董占贵,周志刚. TA15钛合金A-TIG焊接头组织和性能分析.焊接技术, 2005,10,34(5):16-18
    18杜鑫,刘黎明,宋刚. TA15钛合金接头补焊组织特征分析.焊接学报, 2005, 2, 26(2):45-48
    19李晓红,张连锋,杜欲晓.单组分氟化物焊剂对钦合金氨弧焊焊缝成形的影响.航空制造技术, 2004, (9):65-66,69
    20宗影影,薛克敏,单德彬,吕炎.塑性变形对BT20钛合金焊缝组织和力学性能的影响.锻压技术, 2005, (2):21-23
    21王焕琴.钛及钛合金焊接接头的组织、性能和断裂特性.焊接, 2001, (11): 27-29
    22姚伟,巩水利,陈俐.钛合金激光焊接接头的组织和力学性能.焊接学报, 2006, 2, 27(2):69-72,76
    23杨延清,张晶宇,温力. BT20钛合金大锻件的热处理.钛工业进展. 2003, (2):14~17
    24沙爱学,李兴无,储俊鹏. TA15钛合金的普通退火.稀有金属. 2003, 27(1): 213~215
    25沙爱学,李兴无,储俊鹏,温国华.热处理工艺对TA15钛合金击性能的影响.稀有金属. 2006, 30(1):26~29
    26张旺峰,曹春晓,李兴无等.β热处理TA15钛合金对力学性能的影响规律.稀有金属材料与工程. 2004, 33(7):768~770
    27王永兰,王桂生. BT20钛合金的金相显微组织.稀有金属. 1998,22(2):152~154
    28胡刚,李晋炜,付纲,毛智勇.热处理对TA15钛合金电子束焊接接头力学性能和微观组织的影响.航天制造技术. 2005, (4):1~5
    29 O.N.Senkov, F.H.Froes. Thermo Hydrogen Processing of Titanium Alloys. International Journal of Hydrogen Energy. 1999, (24):565~567
    30 O.N.Senkov, J.J.Jonas, and F.H.Froes. Recent Advances in the Thermo Hydrogen Processing of Titanium Alloys. JOM. 1996:42~47
    31 Chen Yexin,Wan Xiaojing. The Kinetics of Hydrogen Diffusion in Ti3AlBased Alloy. Journal of Shanghai University. 1997, 1(3):249~251
    32 Chen Yexin,Wan Xiaojing. Hydrogen Effects on the Mechanical Properties of Ti-24Al-11Nb-3V-1Mo Alloy. J.Mater. Sci. Technol. 1998, 14:176~178
    33 Zhang Y, Zhang S Q. Hydrogenation Characteristics of Ti-6Al-4V Cast Alloy and Its Microstructural Modification by Hydrogen Treatment. International Journal of Hydrogen Energy. 1997, 22(2/3):61~168
    34 O.N.Senkov and J.J.Jonas. Effect of Phase Composition and Hydrogen Level on the Deformation Behavior of Titanium-Hydrogen Alloys. Metallurgecal and Materials Transactions A. 1995, 27A:1869~1876
    35 Hirofumi Yoshimura, Kin’ichi Kimura, Masayuki Hayashi et al. Ultra-Fine Equiaxed Grain Refinement and Improvement of Mechanical Properties of (α+β) Type Titanium Alloys by Hydrogenation, Hot Working, and Heat Treatment. Materials Transactions, JIM. 1994, 35(4):266~272
    36宫波,赖祖涵.用化学处理改善(α+β)形态合金的组织和力学性能.中国有色金属学报. 1994, 4(3):87~89
    37 Hirofumi Yoshimura, Jun Nakahigashi. Ultra-Fine-Grain Refinement and Superplasticity of Titanium Alloys Obtained Through Protium Treatment. International Journal of Hydrogen Energy. 2002, 27:769~774
    38 M.Niinomi, B.Gong, T.Kobayashi etal. Fracture Characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with Refined Microstructure Using Hydrogen. Metallurgical and Materials Transactions A. 1995, 26(A):1141~1151
    39 D.H.Kohn, P.Ducheyne. Microstructural Refinement ofβ-Sintered and Ti-6Al-4V Porous-Coated by Temporary Alloying with Hydrogen. Journal of Materials Science. 1991, (26):534~544
    40宮波,新家光雄,小林俊郎等.水素を用いた化學熱處理によるα+β型チタン合金のミクロ組織御と強韌性.輕金属. 1992, 42(11):638~643
    41 D.H.Kohn, P.Ducheyne. Tensile and Fatigue Strength of Hydrogen-Treated Ti-6Al-4V Alloy. Journal of Materials Science. 1991, (26):328~334
    42 D.F.Teter, I.M.Robertson, H.K.Birnbaum. The Effects of Hydrogen on the Deformation and Fracture ofβTitanium. Acta Mater. 2001, (49):4313~4323
    43 M.A.Murzinova, M.I.Mazurski, A.Salishchev, D.D.Afonichev. Application of Reversible Hydrogen Alloying for Formation of Submicro Crystalline Structure in (α+β) Titanium Alloys. International Journal of Hydrogen Energy.1997, 22(2/3):201~204
    44施金美,陈业新,万晓景.钛合金中氢化物析出惯习面的研究.上海大学学报. 2003, 9(5):405~409
    45苏彦庆,骆良顺,毕维升等.置氢对Ti6Al4V合金室温组织的影响.核动力工程. 2003, 24(4):297~301
    46曹兴民,奚正平,赵永庆. TC21合金高温渗氢组织变化研究.热加工工艺. 2005, (1):29~33
    47 A.A.依里因, A.M.马莫诺夫.铸造钛合金的热氢处理.材料工程. 1992,(1):14~16
    48 Zhang Y, Zhang S Q. Hydrogen Characteristics of Ti-6Al-4V Cast Alloy and Its Microstructure Modification by Hydrogen Treatment. Int J Hydrogen Energy. 1997, 22(2):161~168
    49 Zhang Shaoqing, Pan Feng. Hydrogen Treatment of Ti-6Al-4V Alloy. Chin J Met Sci Technol, 1990(6):187~192
    50李远睿,黄本多,黄庆兵.氢对Ti-Al-V钛合金的击韧性及组织的影响.重庆大学学报. 2003, 26(2):127~131
    51何晓,岳俊,沈保罗等.氢对Ti-2Al-4V钛合金疲劳寿命的影响.核动力工程. 2003, 24(4):297~301
    52何晓,沈保罗.氢对Ti-2Al-4V疲劳裂纹扩展速率的影响.中国有色金属学报. 2003, 13(4):924~927
    53 Lancaster J.F. Metallurgy of Welding. London: George Allen & Unwin, 1980.
    54 J.C.M.Li. Microstructure and Properties of Materials (vulume2). World Scientific, 2002
    55邓安华.钛合金的马氏体相变.上海有色金属. 1999, Vol.20, No.4, 193~200
    56韩忠.钛合金焊接冶金研究进展.材料科学与工程. 2000, Vol.18, No.4, 107~110, 120
    57 B.K.Damkroger, G.R.Edwards, B.B.Rath. Investigation of Subsolidus Weld Craking in Alpha-Beta Titanium Alloys. Welding J., 1989, 68, No.7, 290s~302s.
    58 L.S.Smith, M.F.Girros. A Review of Weld Porosity and Hydride Cracking in Titanium and Its Alloy. TWI reports (658), 1998, Nov
    59 V.A.Zelenin, E.V.Abramov. Porosity in the Welding of Tubes to Tube Plates - 8 4 -Made from Titanium. Welding production. 1974, 21(9):32~34
    60 V.V.Redchits, G.D.Nikiforov. Computer Examination of the Behaviour of Hydrogen in Pores of Welded Jointd in Active Metals. Welding Production. 1984, 31(8):2~4
    61中国科学院金属研究所编.钛合金气孔的研究.国外钛合金文集. 1976, 240
    62顾钰熹编著.特种工程材料的焊接.沈阳:辽宁科学技术出版社, 1998, 160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700