用户名: 密码: 验证码:
仿刺参(Apostichopus japonicus)池塘氮磷收支和沉积物特征性氮磷垂直分布的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究已发现,海参病害的发生与环境条件的剧烈变化,如温度、盐度和pH值等有密切的关系。因此,了解刺参养殖池塘水质的变化规律,研究养殖系统内部结构和环境,研究系统中各种营养物质的积累和排放,保持一个良好的养殖环境以减少养殖业对周围近海环境的影响尤为重要。氮磷是影响水体生态系统的重要元素,其利用率和积累情况常被作为评价养殖水平、模式以及自身污染程度的重要指标。近海滩涂沉积物是氮磷等生源要素的重要蓄积库,它在承担对上覆水环境净化功能的同时,也在一定程度上发挥着营养源的作用,不断向上覆水释放营养盐,对水体富营养化具有重要的贡献。水体的营养盐污染可分为外源和内源污染,而氮磷的分布形态也已被证实与内源负荷具有直接相关性。在外源性营养物质被控制之后,内源沉积物中的氮磷仍然可以通过间隙水与上覆水进行物理的、化学的和生物的交换作用从而可能使水体仍然处于富营养状态。因此对沉积物特征性氮磷的研究就显得尤为重要。
     本文利用陆基围网实验,研究了不同养殖模式下刺参养殖池塘的水化学状况、特征性氮磷在底泥中的垂直分布以及氮磷收支状况,旨在为刺参池塘生态系结构优化提供化学收支依据和沉积物氮磷垂直分布的理论依据。
     1.投饵与不投饵刺参养殖池塘水质变化的初步研究
     本实验以投饵和不投饵两口刺参养殖池塘(放养密度为10 ind m~(-2))研究对象,进行了6个月的投饵与不投饵养殖实验。调查养殖期间池塘水质的变化、投饵和换水对池塘水质的影响,以期为海参养殖业的发展提供基础依据。
     结果表明:在两种养殖模式下,池塘水体的pH呈逐渐增大的趋势,盐度则缓慢降低,两者皆在降雨期间波动剧烈;池塘的水温、NH_4~+-N、NO_3~--N、NO_2~--N、NH_3-N和SRP在夏季偏高,春季和秋季较低,季节变化明显;池塘水体的TN和TP表现为春季>夏季>秋季;投饵池塘NO_2-N含量显著高于不投饵池塘(P<0.05),其它指标差异不显著(P>0.05);两池塘水体皆属于磷限制中度营养化水。换水后,两池塘水体的pH和盐度波动趋于平稳;TN含量差异不明显,TP含量明显降低,差异显著(P<0.05);NH_4~+-N、COD、NH_3-N含量明显升高,差异显著(P<0.05);NO_3~--N、NO2--N含量换水后不投饵池塘降低,投饵池塘升高,两者差异显著(P<0.05)。换水对池塘水质的影响可能与投饵和池塘的底质有关。
     2.投饵和密度对刺参养殖池塘氮磷收支影响的实验研究
     本实验采用围网生态学方法,设计投饵和非投饵两种养殖模式,每种模式设5个密度水平,分别为A(5ind m~(-2))﹑B(10ind m~(-2))﹑C(15ind m~(-2))﹑D(25 ind m~(-2))和E(35 ind m~(-2)),每个处理均设4个重复。
     结果表明:换水是池塘氮磷的主要输入和输出途径。非投饵组和投饵组换水所输入的氮分别占N总输入的89.62%~90.21%和66.42%~84.54%,磷分别占P总输入的88.46%~90.77%和31.76%~67.24%,非投饵组和投饵组换水所输出的氮分别占N总输出的87.72%~107.10%和63.19~83.14% ,磷占P总输出的46.88%~57.33%和22.96%~43.28%;投饵组的饵料输入分别占N、P总输入的6.24%~25.66%和25.93%~64.09%;在支出项目上各处理组间数据(投饵组底泥积累除外)并没有表现出明显的与密度相关的差异性。底泥沉积随着投饵量的增大,在支出项目中所占比例逐渐增大,非投饵组和投饵组中分别占N总输出的-24.8%~-5.84%(积累为负值)和7.20%~23.28%,分别占P总输出的8.78%~20.49%和28.72%~56.39%,而投饵各处理组底泥积累明显高于非投饵各处理组。
     3.不同附着基种类对刺参养殖池塘氮磷收支影响的实验研究
     本实验采用围网生态学方法,五种附着基分别为石头(A)﹑瓦片(B)﹑塑料管(C)﹑空心砖(D)和水泥管(E),不同附着基上刺参的放养密度皆为10头/㎡,每个处理均设4个重复。
     结果表明:在五种不同附着基养殖条件下,换水是池塘氮磷的主要输入和输出途径。换水所输入的氮磷分别占N﹑P总输入的90.7%和91.1%,换水所输出的氮磷分别占氮、磷总输出的64.3%~76.9%和43.5%~50.2%;在支出项目上,各处理组间数据(投饵组底泥积累除外)并没有表现出明显的与附着基相关的差异性。而各组底泥氮沉积分别占氮总输出的比例关系为C(22.1%) > B(17.3%) > D(11.8%) > E(10.3%)> A (6.1%),底泥磷沉积占磷总输出的比例关系为A(22.3%) > B(19.9%) > D(17.6%) > E(17.1%) > C(14.5%)。刚毛藻(Cladophora oligoclona)所输出的氮磷分别占氮、磷总输出的2.2%~3.3%和16.3~19.0%。
     5.对虾和刺参混养系统池塘氮磷收支影响的实验研究
     试验采用双因子实验设计,刺参设置两个密度:A组10和B组15ind m~(-2);中国明对虾设置四个密度:0,2,4和8 ind m~(-2);每组3个重复;整个养殖期间不投饵。
     结果表明:换水是池塘氮磷的主要输入和输出途径。在支出项目上, A组和B组收获的刺参产量氮含量分别占N总输出的0.26%~0.43%和0.30%~0.35%,磷分别占P总输出的0.43%~0.58%和0.35%~0.85%;A组和B组收获的对虾产量氮含量分别占N总输出的0.87%~0.93%和0.88%~0.96%,磷分别占P总输出的1.34%~1.52%和1.57%~1.60%;换水依然是最主要的氮磷输出方式。底泥沉积在A组和B组中分别占N总输出的1.85%~2.05%和4.52%~5.08%,分别占P总输出的12.49%~12.66%和10.05%~15.08%。
     6.不同附着基种类对刺参池塘沉积物特征性氮磷垂直分布影响的实验研究
     实验设计在相同投放密度(10ind m~(-2))和规格(5.0±0.2g ind-1)情况下采用不同附着基的养殖模式,附着基具体为:石头(A)﹑瓦片(B)﹑塑料管(C)﹑空心砖(D)﹑水泥管(E)五种。每个处理均设计4个重复。
     结果发现,实验池塘底质氮磷含量较低。沉积物TN含量的变化范围为430~1260 mg kg~(-1),平均值为711 mg kg~(-1),呈现出表层>中层>下层的趋势,各处理组沉积物TN的平均含量如下:D (空心砖) > C (塑料管) > E (水泥管) > B (瓦片) >A(石头); NH~+_4-N和NO-3-N含量在TN中分别占3.97%和1.08%;特征性氮元素随着季节呈现出一定规律的变化;沉积物TP含量的变化范围为366.6~1228.1 mg kg~(-1),平均值为825.3 mg kg~(-1),呈现出表层<中层<下层的趋势,各处理组沉积物TP的平均含量如下:A(石头)>B (瓦片) >C (塑料管) >D (空心砖) >E (水泥管);L-P、Fe-P、Ca-P、D-P和O-P含量在TP中分别占2.81%、37.56%、4.04%、10.12%和61.60%。特征性磷元素的季节变化规律较为复杂,呈现出不同的变化规律。
     7.刺参和对虾混养池塘沉积物特征性氮磷垂直分布的实验研究
     刺参设两个放养密度:A组10 ind m~(-2)和B组15ind m~(-2);中国明对虾设三个放养密度:分别为0,2和8 ind m~(-2);其中A_0、A_2、A_8分别代表;刺参密度为10 ind m~(-2)的A组与对虾密度为0,2和8 ind m~(-2)的组合, B_0、B_2、B_8分别代表刺参密度为15 ind m~(-2)的B组与对虾密度为0,2和8 ind m~(-2)的组合。每个处理3个重复;整个养殖期间不投饵。
     结果发现,池塘底质氮含量较低,磷含量较高。沉积物TN含量的变化范围为140~480mg kg~(-1),平均值为282.4 mg kg~(-1),各层平均值呈现出明显的从表层到底层下降的趋势,但是在沉积物下层15cm左右出现上升的拐点。特征性氮元素随着季节呈现出一定规律的变化;沉积物TP含量的变化范围858.1~3369.5 mg kg~(-1),平均值为1551.7 mg kg~(-1),表层含量较高,0~10cm层随着深度增加TP含量出现明显的降低,10cm以下含量变化较为稳定,在13cm处出现上升拐点;L-P、Fe-P、Ca-P、D-P和O-P含量在TP中分别占3.0%、22.8%、3.9%、3.0%和71.1%。特征性磷元素的季节变化规律较为复杂。
Studies have found that there is a close relationship between the occurrence of sea cucumber diseases and the acutely changes in environmental conditions, such as temperature, salinity and pH. So it is particularly important to study the changing rules of water quality, the internal structure, the accumulation and emissions of various nutrients in farming systems, which can maintain a good breeding environment for the aquaculture industry to reduce environmental impact of the offshore aquaculture. Nitrogen (N) and phosphorus (P) are important elements in aquatic ecology, whose conversion efficiency and deposit status in system are often used to evaluate aquaculture techniques, pattern and state of pollution within system.
     Coastal sediments are important accumulation storage vault of biogenic elements such as nitrogen and phosphorus. It can purify but release nutrients to the overlying water as a nutritional source at the same time, which can play an important role in eutrophication. Nutrients pollution of water bodies can be divided into exogenous and endogenous pollution. It is confirmed that there is a direct relevance between the distribution and forms of nitrogen and phosphorus and the endogenous pollution. The water may remain in the eutrophic water body status because the endogenous nitrogen and phosphorus in the sediments can still be exchanged between the pore and overlying water on the physical, chemical and biological methods after the exogenous nutrients source are under control. Therefore, it is very necessary to study budgets, distribution, dynamic and conversion efficiencies of N and P in aquaculture system.
     These studies were designed and conducted to investigate hydrochemistry, vertical distribution of N, P in sediments and budgets of N and P in systems of sea cucumber culture ponds with land-based experimental enclosures. The chief results were as followings:
     1. Preliminary studies of water quality in the feeding and unfed sea cucumber culture ponds
     The experiment which lasted about 6-month studied the impact of the feeding and water changing to the water quality in the feed and unfed sea cucumber ponds.
     The result showed that between the two category ponds, the pH value increased slowly and the salinity declined slowly with time elapsed during the whole experiment and both changed significantly in the rainy season; The temperature and the concentrations of NH_4~+-N、NO_3~--N、NO_2~--N、NH_3-N and SRP in both ponds had a seasonal fluctuations, which were lower in spring and autumn and the higher in summer; The rank of concentrations of TN and TP were spring >summer >autumn; The water of two ponds are both medium nutrient with limited phosphorous. The effect of feeding to the water quality in both ponds was that the concentrations of the NO2--N in the feeding pond was much higher than the unfed pond (P<0.05). but the other parameters were not significantly different(P>0.05). After changing the water, the fluctuations of pH and salinity in the two ponds tended to be smooth.; the concentrations of TN did not changed significantly (P>0.05)but the concentrations of TP declined significantly(P<0.05) and the concentrations of NH_4~+-N、COD、NH_3-N increased significantly(P<0.05); After changing the water, it appeared different about NO_3~--N and NO_2~--N between the two ponds and the concentrations of the unfed pond declined significantly(P<0.05) but the feeding pond increased significantly.(P<0.05). The effect of water changing may be concerned about the sediments of the ponds and the feeds.
     2. An Experimental Study on Effect of Feeding and Density to Nitrogen and Phosphorus Budgets in Sea Cucumber Ponds
     The experiment was carried out with land-based experimental enclosures set in one pond, in which sea cucumber were stocked at five different densities, 5 ind/m~2(A), 10 ind/m~2 (B), 15 ind/m~2(C), 25 ind/m~2(D), 35 ind/m~2 (E). There are two patterns: feeding and unfed.
     The results showed that water exchanged accounted for 89.62%~90.21% N and 66.42%~84.54%N of the total inputs while 54.7%~64.8%P and 81.6%~88.7% P in feeding and unfed groups systems; and 87.72%~107.10% N and 63.19%~83.14%N of the total outputs while 46.88%~57.33%P and 22.96%~43.28% P in feeding and unfed groups systems; that feeding accounted for 6.24%~25.66% N and 25.93%~64.09%P of the total inputs in feeding groups systems.
     The output of N and P in the sediments, which accounted for -24.80%~5.84% N and 7.20%~23.28% N and 8.78%~20.49%P and 28.72%~56.39%P in systems. N and P deposited in the sediments of feeding systems were higher than those in unfed systems.
     3. An Experimental Study on Effect of different reefs to Nitrogen and Phosphorus Budgets in Sea Cucumber Ponds
     The experiment was carried out with land-based experimental enclosures set in one pond at the same density :5 ind/m~2, in which sea cucumber were stocked at five different reefs, ST(A), EA (B), PL(C), BR (D), CP (E).
     The results showed that water exchanged accounted for 90.7% N and 91.1%P of the total inputs while 64.3%~76.9%N and 50.2% P of the total outputs in systems; The proportion of N deposited in the sediments to outputs of total N from high to low was C(22.1%)>B(17.3%)>D(11.8%)>E(10.3%)>A(6.1%) while the proportion of P was A(22.3%)>B(19.9%)>D(17.6%)>E(17.1%)>C(14.5%).the N and P outputs of Cladophora oligoclona was 2.2%-3.3% and 16.3%-19.0%.
     4. An Experimental Study in polyculture of sea cucumber with shrimp to Nitrogen and Phosphorus Budgets
     The experiment was carried out with land-based experimental enclosures set in one pond at the different density :A(5 ind/m~2),B(10 ind/m~2)in which shrimp were stocked at four different density : 0 ind/m~2, 2 ind/m~2, 4 ind/m~2, 8 ind/m~2。
     The results showed that the sea cucumber harvest groups accounted for 0.26%-0.34% N and 0.43%-0.58%P of the total outputs in the A groups while 0.30%~0.35%N and 0.35%-0.85% P of the total outputs in the B groups. The shrimp harvest accounted for 0.87%-0.93% N and 1.34%-1.52%P of the total outputs in the A groups while 0.88%~0.96%N and 1.57%-1.60% P of the total outputs in the B groups
     The proportion of N deposited in the sediments was 1.85%-2.05% while the proportion of P was 12.49%-12.66% in the A groups. The proportion of N deposited in the sediments was 4.52%-5.08% while the proportion of P was 10.05%-15.08% in the A groups
     5. An Experimental Study on impact of different reefs to the vertical distribution of N and P forms in the sediments of sea cucumber ponds.
     The experiment was carried out with land-based experimental enclosures set in one pond at the same density :5 ind/m~2, in which sea cucumber were stocked at five different reefs, ST(A), EA (B), PL(C), BR (D), CP (E).
     The result showed that the concentration of TN in the sediments was low. The changing range of TN in the sediments was 430-1260 mg kg~(-1), and the average concentration was 711 mg kg~(-1), which the rank of concentration was the surface> the middle> the bottom. The average concentration of TN in the different reefs were D>C>E>B>A; The proportion of NH_4-N and NO_3~-N were 3.97% and 1.08%. The concentration of TN forms changed regularly as seasons; the concentration of TN in the sediments was low. The changing range of TP in the sediments was 366.6-1228.1 mg kg~(-1), and the average concentration was 825.3 mg kg~(-1), which the rank of concentration was the surface< the middleB>C>D>E. The proportion of L-P、Fe-P Ca-P、D-P and O-P were 2.81%、37.56%、4.04%、10.12% and 61.60%. The concentration of TN forms changed complex as seasons, which show different rules.
     6. An Experimental Study on the vertical distribution of N and P forms in the sediments of Tri-polyculture of sea cucumber and shrimp.
     The experiment was carried out with land-based experimental enclosures set in one pond at the different density: A(5 ind/m~2),B(10 ind/m~2)in which shrimp were stocked at four different density: 0 ind/m~2, 2 ind/m~2, 4 ind/m~2, 8 ind/m~2
     The result showed that the concentration of TN in the sediments was low. The changing range of TN in the sediments was 140-480 mg kg~(-1), and the average concentration was 282.4 mg kg~(-1). The changing range of TP in the sediments was 858.1-3369.5 mg kg~(-1), and the average concentration was 1551.7 mg kg~(-1), The proportion of L-P、Fe-P Ca-P、D-P and O-P were 3.0%、22.8%、3.9%、3.0% and 71.1%. The concentration of TN forms changed complex as seasons, which show different rules.
引文
[1]毕远溥,李润寅,宋辛,等.赤潮及其防治途径,水产科学, 2001, 20(3): 31-32.
    [2]鲍全盛,王华东.我国水环境非点源污染研究与展望.地理科学, 1996, 16(1): 66-71.
    [3]常亚青,隋锡林,李俊.刺参增养殖业现状、存在问题与展望[J].中国水产科学, 2006, 25(4): 198-201.
    [4]常杰,田相利,董双林,等.对虾、青蛤和江蓠混养系统氮磷收支的实验研究[J].中国海洋大学学报, 2006, 36(5): 33-39.
    [5]蔡惠文,孙英兰,张越美,等.宁波一舟山海域污染物扩散的数值模拟[J].中国海洋大学学报, 2006, 36(6): 975-980.
    [6]董双林,王芳,王俊,等.海湾扇贝对海水池塘浮游生物和水质的影响[J].海洋学报, 1999, 21(6): 138-144.
    [7]丁美丽.有机污染对中国对虾体内外环境影响的研究.海洋与湖沼, 1997, 28(1): 7-11.
    [8]丁天喜,李明云,刘祖祥.对虾塘综合养殖的模式与原理.浙江水产学院学报, 1996, 15(2): 34-139.
    [9]杜永芬,张志南.菲律宾蛤仔的生物扰动对沉积物颗粒垂直分布的影响.中国海洋大学学报, 2004, 34(6): 988-992.
    [10]方波,潘鲁青,董双林等.微生态制剂在沿黄低洼盐碱地凡纳滨对虾养殖中的应用研究.海洋科学,海洋科学, 2005, 29(1): 1-3.
    [11]冯海清.水产养殖业的灾变呼唤鱼虾营养生态学.中国饲料, 1996, 13: 18-20.
    [12]冯峰,方涛,刘剑彤.武汉东湖沉积物氮磷形态垂向分布研究[J].环境科学, 2006, 27(6): 1078-1082.
    [13]范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析.湖泊科学. 2000, 12(4): 359-366.
    [14]国家质量技术监督局.海水分析.海洋监测规范,北京:中国标准出版社,1998,142-143,150-162.
    [15]郭卫东,章小明,杨逸萍,等.中国近岸海域潜在性富营养化程度的评价[J].台湾海峡, 1998. 17(1): 64-07.
    [16]扈传昱,王正方,吕海燕.海水和海洋沉积物中总磷的测定[J].海洋环境科学, 1999, 8(2): 1-10.
    [17]韩洁,张志南,于子山等.菲律宾蛤仔对潮间带水层)沉积物界面颗粒物通量影响的研究.青岛海洋大学学报, 2001, 3(5): 723-729.
    [18]何清溪,张穗,方正信等.大亚湾沉积物中氮和磷的地球化学形态分配特征.热带海洋, 1992, 11(2): 38-44.
    [19]洪华生.春季厦门港九龙江口各种形态磷的分布与转换.海洋环境科学, 1989, 8(2):1-10.
    [20]计新丽,林小涛,许忠能,等.海水养殖自身污染机制及其对环境的影响,海洋环境科学, 2000, 19(4): 66-71.
    [21]江玉.养殖生态环境的优化措施.齐鲁渔业, 2000, 17(5): 38-39.
    [22]金相灿等.湖泊富营养化调查规范(第二版).北京:中国环境科学出版社. 1990.
    [23]江伟,李心清,姜倩.等.凯氏蒸馏法和元素分析仪法测定沉积物中全氮含量的异同及其意义.地球化学, 2006, 35(3): 319-324.
    [24]李德尚,杨红生,王吉桥.一种池塘陆基实验围隔.青岛海洋大学学报, 1998, 28(2): 199-204.
    [25]李秋芬,袁有宪.海水养殖环境生物修复技术研究展望.中国水产科学, 2000, 7(2): 90-92.
    [26]李庆彪,李美芝,王宝庭.虾池生态系的特点与虾病.海洋学报, 1995, 17(5): 135-139.
    [27]李松青.南美白对虾的氮磷收支及养殖环境氮磷负荷的研究.暨南大学硕士学位论文, 2003.
    [28]李志坚,张建兰,徐忠伟,等.刺参养殖技术之三池塘刺参的高温期管理[J].中国水产, 2003, 10: 58-59.
    [29]刘宗柱.凯氏定氮法测定牙鲆肌肉粗蛋白含量方法的改进.海洋科学1999, 6: 1-3. 30]刘永宏,李馥馨,宋本祥,等.刺参(Apostichopus japonicus Selenka)夏眠习性研究I夏眠生态特点的研究[J].中国水产科学, 1996, 3(2): 41-48.
    [31]刘缵延,张学超,苏小凤,等.海参养殖中存在的问题及其对策[J].中国水产, 2005, 6: 57-58.
    [32]吕伟志,戴晓军,李东站.刺参养殖技术之一低盐度池塘养殖刺参技术探讨[J].中国水产, 2006, 1: 42-43.
    [33]雷衍之.养殖水环境化学实验[M].北京:中国农业出版社, 2006.
    [34]龙麟,周凌云,韩剑娇.赵怡珂苏南典型河段磷的分布及释放特性研究.环境保护科学, 2006, 32(4): 23-26.
    [35]林仕梅,叶元土,罗莉.水产养殖的绿色饲料开发研究.中国饲料.1999, 15: 23-25.
    [36]马江耀,石和荣,柯浩.三种微生态制剂对鱼池水质净化作用的对比试验.水产科技情报, 2003, 30(6): 272-274.
    [37]牛化欣,马甡,田相利,等.菊花心江蓠对中国明对虾养殖环境净化作用的研究[J].中国海洋大学学报, 2006, 36(5): 45-48.
    [38]彭近新,陈慧君.水质富营养化与防治[M ].北京:中国环境科学出版社. 1988. 94-112.
    [39]齐振雄.对虾池综合养殖生态氮磷收支及沉积物在其中作用的研究.青岛海洋大学博士论文, 1998.
    [40]齐振雄,李德尚,张曼平等.对虾养殖池塘氮、磷收支的实验研究.水产学报,1998, 22(2): 124-128.
    [41]苏跃朋,马甡,张哲.对虾养殖池塘混养牡蛎对底质有机负荷的作用.中国水产科学, 2003, 10(6): 491-494.
    [42]孙耀,杨琴芳,崔毅,李健.对虾养殖中新生残饵耗氧动态及其规律的研究.中国水产科学,1996, 3(4): 53-59.
    [43]孙耀,李健,崔毅.虾塘新生残饵的N,P营养物溶出速率及其变化规律研究.应用生态学报, 1997b, 8(5): 541-544.
    [44]孙耀.池塘养殖环境中底质-水界面营养盐扩散通量的现场测定.生态学报, 1996, 16(6): 664-666.
    [45]孙舰军,丁美丽.改善虾池环境增强中国对虾抗病力的研究.海洋科学, 1999, 1: 3-5.
    [46]宋修武.大力发展海参健康养殖,培育海洋渔业经济发展新亮点[J].齐鲁渔业, 2005, 22(1): 1-2.
    [47]宋玉芝,秦伯强,高光.氮及氮磷比对附着藻类及浮游藻类的影响[J].湖泊科学, 2007, 19(2): 125-130.
    [48]宋宗岩.海参养殖慎防亚硝酸盐[J].齐鲁渔业, 2006, 23(10): 23-24.
    [49]隋锡林.海参增养殖[M].北京:农业出版社, 1988: 15-59.
    [50]汤坤贤,焦念志,游秀萍等.菊花心江蓠在网箱养殖区的生物修复作用.中国水产科学, 2005, 12(2): 156-161.
    [51]田相利,李德尚,董双林等.对虾-罗非鱼-缢蛏封闭式综合养殖的水质研究.应用生态学报, 2001, 12(2): 287-292.
    [52]谭镇,钟萍,应文晔,刘正文,朱广伟,王建军.惠州西湖底泥中氮磷特征的初步研究.生态科学, 2005, 24(4): 318-321.
    [53]王焕明,李少芬,陈浩如等.江蓠与新对虾、青蟹混养试验.水产学报,1993, 17(4): 273-281.
    [54]王吉桥,李德尚,董双林等.中国对虾与海湾扇贝投饵混养的实验研究.中国水产科学, 1999, 6(1): 97-102.
    [55]王吉桥,靳翠丽,张欣.不同密度的石莼与中国对虾的混养实验.水产学报, 2001, 25(1): 32-37.
    [56]王岩,齐振雄.不同单养和混养海水实验围隔的氮磷收支.汕头大学学报, 1998, 13(2): 71-75.
    [57]王岩.不同养殖方式对海水实验围隔底泥中氮、磷和有机碳含量的影响.海洋科学, 1999, 4: 1-2.
    [58]王雨春,马梅,万国江,刘丛强,尹澄清,贵州红枫湖沉积物磷赋存形态及沉积历史.湖泊科学, 2004, 16(1): 21-27.
    [59]王雨春,此里能布,马根连,周怀东.洱海沉积物磷的化学赋存形态研究.中国水利水电科学研究学报, 2005, 6(3): 150-154.
    [60]王兴章,邢信泽.中国北方刺参(Stichopus japonicus Selenka)增养殖发展现状及技术探讨.现代渔业信息, 15(8): 20-22.
    [61]王印庚,容少军.我国刺参养殖存在的主要问题与疾病综合防治技术要点[J].齐鲁渔药, 2004, 21(10): 29-31.
    [62]王印庚,荣小军,张春云.养殖海参主要疾病及防治技术[J].海洋科学, 2005, 29(3): 1-7.
    [63]王修林,张莹莹,杨茹君,等.不同浓度的营养盐(NO3-N, PO4-P)条件下Pb(Ⅱ)对2种海洋赤潮藻生长影响的研究[J].中国海洋大学学报, 2006, 35(1): 133-136.
    [64]吴永红,胡俊,金向东,柯鹏振,陈晓国,刘剑彤.滇池典型湖湾沉积物氮磷化学特征及疏浚层推算.环境科学, 2005, 7(26): 77-82.
    [65]于东祥,宋本祥, 1999.池塘养殖刺参幼参的成活率变化和生长特点.中国水产科学, 2000. 6(3): 109-110.
    [66]杨逸萍,王增焕,孙建,等.精养虾池主要水化学因子变化规律和氮的收支.海洋科学, 1999, 1: 15-17.
    [67]杨庆霄,蒋岳文,张听阳.虾塘残饵腐解对养殖环境影响的研究.海洋环境科学, 1999, 18(2): 11-15.
    [68]杨丛海.更新观念、充满信心、发展我国对虾养殖业.中国水产, 1998, 5: 40-43.
    [69]杨龙元,蔡启铭,秦伯强,等.太湖梅梁湾沉积物一水界面氮迁移特征初步研究[J].湖泊科学, 1998, 10(4): 41-47. 70]杨洪,易朝路,谢平,邢阳平,倪乐意,武汉东湖沉积物碳氮磷垂向分布研究.地球化学, 2004, 33(5): 507-514.
    [71]岳维忠,黄小平,黄良民,等.大型藻类净化养殖水体的初步研究.海洋环境科学, 2004, 23(1): 14-16.
    [72]徐永健.对虾综合养殖池氮磷的收支、变动及其利用率的研究.青岛海洋大学硕士论文, 2000.
    [73]许忠能,林小涛,林继辉,等.营养盐因子对细基江蓠繁枝变种氮、磷吸收速率的影晌.生态学报, 2002, 22(3): 366-374.
    [74]夏卓英,郑燕萍,王鹤,赵晶,方丹丹.三湘江和池塘沉积物磷形态及其生态意义.漳州师范学院学报(自然科学版),2007, 1: 85-88.
    [75]张宝琳,孙道元,灵山岛浅海岩礁区剌参(Apostichopus japonicus)食性初步分析.海洋科学, 1995, 3: 11-13.
    [76]张燕,孙英兰,袁道伟,等.胶州湾氮、磷浓度的三维数值模拟[J].中国海洋大学学报, 2007, 37(1): 21-26.
    [77]张志南.水层-底栖耦合生态动力学研究的某些进展.青岛海洋大学学报, 2000, 30(1): 115-122.
    [78]张志南,周宇,韩洁,等.应用生物扰动实验系统(AFS)研究双壳类生物沉降作用.青岛海洋大学学报, 2000, 30(2): 270-276.
    [79]张恒军,吴群河,江栋,等.珠江底泥氮转化细菌及三氮特征[J].桂林工学院学报, 2007, 2: 227-230.
    [80]翟雪梅,张志南.虾池生态系能流结构分析.青岛海洋大学学报,1998, 28(2): 275-282.
    [81]朱兆良,文启孝.中国土壤氮素.江苏:江苏科学技术出版社,1990.
    [82]周一兵.虾池生态系能量收支和流动的初步分析.生态学报, 2000, 20(3): 474-481.
    [83]周小壮.林小涛.林继辉,等.不同模式对虾养殖的自身污染及其环境效应.生态科学. 2004, 23(1): 68~72.
    [84]邹玉霞,辛福言,李秋芬,等.对虾养殖池环境修复作用菌固定化的研究海洋科学, 2004, 28(8): 5-8.
    [85]邹玲媛,承完成.非离子氨(UIA)水质评价指标及换算方法[J].中国水产科学, 2002, 21(2) : 42-43.
    [86] Acosta-Nassar M V,Julio-rell,Corredor J E,et al.The nitrogen budget of a trophical semi-intensive fresh water fish culture pond. J World Aquac Soc, 1994, 25(2): 261-270.
    [87] Arakawa K Y.Aspects of eutrophication in Hiroshima Bay viewed from transition of cultured oyster production and succession of marine biotic communities. Nithon Kaiyo (无年代?)
    [88] Baudinet D. Incidence of mussel culture on biogenchemical fluxes at the sediment water interface. Nytrobiologia, 1990, 207: 187-196.
    [89] Blackburn T H., HenriksenK. Nitrogen cycling in different types of sediments from Danish waters. LimnolOceanogr, 1983, 28(3): 477-49.
    [90] Blain W A. Ammonia nitrogen loss from streams Discussion. J San Eng Div Am Soc Sov Eng, 1969, 95: 975-978.
    [91] Bostrom B, Jansson M, Forsberg C. Phosphorus release from lake sediments. Arch Hydrobiol Beih Ergebn Limnol, 1982, 18: 5-59.
    [92] Boyd C E. Water quality an introduction .Kluwer academic publishers Norwell Massachusetts USA, 2000.
    [93] Briggs MSP. A nutrient budgets of some intensive marine shrimp culture ponds in Thailand. Aquaculture and Fisheries Manageering, 1994, 25: 789-811.
    [94] Coates D. Aquaculture production Quantities 1950-2000. Ftp. faq org/ fi/stat / windows /fishplus /aquaq.zip, 2002.
    [95] Garber K J. Hartman R T. Internal phosphorus loading to shallow Edinbro Lake in northwestern Pennsylvania[J]. Hydrobiologia, 1985, 122(1): 45-52.
    [96] Cohen R R H, Dresler P V, Phillips E G P,et al. The effect of the Asiaclam, Corbicula flum inea on phytoplankton of the Potomac Rive Maryland. Limnology and Oceanography, 1984, 29: 170 -180.
    [97] Choe S. Study of sea cucumber: morphology, ecology and propagation of sea cucumber .In: Kaibundou, Tokyo, 1963, 219.
    [98] Cloern J E. Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Pro Ser, 2001, 210: 223-253.
    [99] Cowan J L W., Boynton W R.. Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay:Seasonal patterns, Controlling factors and ecological significance. Estuaries, 1996, 19: 562-580.
    [100] Craggs R J. Wastewater Treatment by Algal Turf Scrubbing [J]. Water Science and Technology, 2001, 44(11-12): 427-433.
    [102] Daniels H V,C.E. Boyd. Chemical budgets for polyethylene lined brackish water ponds. Journal of the World Aquaculture Society, 1989, 20(21): 53-60.
    [103] Friedl G,Dinkel C, and Wehrli B..Benthic flues of nutrients in the northwestern BlackSea. Marine Chemistry, 1998, 62: 77-88.
    [104] Funge S,Briggs M R P. Nutrient budgets in intensive shrimp ponds: Implications for sustainability. Aquaculture, 1998,164(18): 117-133.
    [105] Frankowski L, Bolalek J, Szostek A. Phosphorus in bottom sediments of Pomeranian Bay (Southern Baltic-Poland) [J]. Estuarine, Coastal and Shelf Science , 2002, 54: 1027-1038.
    [106] Gachter R, Meyer J S. The role of microorganisms inmobilization and fixation of phosphorus in sediments. Hydrobiologia, 1993, 253, 103-121.
    [107] Green B W,Boyd C E. Chemical budgets for organically fertilized fish ponds in the dry trophics. J World Aquac Soc, 1995, 26(3): 284-296.
    [108] Green E J, Carritt D E. New tables for oxygen saturation of seawater. Marine Res, 1967, 25, 140-147.
    [109] Green B W, C Boyd. Chemical budgets for organically fertilized fish ponds in the dry tropics. Journal of the world Aquaculture Society, 1995, 26(3): 284-296.
    [110] Hall P O,Holby O,Kollberg S,et al. Chemical fluxes and mass balances in a marine fish cage farm IV. Nitrogen. Mar Ecol Pro Ser, 1992, 89: 81-91.
    [111] Hall P O,Anderson L G,Holby O,et al. Chemical fluxes and mass balances in a marine fish cage farm I. Carbon. Mar Ecol Pro Ser, 1990, 61: 61-73.
    [112] Hisashi Joh, Fractionation of phosphorus and releasable fraction in sediment mud of Osaka Bay[J]. BulI Jap Soc Sci Fish, 1983, 49(4): 447-454.
    [113] Holby O,Hall P O. Chemical fluxes and mass balances in a marine fish cage farm II.Phosphorus. Mar Ecol Pro Ser, 1992, 70: 263-272.
    [114] House, W A, Denison F H. Armitage, P.D.. Comparison of the uptake of inorganic phosphorus to a suspended and stream bed-sediment. Water Res, 1995, 29: 767-779.
    [115] Howath R W , Marino R,Jane J. N fixation in freshwater,eusharine and marine ecosystem.1.Rates and importance.Limnology and Oceanography, 1988, 88(4): 669-687.
    [116] Jakob G S. Growth trial with the American oyster Grassostrea virginica using shrimp pond water as food. World Aquac Soc, 1993, 24(3): 344-351.
    [117] John A.Nitrogen biogeochemistry of aquaculture ponds.World Aquaculture, 1989, 20(4): 8-17.
    [118] John A,Hargreaves. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 1998, 166: 81-212.
    [119] Jones T O, Iwama G K. Polyculture of the Pacific oyster, Crassostrea gigas(Thunberg),with Chinook salmon,Oncorhynchus tshawytscha. Aquaculture, 1991, 92: 313-322.
    [120] Kemp W M, P. A. Sampou, J.Garber, et al. Relative roles of benthic versus planktonic respiration in the seasonal depletion of oxygen from bottom waters of Chesapeake Bay. Mar. Ecol. Progr. Ser, 1992, 85: 137-152.
    [121] Kmm M D, Bemer R A. The diagenesis of phosphorus in a near shore marine sediment. Geochim Cosmochim Acto, 1981, 45: 207-216.
    [122] Kuang Qijun, Ma Peiming, Liu Guoxiang, et a1. Study on the Removal Efficiency of Nitrogen and Phosphorus by Filamentous Green Algae [J]. Acta Hydrobiological Sinica, 2004, 28(3): 323-326.
    [123] Kinne O. Marine ecology: a comprehensive integrated treatise on life in oceans and coastal waters,VolⅢCultivation,Part1. London: John Wiley&Sons,Ltd, 1976: 19-300.
    [124] Krom M D, M Neroi.A total nutrient budget of a tropical marine fishpond in Eilet Isreal.Aquaculture, 1989, 51: 65-80.
    [125] Krom M D, M Neroi.A total nutrient budget of an experimental intensive fishpond with circulstory moving seawater. Aquaculture, 1989, 83: 345-358.
    [126] Lambertus L. Phosphorus accumulation in sediments and internal loading[J]. Hydrobiol Bull, 1986, 20(1): 213-214.
    [127] Mevel G,Chamroux S. A study on nitrification in the presence of prawn (P. Japonicus ) in marine closed systems. Aquaculture, 1981, 23: 29-43.
    [128] Mortimere C H. The exchange of dissolved substances between mud and water in lakes. Ecology,1941, 29(2): 280-329.
    [129] Muthuvan V. Nutrient budget and water quality in intensive marine shrimp culture ponds. AIT master thesis AE, 1991, 91-40.
    [130] Neori A, Krom M D, Ellner S P, et al. Sea weed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquac, 1996, 141: 183-194.
    [131] Neori A,Krom M D,Ben-Ezra D. A sustainable integrate system for culture of fish seaweed and abalone. Aquac, 2000, 186: 279-291.
    [132] Nelson S G,Glenn E P,Conn J,et al. Cultivation of Gracilaria parvispora(Rhodophyta) in shrimp farm effluent ditches and floating cages in Hawaii:a two-phase polyculture system. Aquaculture, 2001, 193: 239-248.
    [133] Parson T R,Maitacy,Lalli M. A manual of chemical and biological methods for seawater analysis. Progamon Press, 1984, 3-25.
    [134] Pullin R S V, Rosenthal H, Maclean J L. Environment and Aquaculture in developing countries. Malaysia: ICLARM Conf Proc, 1993, 171-179.
    [135] Qian P Y, Wu C Y, Wu M, et al. Integrated cultivation of the red alga Kappaphycus alvarezii and the pearl oyster Pinctada martensi. Aquaculture, 1996, 147: 21-35.
    [136] Racotta L.S, Hernadez-Herrera R. Metabolic responses of the white shrimp,Penaeus vannamei,to ambient ammonia. Comp. Biochem.Physio1, 2000, 125: 437-443.
    [137] Rhoads D C. Organism-sediment relations on the muddy sea floor. Oceanogr Mar Biol Ann Rev, 1974, 12: 263-300.
    [138] Rutterber K C. Development of a sequential extraction method for different forms of phosphorous in marine sediments. Limnol .Oceanogr. 1992, 37(7): 1460-1482.
    [139] Ruiz F A C, Hillaire M C, Ghaled B,et a1. Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern M exico: geoc hemical evidence from organic matter and an trients[J]. Environmental Pollution, 2002, 118: 365-377.
    [140] Richardson C J,Craft C B. Effective phosphorus retention in wetlands:fact or fiction? In: Moshiri,G.A.(Ed.), Constructed Wetlands for Water Quality Improvement. CRC Press, Boca Raton, FL, 1993 pp. 271-282.
    [141] Schroeder L. The dominace of algal-based food webs in fish ponds receiving chemical fertilizers plus organic manures. Aquaculture, 1990, 86: 219-229.
    [142] Shpigel M, Neori A, Popper D M ,et al. A propose model for A environmentally clean land-based culture of fish, bivalves and seaweeds. Aquaculture, 1993, 117: 115-128.
    [143] Stagnitti F, Austin C. DESTA: a software tool for selecting sites for new aquaculture facilities. Aquac,Eng, 1998, 18: 79–93.
    [144] Suvapepun Sunee. Environmental impacts of mariculture.In:Snidvongs A, Utoomprukporn W, and Hungspreugs M(ed). Proceedings of the NRCT~JSPS Joint Seminar on Marine Science. Bangkok:Department of Marine Science,Chulalongkorn University, 1994, 25-29.
    [145] Troell M,Halling C,Nilsson A,et al. Integrated marine cultivation of Gracilaria chilensis and salmon cages for reduced environmental impact and increased ecomomic output. Aquaculture, 1997, 156: 45-61.
    [146] Vaithiyanathan P, Jha P K. Subramanian V. Phosphorus distribution in the sediments of the hooghly(Ganges)estuary, India[J]. Estuarine, Coastal and Shelf Science, 1993, 37(6):603-614.
    [147] WengH X, Bob J, Presley, et al. Distribution of sedimentary phosphorus in gulf of México estuaries[J]. Marine Environmental Research, 1994, 37: 375-392.
    [148] Wassmann P. Sedimentation and benthic mineralization o organic detritus in a Norwegian fjord. Mar.Biol., 1984, 26: 83-94.
    [149] Wiler R. Rate of loss of ammonia from water to the atmosphere. Fish Res Board, 1979, 36: 685- 689.
    [150] Yamamuro M, KoilkeI. Nitrogen metabolism of the filter-feeding bivalves Corbicula japonica and its significance in primary production of a backish lake in Japan. Limnology and Oceanography, 1993, 38: 997-1007.
    [151] Yoshiyuki N, Fatos K. Effect of filter-feeding bivalves on the distribution of water quality and nutrient cycling in a eutrophic coastal lagoon. Marine System, 2000, 26: 209-210.
    [152] Yang H S, Yuan X T, Zhou Y, et a1. Effects of body size and water temperature on food consumption and growth in the sea cucumber (Apostichopus japonicus Selenka) with special reference to aestivation[J]. Aquaculture Research, 2005, 36: 1085-1092.
    [153] Yang H S, Zhou Y, Zhang T , et a1. Metabolic characteristics of sea cucumber Apostichopus japonicus (Selenka) during aestivation[J]. J Exp Mar Boil Ecol, 2006, 330(2): 505-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700