用户名: 密码: 验证码:
潮间带纤毛虫原生动物和小型底栖动物生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型和小型底栖动物是底栖微/小食物网的重要构成。相对浮游生态系统,迄今国际间对底栖食物网的认知极为欠缺。这一方面是由于微型生物形态和功能上的复杂性和多样性,另一方面原因在于研究方法的障碍—主要是微型和小型底栖动物的定量提取和定性分析。本研究首先进行了方法学的改良,并应用新方法对底栖微食物网的重要功能类群—纤毛虫原生动物和小型底栖动物进行了不同生境的周年按月采样,在定性及定量研究的同时,联系环境因子对微型和小型底栖生物的环境监测进行了探讨。
     微型和小型底栖生物的定量研究首先涉及到目标生物在沉积物中的有效提取,目前硅胶液提取是普遍使用的方法,其中Ludox液主要应用于小型生物,它不但价格便宜而且比重合适,因此在常规生态研究中被广为接受。不过, Ludox易与于海水中的阳离子产生凝结而无法直接用于微型生物;目前唯一直接应用于微型生物提取的是Percoll硅胶液,但其昂贵的价格使其在常规生态研究中受到极大限制。本研究以价格低廉的Ludox硅胶液结合定量蛋白银染色(QPS)技术开发了一种新的方法,即Ludox-QPS法。主要流程为:样品采集与固定、淘洗/稀释降盐、Ludox密度梯度离心、过滤浓缩和琼脂包埋, QPS染色、永久封片及鉴定计数。添加已知数量的纤毛虫至无生物底泥的重获实验表明,该密度梯度离心的提取率大于94%;该方法对自然沉积物中纤毛虫的提取率达97.6%,对沙质、泥沙质和泥质中海洋线虫的提取率分别达97%、96.9%和97.8%。对比实验表明,经QPS制片获得的小型动物的丰度和类群数量与传统方法相当或更高,尤其当小个体虫体占优势时,该法显示出较传统方法(导致数量低估)更为明显的定量优越性。该方法除用于纤毛虫和小型动物的定量分析外,还具有较高的分类分辨率,染色后的纤毛虫原生动物大多类群可鉴定到属,部分可鉴定到种,以此可在群落水平上研究其生态作用。
     根据新开发的Ludox-QPS技术,在大沽河潮间带依据盐度梯度选定2个站位(IIQ和营海)进行了周年按月采样,对底栖纤毛虫和小型底栖动物进行了定量研究。纤毛虫原生动物在IIQ和营海的年平均丰度分别为2236 inds./10 cm2和935 inds./10cm2 (28 inds./ml和12 inds./ml),平均生物量分别为119.1μgC/10 cm2和54.2μgC/10 cm2 (1.5μgC /ml 0.7μgC/ml)。丰度的季节变化趋势为:春天>秋天>夏天>冬天。垂直分布上,在营海分布于表层0 - 0.5 cm的比例为57.1%,分布于0.5-2 cm、2-4 cm和4-8 cm比例分别为23.1%、11.4%和8.5%; 13个月中除12月份外, 4-8 cm均有一定数量的纤毛虫分布;而在IIQ, 97%的纤毛虫分布在0-0.5 cm,分布在0.5-2 cm、2-4 cm和4-8 cm比例分别为2.4%、0.4%和0.2%, 4-8 cm的分布只发生在春季和秋季。纤毛虫的多样性季节变化明显,春秋季物种丰富,两个站点每毫升沉积物的平均物种数分别为18和6。Two-Way Crossed ANOSIM分析表明纤毛虫群落在月份间和站点间的差异极其显著。Pseudochilodonopsis sp., Chilodontopsis sp., Euplotes sp.及Prorodon sp.是表征两个生镜中纤毛虫群落的主要类群。
     同时,发现了14个小型生物类群,其中线虫在IIQ和营海的丰度优势度分别为97.4%和78.6%。小型动物在IIQ和营海的年平均丰度分别为4793 inds./10 cm2和8915 inds./10 cm2 (60 inds./ml和111 inds./ml),其生物量分别为1068.8μgC /10 cm2和1790μgC /10 cm2 (13.4μgC/ml和22.4μgC/ml)。小型底栖动物的丰度在IIQ的季节变化为:夏季(7888 inds./10cm2) >秋季(5447 inds./10cm2) >春季(3731 inds./10cm2) >冬季(2780 inds./10cm2);在营海则完全相反:冬季(15579 inds./10cm2) >春季(10691 inds./10cm2) >秋季(6611 inds./10cm2) >夏季(4667 inds./10cm2)。小型底栖动物和纤毛虫的相对重要性存在明显的区域和季节差异。
     纤毛虫原生动物、小型动物及环境因子的相关分析表明,纤毛虫的丰度和多样性与温度和盐度及有机质含量显著相关,与小型动物没有显著相关性;群落结构分析表明,温度、有机质和小型动物的丰度的组合与纤毛虫群落丰度的相关系数为0.345;盐度、脱镁叶绿素、有机质和小型动物生物量的组合与纤毛虫群落多样性的相关系数为0.403。依据海洋线虫和桡足类的比值(N/C)推测, IIQ可能存在严重的有机污染,营海的沉积物存在明显的季节波动, 8月和9月及2月可能是污染最严重的季节,这种状况在纤毛虫群落结构的CLUSTER聚类中得到验证。虽然目前尚没有形成有关微型底栖生物-纤毛虫原生动物的污染检测的直接依据,但本研究说明纤毛虫群落的确对环境污染具有一定的感应度,而且这种感应和利用小型生物的主要类群估算的污染检测(N/C)存在一定程度的关联。
     90年代早期有关青岛湾有机污染带的研究表明,经彻底截污后,其环境状况向良性发展。进一步了解该湾的健康状况, 2006.5 - 2007.5月对该湾沙质和泥沙质的小型动物进行周年按月采样。小型动物在泥沙质和砂质沉积物中的年平均丰度分别为4853±1292 inds./10 cm2和1528±569 inds./10 cm2;年平均总生物量分别为1434.1±897.0μgC /10cm2和720.7±353.8μgC/10cm2。在沙质底小型生物的丰度季节波动明显, 6月份和12月份最高, 3月份和9月份最低;泥沙质6月份最高,季节波动不明显。两个站点均有48%的小型动物分布在0-0.5 cm表层,海洋线虫在表层的分布比例分别为48%和34 %。共检获14个小型动物类群,其中线虫在泥沙质和砂质沉积物中的年平均丰度分别4619±1255 inds./10cm2和1014±376 inds./10cm2,其丰度优势度分别为95.2%和66.4%。其它丰度上占优势的类群,在泥沙质依次为多毛类(1.5%)、甲壳幼体(1.5%)和桡足类(0.7%);沙质依次为:甲壳类幼体(12.6%)、腹毛类(8.3%)和桡足类(6.2%)。CLUSTER聚类分析表明,泥沙质和和砂质中小型生物的丰度组成具有64.01%的相似性。BIOENV分析表明,温度、盐度、中值粒径和粘土粉砂含量的组合最能解释不同月份之间和不同站位间的差异,其相关系数为0.614。依据线虫的丰度和类群组成,表明泥沙质底尚存一定的有机污染。
Micro- and meiofauna are important components in benthic microbial food web. In comparison with the pelagic ecosystem, relatively less information is available on the benthic habitats. This can be partially explained by the complex in ecological functions and morphological diversities of these organisms, and methodological shortcomings, especially for the extraction of microorganisms from marine sediments for quantitative and qualitative analysis. Methodological experiments were conducted firstly and a new method-Ludox centrifugation-QPS technique -was developed. Using the protocol, ciliated protozoa and meiofauna, were studied monthly at intertidal stations during one year, meanwhile the community was analyzed with environmental factors.
     Currently, Ludox has been widely applied to the extraction of meiobfauna, while Percoll is the only effective silica directly used for marine microbenthos. However, the high cost and low density limitation of Percoll hamper its wide application in routine ecological studies. A new approach namely Ludox centrifugation-QPS method was developed using the very cheap Ludox replacing the rather expensive Percoll to extract ciliates from marine sediments for enumeration and identification. The protocol consists of sample preservation, desalinization by elutriation, extraction of organisms by Ludox, preparation with the QPS and enumeration and identification under a microscope. The extraction efficiency was initially tested by recovering a known number of ciliates added to azoic sand and mud and over 94% of test ciliates were obtained. Two reference ciliates and nematodes from marine natural sediments were selected for evaluation. The method showed 97.6% for marine ciliates from sand and 97% of entire abundance of nematodes from sand 96.9% from muddy sand and 97.8% from mud. The high extraction efficiencies for both ciliates and nematodes indicated the method allowed for simultaneous enumeration of micro- and meiofauna. The comparison experiments showed that the abundance of meiofauna from QPS were higher than that from routine method using sieves. Especially when a large number of nematodes with smaller size (150-200×10-15μm) occurred, the QPS method showed much quantitative advantage for the estimation of meiofaunal importance in benthic microbial food web. Furthermore the method fulfils to enumerate ciliates with good taxonomic resolution, hence the ecological importance could be conducted in community Level.
     Using the Ludox -QPS method, the quantitative importance of benthic ciliates and meiofauna collected from two sites (St. IIQ & St. Y) of an intertidal area was carried out monthly in one year and analyzed with the environmental factors. The average annual abundances of ciliates were 2236 inds./10 cm2 and 935 inds./10 cm2 in St. IIQ and St. Y (28 inds /ml and12 inds /ml)), and the seasonal trend was spring > autumn > summer > winter, and the pattern is also found in diversity. 57.1% of ciliates in Sta. Y were distributed in 0 - 0.5 cm, the proportion in 0.5 - 2 cm, 2 - 4 cm and 4 - 8 cm were 23.1%、11.4% and 8.5% respectively, ciliates occured in 4-8 was found in each month except for December; While in Sta. IIQ, 97% of ciliate lives in 0-0.5 cm, the proportion in deeper sediments were 2.4%、0.4% and 0.2% resoectively. The occurrence in 4-8 cm was only found in spring and autumn.Two-Way Crossed ANOSIM test that there is significant difference in ciliated community between sites and seasons. Pseudochilodonopsis sp., Chilodontopsis sp., Euplotes sp and Prorodon sp. were the main dominant species which contributed to the community difference.
     Meanwhile, 14 meiofaunal groups were sorted, with the average annual abundances of 4793 inds./10 cm2 and 8915 inds./10 cm2 (60 inds./ml and 111 inds./ml) in St. IIQ and St. Y, respectively. The annual average biomass were 1068.8μgC /10 cm2 and 1790μgC /10 cm2 (13.4μgC/ml and 22.4μgC/ml) The seasonal trend of abundance in St. IIQ was summer (7888 inds./10cm2) > autumn (5447 inds./10cm2) > spring (3731 inds./10cm2) > winter (2780 inds./10cm2), while the trend in St. Y was in reverse: winter (15579 inds./10cm2) > spring (10691 inds./10cm2) > autumn (6611 inds./10cm2) > summer (4667 inds./10cm2).The data suggested that the quantitative importance of benthic ciliates and meiofauna was related to the habits and seasons.
     The analysis between ciliates and environmental factors showed that ciliate abundance and diversity were significant related to the temperature, salinity and organic matter. The combination of temperature, organic matter and meiofaunal abundance contributed 34.5% to the ciliated community difference in abundance. The combination of salinity, Ph-a, temperature organic matter, and meiofaunal biomass accounted for 40.3% for the difference in ciliate diversity.
     Benthic studies concerning the pollution at Qingdao Bay in 1990s of last century showed that its environments had been improved. To learn the condition of the Bay after twenty years of developments in Qingdao, meiofauna was sampled in silt-sand and sand sediments (St-S & S) from May, 2006 to May, 2007. The annual average abundance in St-S and S were 4853±1292 inds./10 cm2 and 1528±569 inds./10 cm2 respectively, and the annual biomass were 1434.1±897.0μgC /10cm2 and 720.7±353.8μgC/10cm2. The seasonal pattern in abundance was only found in sand. There were two peaks in June and September. 48% of meiofauna were occurred at 0 - 0.5 cm in the two stations, the percentage for nematodes in St. and S were 48% and 34 % respectively in this surface layer。14 meiofauna groups were found, nematodes were contributed 95.2% and 66.4% to the total meiofauna abundance。The other dominant groups in silt sand were Polychaeta (1.5%), Nauplii (1.5%) and Copepoda (0.7%); Nauplii (12.6%), Gastrotricha (8.3%) and Copepoda (6.2%) were the dominant groups besides Nematoda in S. The similarity was about 64.01% between the meiofaunal abundance in the two stations resulted from the CLUSTER analysis. The combination of temperature, salinity, medium size and the content of silty and clay could explained the difference using the analysis of BIOENV, and the coefficient were 0.614. Some pollution was existed in St-S considering the meiofaunal abundance and composition.
引文
蔡立哲. 2006.海洋底栖生物生态学和生物多样性研究进展.厦门大学学报, 45 (Z2): 83 ~ 89
    蔡立哲,邹朝中. 2000.深圳河口福田泥滩海洋线虫的种类组成及季节变化.生物多样性, 8 (4): 385 ~ 390
    蔡立哲,李复雪. 1998.厦门潮间带泥滩和虾池小型底栖动物类群的丰度.台湾海峡, 17 (1): 91 ~ 95
    党宏月,黄勃,张志南. 1996.青岛湾有机质污染潮间带底栖生物研究Ⅱ.小型底栖动物生态特点.海洋科学集刊, 37: 91 ~ 101
    范士亮,刘海滨,张志南,邓可,袁伟. 2006.青岛太平湾砂质潮间带小型底栖生物丰度和生物量的研究.中国海洋大学学报36 (3): 98 ~ 104
    方少华,吕小梅,张跃平,蔡立哲,毕华生. 2000.台湾海峡小型底栖生物数量的分布.海洋学报, 22(6): 136 ~ 140
    季如宝,张志南. 1994. 14C示踪法测定养虾池小型底栖动物对底栖硅藻的摄食.青岛海洋大学学报, 24 (总83): 199 ~ 205
    黄勇,张志南,刘晓收. 2007.南黄海冬季自由生活海洋线虫群落结构的研究.海洋与湖沼, 38 (3): 199 ~ 205
    华尔,张志南,张艳. 2005.长江口及邻近海域小型底栖生物丰度和生物量.生态学报, 25 (9): 2234 ~ 2242
    刘晓收. 2005.南黄海鳀鱼产卵场小型底栖动物生态学研究.中国海洋大学硕士研究论文. P.49-50
    刘晖,吴以平,高尚德,张志南. 1998.即墨养虾场虾病爆发前期底质中叶绿素的变化.海洋湖沼通报, (1): 65 ~ 69
    类彦立,徐奎栋. 2007.海洋底栖原生动物生态学研究的方法学综述.海洋科学, 31(5) 49 ~ 57
    类彦立,徐奎栋. 2008.底栖纤毛虫原生动物生态学研究进展.水生生物学报.印刷中
    林秀春,蔡立哲,金亮. 2007.湄洲湾灵川贝类养殖滩涂小型底栖动物数量研究.台湾海峡, 26 (02): 290 ~ 294
    刘昌岭,朱志刚,刘昌岭,朱志刚,贺行良,张波,夏宁. 2007.重铬酸钾氧化-硫酸亚铁滴定法快速测定海洋沉积物中有机碳.岩矿测试, 26 (3): 205 ~ 208
    慕芳红,张志南,郭玉清. 2001.渤海小型底栖动物的丰度和生物量.青岛海洋大学学报, 31(6):897 ~ 905
    田胜艳. 2003.胶州湾大型底栖动物的生态学研究.硕士研究论文p.23 ~ 27
    王荣. 1986.荧光法测定浮游植物色素计算公式的修正.海洋科学, 10(5): 1 ~ 5
    王诗红,张志南,吕瑞华. 2002.丁字湾潮间带日本刺沙蚕幼体对底栖微藻的摄食率.青岛海洋大学学报, 32 (3): 409 ~ 414
    吴宝玲,陆华,丘建文. 1993.青岛湾排污海滩底栖动物的支序分类研究.环境科学学报, 13(1): 121 ~ 126
    张志南. 2000.水层-底栖耦合生态动力学研究的某些进展.青岛海洋大学学报, 30 (1): 115 ~ 122
    张志南,周红. 2004.国际小型底栖生物研究的某些进展.中国海洋大学学报, 34 (5): 799 ~ 806
    张志南,李永贵. 1989.黄河口水下三角洲及其邻近水域小型底栖动物的初步研究.海洋与湖沼, 20(3): 197 ~ 208
    张志南,周红. 2004.国际小型底栖生物研究的某些进展.中国海洋大学学报, 34 (5): 799 ~ 806
    张志南,钱国珍. 1990.小型底栖生物取样方法的研究.海洋湖沼通报, (4): 37 ~ 42
    张志南,党宏月,于子山. 1993.青岛湾有机质污染带小型底栖生物群落的研究.青岛海洋大学学报, 23 (1): 83 ~ 91
    张志南,谷峰,于子山. 1990.黄河口水下三角洲海洋线虫空间分布的研究.海洋与湖沼, 21(1): 11 ~ 19
    张志南,周红,慕芳红. 2001.渤海线虫群落的多样性及中性模型分析.生态学报, 21(11): 1808 ~ 1814
    张艳,张志南,黄勇,华尔. 2007.南黄海冬季小型底栖生物丰度和生物量.应用生态学报, 18(2): 411 ~ 419
    张志南,周红,于子山,韩洁. 2001.胶州湾小型底栖生物的丰度和生物量.海洋与湖沼, 32(2): 139 ~ 147
    张志南,慕芳红,于子山,韩洁,周红. 2002.南黄海鳀鱼产卵场小型底栖生物的丰度和生物量. 青岛海洋大学学报, 32(2): 251 ~ 258
    张志南,林岿旋,周红,韩洁,王睿照,田胜艳. 2004.东、黄海春秋季小型底栖生物丰度和生物量研究.生态学报, 24(5): 997 ~ 1005
    周红,张志南. 2003.大型多元统计软件PRIMER的方法原理及其在底栖群落生态学中的应用. 青岛海洋大学学报, 33(1): 58 ~ 64
    Acosta-Mercado D and Lynn D H. 2003. The edaphic quantitative protargol stain: a sampling protocol for assessing soil ciliate abundance and diversity. Journal of Microbiological Methods. 53, 365 ~ 375.
    Alongi D M. 1985. Effect of physical disturbance on population dynamics and trophic interactions among microbes and meiofauna. Journal of Marine Research, 43: 351 ~ 364
    Alongi D M.1986. Quantitative estimates of benthic protozoa in tropical marine systems using silica gel: a comparison of methods. Estuarine, coastal and shelf science. 23, 443 ~ 450
    Alongi D M. 1988. Microbial-meiofauna interrelationships in some tropical intertidal sediments. Journal of Marine Research, 46: 349 ~ 365
    Ansari Z A. 2005. Inter-relationship between marine meiobenthos and microbes. In: Marine Microbiology: Facets & Opportunities (Eds Ramaiah N), National Institute of Oceanography, Goa. p. 175 ~ 179
    Azovsky A I. 2002. Size-dependent species– area relationships in benthos, or whether this word is more diverse for microbes? Ecography, 25: 273 ~ 282
    Azovsky A I, Chertoprood E S, Saburova M A and Polikarpov I G. 2004. Spatio-temporal variability of micro- and meiobenthic communities in a White Sea intertidal sandflat. Estuarine, coastal and shelf science, 60: 663 ~ 671
    Bergtold M, Guenter V and Traunspurger W. 2005. Is there competition among ciliates and nematodes? Freshwater Biology, 50: 1351 ~ 1359
    Bailey S A, Duggan I C and van Overdijk C.D.A., Jenkins, P.T., MacIsaac, H.J. 2003. Viability of invertebrate diapausing eggs collected from residual ballast sediment. Limnology and Oceanography. 48, 1701 ~ 1710.
    Blanchard G F. 1990. Over lapping microscale dispersion patterns of meiofauna and microphytobenthos. Marine Ecology Progress Series, 68: 101 ~ 111
    Blanchard G F. 1991. Measurement of meiofauna grazing rates on microphytobenthos: is primary production a limiting factor? Journal of Experimental Marine Biology and Ecology, 147: 37 ~ 46
    Burgess R. 2001. An improved protocol for separating meiofauna from sediments using colloidal. Marine Ecology Progress Series, 214, 161 ~ 165
    Burkovsky I V, Azovsky A I and Mokievsvsky V O. 1994. Scaling in benthos: from microfauna to macrofauna. Arcc ev für Hydrobiologic.Supplement, 99: 517 ~ 535
    Carman K R, Fleeger J W and Pomarico S M. 1997. Response of a benthic food web to hydrocarbons contamination. Limnology and Oceanography, 42: 561 ~ 571
    Carey P G., 1992. Marine interstitial ciliates. An Illustrated Key. Chapman & Hall, London, New York, Tokyo, Melbourne, Madras
    Corliss J O. 2002. Biodiversity and biocomplexity of the protists and an overview of their significant roles in maintenance of our biosphere. Acta Protozoology, 41, 199 ~ 219
    Coull B C. 1973. Estuarine meiofauna: a review. Trophic relationships and microbial interaction. In: Estuarine Microbial Interactions (eds Stevenson L H and Colwell P R). University of South Carolina press. Columbia. p. 499 ~ 511
    Coull B C. 1988. Ecology of the marine meiofauna. In: Introduction to the Study of Meiofauna (eds Higgins R P and Thiel H) Smithsonian Institution Press.Washington, D.C. p. 18 ~ 28
    Coull B C. 1999. Role of meiofauna in estuarine soft-bottom habitats. Australian Journal of Ecology, 24: 327 ~ 343
    Coull B C, Hicks G R F and Well J B J. 1981. Nematode/copepod ratios for monitoring pollution: a rebuttal. Marine Pollution Bulletin, 12: 378 ~ 381
    De Jonge V N and Bouwman L A. 1977. A simple density separation technique of quantitative isolation of meiobenthos using the colloidal silica Ludox-TM. Marine Biology, 42:143 ~ 148
    De Troch M, Van Gansbeke D and Vincx M. 2006. Resource availability and meiofauna in sediment of tropical sea grass beds: local versus global trends. Marine Environmental Research, 61: 59 ~ 73
    De Troch M, Houthoofd L, Chepurnov V and Vanreusel A. 2006. Does sediment grain size affect diatom grazing by harpacticoid copepods? Marine Environmental Research, 61: 265 ~ 277
    De Troch M, Chepurnov V, Gheerardyn H, Vanreusel A and Olafsson E. 2006. Is diatom size selection by harpacticoid copepods related to grazer body size? Journal of Experimental Marine Biology and Ecology, 332: 1 ~ 11
    Epstein S S. 1995. Simultaneous enumeration of protozoa and micrometazoa from marine sandysediments. Aquatic Microbial Ecology, 9: 219 ~ 227
    Epstein S S. 1997a. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microbial Ecology, 34: 188 ~ 198
    Epstein S S. 1997b. Microbial food webs in marine sediments. II. Seasonal changes in trophic interactions in a sandy tidal flat community. Microbial Ecology, 34: 199 ~ 209
    Epstein S S and Gallagher E D. 1992. Evidence for facilitation and inhibition of ciliate population growth by meiofauna and macrofauna on a temperate zone sandflat. Journal of Experimental Marine Biology and Ecology, 155: 27 ~ 39
    Epstein S S and Shiaris M P. 1992. Rates of microbenthic and meiobenthic bacterivory in a temperate muddy tidal flat community. Applied and Environmental Microbiology, 58: 2426 ~ 2431
    Fenchel T M. 1978. The ecology of micro and meiobenthos. Annual Review of Ecology and Systematics, 9: 99 ~ 121
    Findlay S E G. 1981. Small scale spatial disrtributions of meiofauna on a mud and sandflat. Esuarine, Coastal Shelf Science, 12: 471-484
    Finlay S and Tenore K R. 1982. Effect of a free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization. Marine Ecology Progress Series, 8: 161 ~ 166
    Gerlach S A. 1971. On the importance of marine meiofauna for benthos communities. Oecologia, 6(2): 176 ~ 190
    Gerlach S A. 1977. Attraction to decaying organisms as a possible cause for patch distribution of nematodes in a Bermuda beach. Ophelia, 16: 151 ~ 165
    Gerlach S A. 1978. Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia, 33: 55 ~ 69
    Giere O. 1993. Meiobenthology. Springer-Verlag. Berlin Heidelberg Ner York. pp. 328
    Hamels I, Moens T, Muylaert K and Vyverman W. 2001. Trophic interactions between ciliates and nematodes from an intertidal flat. Aquatic Microbial Ecology, 26: 61 ~ 72
    Hamels I, Muylaert K, Casteleyn G and Vyverman W. 2001. Uncoupling of bacterial production and flagellate grazing in aquatic sediments: a case study from an intertidal flat. Aquatic Microbial Ecology, 25: 31 ~ 42
    Hamels I, Muylaert K, Sabbe K and Vyverman W. 2005. Contrasting dynamics of ciliate communitiesin sandy and silty sediments of an estuarine intertidal flat. European Journal of Protistology, 41: 241 ~ 250
    Hamels I, Sabbe K, Muylaert K and Vyverman W. 2004. Quantitative importance, composition, and seasonal dynamics of protozoan communities in polyhaline versus freshwater intertidal sediments. Microbial Ecology, 47: 18 ~ 29
    Hamels I, Sabbe K, Muylaert K, Barranguet C, Lucas A, Herman P and Vyverman W. 1998.Organisation of microbenthic communities in intertidal estuarine flats: a case study from the Molenplaat (Westerschelde esturine, the Netherlands). European Journal of Protistology, 34: 308 ~ 320
    Herman P M J and Vranken G. 1988. Studies of the life-history and energetics of marine and brackish-water nematodes. Oecologia, 77: 457 ~ 463
    Hillebrand H, Kahlert M, Haglund A L, Berninger U -G, Nagel S and Wickham S. 2002. Control of microbenthic communities by grazing and nutrient supply. Ecology, 83: 2205 ~ 2219
    Hummon W D, Fleeger J W and Hummon M R. 1976. Meiofauna-macrofauna interactions. I. Sand beach meiofauna affected by maturing Limulus eggs. Chesapeake Science, 17: 297 ~ 299
    Hylleberg J. 1975. Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia, 14: 113 ~ 117
    Iler R. 1979. The chemistry of silica, solubility, polymerization, colloid and surface properties, and biochemistry. Wiley-Interscience Publication, NY.
    Kahl A. 1930-1935. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria). In: Dahl, F. (Ed.), Die Tierwelt Deutschlands. G. Fischer, Jena 25, pp. 1?886.
    Kemp P F. 1988. Bacterivory by benthic ciliates: significance as a carbon source and impact on sediment bacteria. Marine Ecology Progress Series, 49: 163 ~ 169
    Kemp P F. 1990. The fate of benthic bacterial production. Aquatic Science, 2: 109 ~ 124
    Kennedy A D and Jacoby C A. 1999. Biological indicators of marine environmental health: meiofauna– a neglected benthic component? Environmental Monitoring and Assessment, 54: 47 ~ 68
    K?nigs S and Cleven E J. 2007. The bacterivory of interstitial ciliates in association with bacterial biomass and production in the hyporheic zone of a lowland stream. FEMS Microbiology Ecology,61: 54 ~ 64
    Kuipers B R, De Wilde P and Creutzberg F. 1981. Energy flow in a tidal flat ecosystem. Marine Ecology Progress Series, 5: 215 ~ 221
    Lee W J and Patterson D J. 2002. Abundance and biomass of heterotrophic flagellates and factors controlling their abundance and distribution in sediments of Botany Bay. Microbial Ecology, 43: 467 ~ 481
    Liu X S, Zhang Z N and Huang Y. 2005. Abundance and biomass of meiobenthos in the spawning ground of anchovy (Engraulis japanicus) in the southern Huanghai Sea. Acta Oceanologica Sinica, 24: 94 ~ 104
    Lynn D H and Small E B. 2002. Phylum Ciliophora. In: Lee, J.J., Leedale, G.F., Bradbury, P.C. (Eds.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (year 2000), p. 371 ~ 656
    Magurran A E. 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton, N J
    Margalef R. 1958. Information theory in ecology. General Systematics 3, 36 ~ 71
    Mare M F. 1942. A study of a marine benthic community with special reference to the micro-organism. Journal of the Marine Biological Association of the United Kingdom, 25: 517 ~ 554
    Marxsen J. 2006. Bacterial production in the carbon flow of a central European stream, the Breitenbach. Freshwater Biology, 51: 1838 ~ 1861
    McIntyre A D. 1968. The macrofauna and meiofauna of some trophic beaches. Journal of Zoology, 156: 377 ~ 392
    McIntyre A D. 1969. Ecology of marine meiobenthos. Biological Reviews, 44: 245 ~ 290
    Metaxatos A and Ignatiades L. 2002. Seasonality of algal pigments in the sea water and interstitial water/sediment system of an eastern Mediterranean coastal area. Estuarine, Coastal and Shelf Science, 55: 415 ~ 426
    Moens T and Vincx M. 1996. Do meiofauna consume primary production? about many questions and how to answer them. In: Integrated Marine System Analysis. European Network for Integrated
    Marine System Analysis (Ed Baeyens J et al.). FWO Vlaanderen: minutes of the first networkmeeting (Brugge, 29.02.96-02.03.96). p. 188 ~ 202
    Moens T and Vincx M. 1997. Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom, 77: 211 ~ 227
    Moens T, Santos G A P, Thompson F, Swings J, Fonseca-Genevois V, Vincx M and De Mesel I. 2005. Do nematode mucus secretions affect bacterial growth? Aquatic Microbial Ecology, 40: 77 ~ 83
    Montagna P A. 1983. Live controls for radioisotope tracer food chain experiments using meiofauna. Marine Ecology Progress Series, 12: 43 ~ 46
    Montagna P A. 1984. Competition for dissolved glucose between meiobenthos and sediment microbes. Journal of Experimental Marine Biology and Ecology, 76: 177 ~ 190
    Montagna P A. 1984. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Marine Ecology Progress Series, 18: 119 ~ 130
    Montagna P A and Yoon W B. 1991. The effect of freshwater inflow on meiofaunal consumption of sediment bacteria and microphytobenthos in San Antonio Bay, Texas, U.S.A. Estuarine, Coastal and Shelf Science, 33: 529 ~ 547
    Montagna P A, Blanchard G F and Dinet A. 1995. Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates. Journal of Experimental Marine Biology and Ecology, 185: 149 ~ 165
    Montagna P A, Bauer J E, Hardin D and Spies R B. 1995. Meiofaunal and microbial trophic interactions in a natural submarine hydrocarbon seep. Vie et Milieu, 45: 17 ~ 25
    Montagnes D J S and Lynn D H. 1987. A quantitative protargol stain (QPS) for ciliates: method description and test of its quantitative nature. Marine Microbial Food Webs, 2, 83 ~ 93
    Montagnes D J S and Lynn D H. 1993. A quantitative protargol stain (QPS) for ciliates and other protists. In: Handbooks of Methods in Aquatic Microbial Ecology (Eds. Kemp P F, Sherr B F, Sherr E B and Cole J J). Lewis Publishers, Boca Raton, F L, p. 229 ~ 240.
    Moreno M, Ferrero T J, Gallizia I, Vezzulli L, Albertelli G and Fabiano M. 2008. An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuarine, Coastal and Shelf Science, 77: 565 ~ 576.
    Nichols J A. 1979. A simple flotation technique for separating meiobenthos nematodes from finegrained sediments. Trans. Am. Microsc. 98: 127 ~ 130.
    Pascal P Y, Dupuy C, Mallet C, Richard P and Niquil N. 2008. Bacterivory by benthic organisms in sediment: quantification using 15N-enriched bacteria. Journal of Experimental Marine Biology and Ecology, 355: 18 ~ 26
    Pfannkuche O and Thiel H. 1988. Sample processing. In: Introduction to the Study of Meiofauna (eds Higgins R P and Thiel H) Smithsonian Institution Press. Washington, D.C. p. 134 ~ 145
    Pfister G Sonntag B and Posch T. 1999. Comparison of a direct live count and an improved quantitative protargol stain (QPS) in determining abundance and cell volumes of pelagic freshwater protozoa. Aquatic Microbial Ecology. 18: 95 ~ 103.
    Pinckney J L and Sandulli R. 1990. Spatial autocorrelation analysis of meiofauna and microalgae populations on an intertidal sandflat: scale linkage between consumers and resources. Estuarine, Coastal and Shelf Science, 30: 341 ~ 353
    Pinckney J L, Carman K R, Lumsden S E and Hymel S N. 2003. Microalgal-meiofaunal trophic relationships in muddy intertidal estuarine sediments. Aquatic Microbial Ecology, 31: 99 ~ 108
    Price C A and Reardon E M. 1978. Collection of dinoflagellates and other marine microalgae by centrifugation in density gradients of a modified silica sol. Limnology and Oceanography, 23: 548 ~ 553.
    Polz M F, Felbeck H, Novak R, Nebelsick M and Ott J O. 1992. Chemoautotrophic, sulfur-oxidizing symbiotic bacteria on marine nematodes: Morphological and biochemical characterization. Microbiol Ecology, 24: 313 ~ 329
    Raffaellii D. 1987. The behaviour of the Nematode/Copepod ratio in organic pollution studies. Marine Environmental Research, 23: 135 ~ 152
    Raffaelli D G and Mason C F. 1981. Pollution monitoring with meiofauna, using the ratio of nematode to copepod. Marine Pollution Bulletin, 12: 158 ~ 163
    Riemann F and Schrage M. 1978. The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia, 34: 75 ~ 88
    Rieper M. 1985. Some lower food web organisms in the nutrition of marine harpacticoid copepods: an experimental study. Helgoland Marine Research, 39: 357 ~ 366
    Rieper M and Flotow C.1981. Feeding experiments with bacteria, cilliates and harpacticoid copepods.Kiel Meeresforsch Sonders, 5: 370 ~ 375
    SAS Institute Inc, 1989. SAS/STAT Users Guide. Version 6. 4th Edn, Vol. 2, SAS Institute Inc, Cary, NC.
    Sherr E B and Sherr B F. 2000. Protistan grazing rates via uptake of fluorescently labeled prey. In: Handbook of Method in Aquatic Microbial Ecology.(eds Kemp P F, Sherr E B, Sherr B F and Jonathan J C). p. 695 ~ 701
    Schwinghamer P. 1981. Extraction of living meiofauna from marine sediments by centrifugation in a silica sol-sorbital mixture. Can. J. Fish. Aquat. Sci. 38: 476 ~ 478.
    Skibbe O. 1994. An improved quantitative protargol stain for ciliates and others planktonic protists. Arch. Hydrobiol. 130, 339 ~ 347.
    Wickham S, Gieseke A and Berninger U.-G. 2000. Benthic ciliate identification and enumeration: an improved methodology and its application. Aquatic Microbial Ecology. 22, 79 ~ 91.
    Starink M, B?r-Gilissen M-J, Bak R P M and Cappenberg T E., 1994. Quantitative centrifugation to extract benthic protozoa from freshwater sediments. Applied and Environmental Microbiology, 60, 167 ~ 173.
    Starink M, Krylova I N, Bar-Gilissen M J, Bar-Gilissen M J, Bak R P and Cappenberg T E. 1994. Rates of benthic protozoan grazing on free and attached sediment bacteria measured with fluorescently stained sediment. Applied and Environmental Microbiology, 60: 2259 ~ 2264
    Sundb?ck K, Nilsson P, Nilsson C and J?nsson B. 1996. Balance between autotrophic and heterotrophic components and processes in microbenthic communities of sandy sediments: a field study. Estuarine, Coastal and Shelf Science, 43: 689 ~ 706
    Tietjen H. 1980. Microbial-meiofauna interrelationships: a review. Aquatic Microbial Ecology, p. 335 ~ 338
    Tenore K R, Tietjen J H and Lee J J. 1977. Effect of meiofauna on incorporation of aged eelgrass, Zostera marina, detritus by the polychaete Nephthys incise. Journal of the Fisheries Research Board of Canada, 34: 563 ~ 567
    Walters K and Moriarty D J W. 1993. The effects of complex trophic interactions on a marine microbenthic community. Ecology, 74: 1475 ~ 1489
    Wickham S, Gieseke A and Berninger U-G. 2000. Benthic ciliate identification and enumeration: animproved methodology and its application. Aquatic Microbial Ecology, 22: 79 ~ 91
    Warwick R M. 1981. The nematode / copepod ratio and its use in pollution ecology. Marine Pollution Bulletin, 12: 329 ~ 333
    Wickham S, Nagel S and Hillebrand H. 2004. Control of epibenthic ciliate communities by grazers and nutrients. Aquatic Microbial Ecology, 35: 153 ~ 162
    Widbom B. 1984. Determination of average individual dry weight and ash-free dry weight in different sieve fractions of marine meiofauna. Marine Biology, 84: 101 ~ 108
    Wieltschnig C, Fischer U R, Kirschner A K T and Velimirov B. 2003. Benthic bacterial production and protozoan predation in a silty freshwater environment. Microbial Ecology, 46: 62 ~ 72
    Wieltschnig C, Kirschner A K T, Fischer U R and Velimirov B. 2003. Top-down control of benthic heterotropic nanoflagellates by oligochaetes and microcrustaceans in a littoral fresh water habitat. Freshwater Biology, 48: 1840 ~ 1849

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700