用户名: 密码: 验证码:
海洋大型底栖纤毛虫的种群增长和摄食效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤毛虫是各类环境中常见的微型生物类群,一直以来由于其形态的多样性受到广泛的关注。上世纪八十年代“海洋微型食物环”的概念提出以来,纤毛虫在微型生物食物环中的生态作用也逐渐引起了研究的重视。目前对于纤毛虫在浮游微食物网中的作用已有较一致的认识,纤毛虫作为微食物网的顶级捕食者能够有效的摄食控制细菌、微藻、鞭毛虫、较小的纤毛虫等类群,同时作为小型后生动物如桡足类的主要食物,将微食物网的生产力传递到高级经典食物链。因而,纤毛虫被认为是浮游生态系统关键的一环。然而,对于底栖纤毛虫的生态作用却知之甚少。海洋沉积物与水体在理化环境和生物群落构成上有很大不同,微型生物类群的丰度和生物量显著高于浮游环境。纤毛虫在底栖微食物网中可能具有不同于浮游纤毛虫的生态特征。为此,本研究以海洋大型底栖纤毛虫—叶状突口虫(Condylostoma spatiosum)为指标生物,从种群和群落水平上对底栖纤毛虫的生态特征及其对环境因子变化的响应、适应机制进行了探讨。
     为了解不同单胞藻类投喂和温度下纤毛虫的种群增长,在室内15℃、20℃及25℃下分别投饲等边金藻、牟氏角毛藻、杜氏盐藻和三角褐指藻,进行了叶状突口虫的种群增长研究。结果显示,叶状突口虫的增长率总体上随温度升高而加快,在15℃下的增长率远低于20℃和25℃下。同时,不同食物也对增长率产生了明显影响:杜氏盐藻投喂组的纤毛虫在三种温度下均获得较高的增长率(25℃下达0.692d-1)和最大的种群数量,等边金藻投喂组则在增长率和最大种群数量上均较小,而15℃下牟氏角毛藻投喂组的种群增长率最低(仅0.103d-1)。统计分析显示,食物和温度以及两者的交互作用对叶状突口虫种群增长率均有显著影响(P<0.001)。本研究表明,底栖纤毛虫在较高温度和较佳食物条件下可获得更高的种群增长率。由于底栖纤毛虫的多样性(大小、食性等)及食物因子(类型及品质)的复杂性,以及食物与温度可能存在的交互作用,经由不同温度和食物条件测得的种群增长率,进而估算的纤毛虫生产力可能产生较大差异。由此,在底栖微食物网模型构建时应同时考虑温度和食物的交互影响。
     为了解叶状突口虫种群增长与摄食功能的对温度和食物浓度的响应,以一种异养腰鞭毛虫—尖尾虫(Oxyrrhis marina)作为饵料投喂叶状突口虫,研究了不同温度和食物浓度下叶状突口虫种群的增长率、细胞体积、生产力、摄食率和增长效率(gross growth efficiency, GGE),并以常用的双曲线模型拟合上述指标,得到了不同温度下Holling Type II模型的参数。结果发现随着温度升高叶状突口虫种群最大增长率、最大生产力、最大摄食率增大,而最大细胞体积降低。随着温度从12℃增加到24℃,叶状突口虫在饱和食物浓度下的GGE由~45%降低至20%。我们也用多变量非线性模型对数据进行了拟合,得到了叶状突口虫种群增长、细胞体积、生产力及其摄食率关于温度和尖尾虫浓度变化的回归方程。
     为了解叶状突口虫对海洋沉积物中纤毛虫群落结构的影响,在潮间带进行了原位控制实验。实验的设置包括隔离/不隔离大型捕食者以及在隔离大型捕食者的情况下添加/不添加叶状突口虫。在第1、3、6、10天对各处理取样分析纤毛虫群落结构。结果发现,这两种处理均对纤毛虫群落结构产生差异。在隔离大型捕食者时,总的纤毛虫丰度趋于增加,而总的生物量保持不变。而这一趋势在添加叶状突口虫的处理中被削弱。从生物量来看,异毛纲(Heterotrichea)与叶咽纲(Phyllopharygea)为优势类群。异毛纲的生物量百分比在添加叶状突口虫的处理中由38%降到20%,而在未添加叶状突口虫的处理组和对照组中却基本不变。叶咽纲的生物量百分比在添加叶状突口虫的处理中由27%增加到53%,而在未添加叶状突口虫的处理中前3天降低7天升高。群落相似性分析(ANOSIM)表明添加叶状突口虫使得底栖纤毛虫群落发生了迁移,其中Zosterodasys agamalievi和Tunicothrix brachysticha对处理间群落的非相似性贡献最大。然而,添加纤毛虫与隔离大型捕食者两种处理均未对纤毛虫物种数和多样性产生影响。这一结果与前人的结果一致,即更高营养级的改变对纤毛虫群落影响不大。
Ciliate is a group of heterotrophs commonly found both in freshwater and marineenvironments, with high abundance and diversity. Their ecological role in microbialfood web has received a lot of concern since the concept of “micro-loop” was firstdiscussed in1980’s. Ciliate has been recognized as an important nexus of the microbialfood web in pelagic water. On one hand, ciliates could effectively graze on the othermicroorganisms including bacteria, algae, flagellates and small ciliates. On the otherhand, ciliates could be largely grazed by metazoans (e.g. copepods). However, studiesaddressing the ecological role of ciliates in marine benthic environments are very scant.Marine sediments are different from the pelagic water not only in environmental factorsbut also in community structure of biota. Ciliates adapted to these habitats may havedifferent life strategies from the pelagic ones.
     Condylostoma has been documented as a very large ciliate frequently dominant invarious marine benthic microbial communities, but little is known about the effects oftemperature and food type and concentration on its growth and grazing. To reveal thepopulation dynamics of marine benthic ciliates and to assess the effects of temperatureand food supply on ciliate growth, we investigated the growth of Condylostomaspatiosum, a large and frequently dominant ciliate in intertidal zone. The laboratoryexperiments were conducted at three temperatures of15°C,20°C and25°C andsupplied with four individual algal species (Isochrysis galbana, Chaetoceros mulleri,Dunaliella salina and Phaeodactylum tricornutum) as prey. The growth rates ofCondylostoma spatiosum generally increased with increasing temperature, with those at15°C distinctly lower than at20°C and25°C. Meanwhile, food prey types markedlyaffected the growth rates of C. spatiosum. The growth rates and maximal populationsizes were the highest when supplying with the prey Dunaliella salina, while bothvalues were distinctly low when feeding with Isochrysis galbana, the lowest growthrates occurred at15°C with Chaetoceros mulleri as food prey. Statistical analysissuggested that the effects of temperature and food supply as well as their interactionswere significant (P <0.001). Our study indicates that the growth of benthic ciliatescould be enhanced by higher temperature and appropriate food supply. The diversity of benthic ciliates (e.g. size, feeding type) and the complexity of food supplies (e.g. preytype, quality) as well as the potential interactions between temperature and food supplymay result in deviation of growth rate when the value obtained from individualcircumstances is generalized. It is suggested that temperature and food supply should betaken into account simultaneously in the modeling of benthic microbial food web
     Meanwhile, using the heterotrophic dinoflagellate Oxyrrhis marina as prey, wedetermined the specific growth rate, cell volume, specific production and ingestion rateof Condylostoma spatiosum at different temperatures and prey concentrations. Thesegrowth and grazing parameters typically followed a hyperbolic response to preyconcentration. By applying iterative curve-fitting to the data at each temperature, wefound that, with increasing temperature, the maximum specific growth rate, maximumspecific production and maximum ingestion rate of C. spatiosum generally increased,while the maximum cell volume decreased. The gross growth efficiency of C. spatiosumgenerally decreased at saturated prey concentration from about45%to25%as thetemperature increased from12to24C. By fitting these data iteratively to multi-variablenonlinear models, we obtained predictive equations for the growth rate, cell volume andingestion rate with respect to temperature and prey concentration.
     In situ experiments were also conducted to investigate the potential effects ofCondylostoma spatiosum, a large-sized ciliate frequently dominated in various marinebenthic habitats, on benthic ciliate community in an intertidal flat. The manipulationsincluded the presence/absence of macro grazers and addition of C. spatiosum in theabsence of macro grazers. Ciliates responded to both manipulations of macro grazersand C. spatiosum. Total ciliate abundance tended to increase in the absence of macrograzers, while total ciliate biomass was remarkably constant. But this trend was likelyweakened by addition of C. spatiosum. Heterotrichea and Phyllopharyngea dominatedthe ciliate community in terms of biomass. Biomass percentage of Heterotricheadecreased from38%of total ciliate biomass to20%in the C. spatiosum added treatment,while it was relatively consistent in no C. spatiosum added treatment and control.Biomass percentage of Phyllopharyngea increased from27%to53%when C.spatiosum was added, while it decreased slightly for the first3days and showed anincrease in the following days in no C. spatiosum added treatment. ANOSIM alsoindicated that addition of C. spatiosum shifted the ciliate community. Zosterodasys agamalievi and Tunicothrix brachysticha generally contributed the most dissimilarity.However, neither tube effect nor addition of C. spatiosum changed the species richnessand diversity. The results are in consistent with previous work that ciliates are lesssensitive to changes at higher level.
引文
Amarasekare P (2000) Coexistence of competing parasitoids on a patchily distributedhost: local vs. spatial mechanisms. Ecology81:1286-1296
    Angilletta M, Dunham AE (2003) The temperature-size rule in ectotherms: simpleevolutionary explanations may not be general. Am Nat42:332-342
    Atkinson D (1994) Temperature and organism size: a biological law for ectotherms?Adv Ecol Res25:1-58
    Atkinson D, Ciotti BJ, Montagnes DJS (2003) Protists decrease in size linearly withtemperature: ca.2.5°C-1. P Roy Soc Lond B Bio270:2605-2611
    Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F (1983) Theecological roles of water-column microbes in the sea. Mar Ecol Prog Ser10:257-263
    Barbeau K, Moffett JW, Caron DA, Croot PL, Erdner DL (1996) Role of protozoangrazing in relieving iron limitation of phytoplankton. Nature380:61-64
    Beers JR, Stewart GL (1971) Micro-zooplankters in the planktoncommunities of theupper waters of the eastern tropical Pacific. Deep Sea Research and Oceanographic18:861-883
    Begon M, Harper JL, Townsend CR (1986) Ecology: individuals populations andcommunities. Blackwell
    B rsheim KY, Bratbak G (1987) Cell-volume to cell carbon conversion factors for abacterivorous Monas sp. enriched from seawater. Mar Ecol Prog Ser36:171-175
    Bray JR, Curtis JT (1957) An ordination of the upland forest communities of SouthernWisconsin. Ecol Monogr27:325-349
    Brush MJ, Brawley JW, Nixon SW, Kremer JN (2002) Modeling phytoplanktonproduction: problems with the Eppley curve and an empirical alternative. Mar EcolProg Ser238:31-45
    Buck KR, Barry JP, Simpson AGB (2000) Monterey Bay cold seep biota: Euglenozoawith chemoautotrophic bacterial epibionts. Eur J Protistol36:117-126
    Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, andcarbon cycling in marine systems. Limnol Oceanogr49:51-57
    Carey PG (1992) Marine interstitial ciliates: an illustrated key. Chapman&Hall,London
    Caron DA, Goldman JC (1990) Protozoan nutrient regenertion. Oxford University Press,New York
    Clarke KR, Green RH (1988) Statistical design and analysis for a 'biological effects'study. Mar Ecol Prog Ser46:213-226
    Clarke KR, Warwick RM (1994) Similarity-based testing for community pattern: thetwo-way layout with no replication. Mar Biol118:167-176
    Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwaterecosystems: a cross-system overview. Mar Ecol Prog Ser43:1-10
    Conover (1978) Transformation of organic matter by zooplankton John Wiley,Chichester
    Daro MH (1978) A simplified14C method for grazing measurements on naturalplanktonic populations. Helgoland Wiss Meer31:241-248
    Davidson K (1996) Modelling microbial food webs. Mar Ecol Prog Ser145:279-296
    Davis PG, Sieburth JM (1984) Estuarine and oceanic microflagellate predation ofactively growing bacteria: estimation by frequency of dividing-divided bacteria.Mar Ecol Prog Ser19:237-246
    Diehl S, Feiβel M (2000) Effects of enrichment on three-level food chains withomnivory. Am Nat155:200-218
    Diehl S, Feiβel M (2001) Intraguild prey suffer from enrichment of their resources: amicrocosm experiment with ciliates. Ecology82:2977-2983
    Dolan JR (1997) Phosphorus and ammonia excretion by planktonic protists. Mar Geol139:109-122
    Dolan JR, Marrase C (1996) Planktonic ciliate distribution relative to a deep chlorophyllmaximum: Catalan sea, NW Mediterranean, June1993. Deep Sea Res Pt I42:1965-1987
    Ducklow HW (1983) Production and fate of bacteria in the oceans. Bioscience33:494-501
    Ducklow HW, Dickson ML, Kirchman DL, Steward G, Orchardo J, Marra J, Azam F(2000) Constraining bacterial production, conversion efficiency and respiration inthe Ross Sea, Antarctica, January-February,1997. Deep Sea Res Pt II47:3227-3247
    Epstein SS (1995) Simultaneous enumeration of protozoa and micrometazoa frommarine sandy sediments. Aquat Microb Ecol9:219-227
    Epstein SS (1997a) Microbial food webs in marine sediments.I. Trophic interactionsand grazing rates in two tidal flat communities. Microbial Ecol34:188-198
    Epstein SS (1997b) Microbial food webs in marine sediments. II. Seasonal changes introphic interactions in a sandy tidal flat community. Microbial Ecol34:199-209
    Fenchel T (1968) The ecology of marine microbenthos. II. The food of marine benthicciliates. Ophelia5:73-121
    Fenchel T (1969) The ecology of marine microbenthos. IV. Structure and function of thebenthic ecosystem, its chemical and physical factors and the mcirofaunacommunities with special reference to the ciliated protozoa. Ophelia6:1-182
    Fenchel T (1974) Intrinsic rate of natural increase: the relationship with body size.Oecologia14:317-326
    Fenchel T (1980) Suspension feeding in ciliated protozoa: feeding rates and theirecological significance. Microbial Ecol6:13-25
    Fenchel T (1986) Protozoan filter feeding. Progr Protistol1:65-113
    Fenchel T (2008) The microbial loop-25years later. J Exp Mar Biol Ecol366:99-103
    Fenton A, Spencer M, Montagnes DJS (2010) Parameterising variable assimilationefficiency in predator-prey models. Oikos119:1000-1010
    Finlay BJ (1977) The dependence of reproductive rate on cell size and temperature infreshwater ciliated protozoa. Oecologia30:75-81
    Finlay BJ, Tellez C, Esteban G (1993) Diversity of free-living ciliates in the sandysediment of a Spanish stream in winter. J Gen Microbiol139:2855-2863
    Fl der S, Sommer U (1999) Diversity in planktonic communities: an experimental testof the intermediate disturbance hypothesis. Limnol Oceanogr44:1114-1119
    Fogg GE (1983) The ecological significance of extracellular products of phytoplanktonphotosynthesis. Bot Mar26:3-14
    Foissner W, Berger H, Schaumburg J (1999) Identification and ecology of limneticplankton ciliates, Vol3/99. Informationsberichte des Bayerischen Landesamtes fürWasserwirtschaft, Munich
    Frost BW (1972) Effects of size and concentration of food particles on feeding behaviorof marine planktonic copepod Calanus pacificus. Limnol Oceanogr17:805-815
    Gismervik I (2005) Numerical and functional responses of choreo-and oligotrichplanktonic ciliates. Aquat Microb Ecol40:163-173
    Gonzalez JM, Sherr BF, Sherr EB (1993) Digestive enzyme activity as a quantitativemeasure of protistan grazing: the acid lysozyme assay for bacterivory. Mar EcolProg Ser100:197-206
    Gonzalez JM, Sherr EB, Sherr BF (1990) Size-selective grazing on bacteria by naturalassemblages of estuarine flagellates and ciliates. Appl Environ Microb56:583-589
    Hahn MW, Hofle MG (2001) Grazing of protozoa and its effect on populations ofaquatic bacteria. Fems Microbiol Ecol35:113-121
    Hall JA, Barrett DP, James MR (1993) The importance of phytoflagellate, heterotrophicflagellate and ciliate grazing on bacteria and picophytoplankton sized prey in acoastal marine environment. J Plankton Res15:1075-1086
    Hamels I, Mussche H, Sabbe K, Muylaert K, Vyverman W (2004) Evidence for constantand highly specific active food selection by benthic ciliates in mixed diatomsassemblages. Limnol Oceanogr49:58-68
    Hamels I, Muylaert K, Sabbe K, Vyverman W (2005) Contrasting dynamics of ciliatecommunities in sandy and silty sediments of an estuarine intertidal flat. Eur JProtistol41:241-250
    Hamels I, Sabbe K, Muylaert K, Barranguet C, Lucas C, Herman P, Vyverman W (1998)Organisation of microbenthic communities in intertidal estuarine flats, a case studyfrom the Molenplaat (Westerschelde estuary, The Netherlands). Eur J Protistol34:308-320
    Hamels I, Sabbe K, Muylaert K, Vyverman W (2004) Quantitative importance,composition, and seasonal dynamics of protozoan communities in polyhalineversus freshwater intertidal sediments. Microbial Ecol47:18-29
    Hansen B, Bj rnsen PK, Hansen PJ (1994) The size ratio between planktonic predatorsand their prey. Limnol Oceanogr39:395-403
    Hansen PJ, Bj rnsen PK, Hansen BW (1997) Zooplankton grazing and growth: Scalingwithin the2-2,000-μm body size range. Limnol Oceanogr42:687-704
    Head EJH, Harris LR (1996) Chlorophyll destruction by Calanus spp. grazing onphytoplankton: kinetics, effects of ingestion rate and feeding history, and amechanistic interpretation. Mar Ecol Prog Ser135:223-235
    Heinbokel JF (1978) Studies on the functional role of tintinnids in the. SouthernCalifornia Bight. I. Grazing and growth rates in laboratory cultures. Mar Biol47:177-189
    Heip CHR, Goosen NK, Herman PMJ, Kromkamp J, Middelburg JJ, Soetaert K (1995)Production and consumption of biological particles in temperate tidal estuaries.Oceanogr Mar Biol33:1-149
    Hillebrand H (2003) Opposing effects of grazing and nutrients on diversity. Oikos100:592-600
    Hillebrand H, Gruner DS, Borer ET, Bracken MESand others (2007) Consumer versusresource control of producer diversity depends on ecosystem type and producercommunity structure. P Natl Acad Sci USA104:10904-10909
    Hillebrand H, Kahlert M, Haglund AL, Berninger UG, Nagel S, Wickham S (2002)Control of microbenthic communities by grazing and nutrient supply. Ecology83:2205-2219
    Hillebrand H, Sommer U (1997) Response of epilithic microphytobenthos of theWestern Baltic Sea to in situ experiments with nutrient enrichment. Mar Ecol ProgSer160:35-46
    Hillebrand H, Worm B, Lotze HK (2000) Marine microbenthic community structureregulated by nitrogen loading and grazing pressure. Mar Ecol Prog Ser204:27-38
    Holling CS (1959) The components of predation as revealed by a study ofsmall-mammal predation of the European pine sawfly. Can Ent91:293–320
    Jacobson DM, Anderson DM (1996) Widespread phagocytosis of ciliates and otherprotists by marine mixotrophic and heterotrophic thecate dinoflagellates. J Phycol32:279-285
    Jakobsen HH, Hansen PJ (1997) Prey size selection, grazing and growth response of thesmall heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanioncomatum-a comparative study. Mar Ecol Prog Ser158:75-86
    Jeong HJ, Kim JS, Yeong DY, Kim ST and others (2003) Feeding by the heterotrophicdinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigmaakashiwo: a potential biological method to control red tides using mass-culturedgrazers. J Eukaryot Microbiol50:274-282
    Jeong HJ, Latz MI (1994) Growth and grazing rates of the heterotrophic dinoflagellatesProtoperidinium spp. on red tide dinoflagellates. Mar Ecol Prog Ser106:173-185
    Jeong HJ, Shim JH, Lee CW, Kim JS, Koh SM (1999) Growth and grazing rates of themarine planktonic ciliate Strombidinopsis sp. on red-tide and toxic dinoflagellates.J Eukaryot Microbiol46:69-76
    J nsson B, Sundb ck K, Nilsson P, Nilsson C, Swanberg IL, Ekebom J (1993) Does theinfluence of the epibenthic predator Crangon crangon L (brown shrimp) extend tosediment microalgae and bacteria? Neth J Sea Res31:83-94
    Jumars PA, Penry DL, Baross JA, Perry MJ, Frost BW (1989) Closing the microbialloop: dissolved carbon pathway to heterotrophic bacteria from incompleteingestion, digestion and absorption in animals. Deep Sea Res36:483-495
    Kahl A (1930-1935) Urtiere oder Protozoa: I: Wimpertiere oder Ciliata (Infusoria), eineBearbeitung der freilebenden und ectocommensalen Infusorien der Erde, unterAusschluβ der marinen Tintinnidae. In: Dahl F (ed) Die Tierwelt Deutschlands.Fischer Verlag, Jena, p1-886
    Kimmance SA, Atkinson D, Montagnes DJS (2006) Do temperature-food interactionsmatter? Responses of production and its components in the model heterotrophicflagellate Oxyrrhis marina. Aquat Microb Ecol42:63-73
    Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol EcolRes10:251-268
    Kivi K, Setala O (1995) Simultaneous measurement of food particle selection andclearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina). MarEcol Prog Ser119:125-137
    Koz owski J (1993) Measuring fitness in life-history studies. Trends Ecol Evol8:84-85
    Landry MR (1994) Methods and controls for measuring the grazing impact ofplanktonic protists. Mar Microb Food Webs:37-57
    Landry MR, Barber RT, Bidigare RR, Chai Fand others (1997) Iron and grazingconstraints on primary production in the central equatorial Pacific: An EqPacsynthesis. Limnol Oceanogr42:405-418
    Landry MR, Calbet A (2004) Microzooplankton production in the oceans. Ices J MarSci61:501-507
    Landry MR, Constantinou J, Latasa M, Brown SL, Bidigare RR, Ondrusek ME (2000)Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II).III. Dynamics of phytoplankton growth and microzooplankton grazing. Mar EcolProg Ser201:57-72
    Landry MR, Haas LW, Fagerness VL (1984) Dynamics of microbial planktoncommunities: experiments in Kaneohe Bay, Hawaii. Mar Ecol Prog Ser16:127-133
    Landry MR, Ondrusek ME, Tanner SJ, Brown SLand others (2000) Biological responseto iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplanktoncommunity abundances and biomass. Mar Ecol Prog Ser201:27-42
    Laybourn-Parry J, Bell EM, Roberts EC (2000) Protozoan growth rates in Antarcticlakes. Polar Biol23:445-451
    Lei YL (2005) Taxonomic investigation of soil ciliates and ecological investigations ofciliates from marine waters, sediments and salt ponds. Ph.D Thesis, Salzburg
    Lei YL, Stumm K, Volkenborn N, Wickham SA, Berninger UG (2010) Impact ofArenicola marina (Polychaeta) on the microbial assemblages and meiobenthos in amarine intertidal flat. Mar Biol157:1271-1282
    Lessard EJ (1991) The trophic role of heterotrophic dinoflagellates in diverse marineenviroments. Mar Microb Food Webs5:49-58
    Lessard EJ, Swift E (1985) Species-specific grazing rates of heterotrophicdinoflagellates in oceanic waters, measured with a dual-label radioisotopetechnique. Mar Biol87:289-296
    Lowe CD, Day A, Kemp SJ, Montagnes DJS (2005) There are high levels of functionaland genetic diversity in Oxyrrhis marina. J Eukaryot Microbiol52:250-257
    Madoni P (2006) Benthic ciliates in Adriatic sea lagoons. Eur J Protistol42:165-173
    Malloy KD, Targett TE (1991) Feeding, growth and survival of juvenile summerflounder Paralichthys dentatus: experimental analysis of the effects of temperatureand salinity. Mar Ecol Prog Ser72:213-223
    Maranger R, Bird DF, Price NM (1998) Iron acquisition by photosynthetic marinephytoplankton from ingested bacteria. Nature396:248-251
    McCormick PV (1991) Lotic protistan herbivore selectivity and its potential impact onbenthic algal assemblages. J N Am Benthol Soc10:238-250
    Mcmanus GB, Okubo A (1991) On the use of surrogate food particles measure protistaningestion. Limnol Oceanogr36:613-617
    Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates,diatoms, and other protist plankton. Limnol Oceanogr45:569-579
    Monod J (1949) The Growth of Bacterial Cultures. Annual Review of Microbiology3:371-394
    Montagnes DJS (1996) Growth responses of planktonic ciliates in the generaStrobilidium and Strombidium. Mar Ecol Prog Ser130:241-254
    Montagnes DJS, Berges JA (2004) Determining parameters of the numerical response.Microb Ecol48:139-144
    Montagnes DJS, Berges JA, Harrison PJ, Taylor FJM (1994) Estimating carbon,nitrogen, protein, and chlorophyll from volume in marine-phytoplankton. LimnolOceanogr39:1578-1578
    Montagnes DJS, Franklin DJ (2001) Effect of temperature on diatom volume, growthrate, and carbon and nitrogen content: Reconsidering some paradigms. LimnolOceanogr46:2008-2018
    Montagnes DJS, Kimmance SA, Atkinson D (2003) Using Q10: can growth ratesincrease linearly with temperature. Aquat Microb Ecol32:307-313
    Montagnes DJS, Kimmance SA, Tsounis G, Gumbs JC (2001) Combined effect oftemperature and food concentration on the grazing rate of the rotier Brachionusplicatilis. Mar Biol139:975-979
    Montagnes DJS, Lessard EJ (1999) Population dynamics of the marine planktonicciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms.Aquat Microb Ecol20:167-181
    Montagnes DJS, Lynn DH (1987) Agar embedding on cellulose filters: an Improvedmethod of mounting protists for protargol and Chatton-Lwoff staining. T AmMicrosc Soc106:183-186
    Montagnes DJS, Poulton AJ, Shammon TM (1999) Mesoscale, finescale and microscaledistribution of micro-and nanoplankton in the Irish Sea, with emphasis on ciliatesand their prey. Mar Biol134:167-180
    Moore MV, Folt CL, Stemberger RS (1996) Consequences of elevated temperatures forzooplankton assemblages in temperate lakes. Arch Hydrobiol135:289-319
    Müller H (1991) Pseudobalanion planctonicum (Ciliophora, Prostomatida): ecologicalsignificance of an algivorous nanociliate in a deep meso-eutrophic lake. J PlanktonRes13:247-262
    Müller H, Geller W (1993) Maximum growth rates of aquatic ciliated protozoa: thedependence on body size and temperature reconsidered. Arch Hydrobiol126:315-327
    Müller H, Schlegel A (1999) Responses of three freshwater planktonic ciliates withdifferent feeding modes to cryptophyte and diatom prey. Aquat Microb Ecol17:49-60
    Nagata K (2000) Production mechanisms of bloom and pig iron by a small "Tatara"furnace. Tetsu to Hagane86:633-640
    Nagata T, Kirchman DL (1990) Release of dissolved free and combined amino acids bybacterivorous marine flagellates. Limnol Oceanogr36:433-443
    Neuer S, Cowles TJ (1995) Comparative sizespecific grazing rates in field populationsof ciliates and dinoflagellates. Mar Ecol Prog Ser125:259-267
    Noach EJ, de Jong G, Scharloo W (1997) Phenotypic plasticity of wings in selectionlines of Drosophila melanogaster. Heredity79:1-9
    Nygaard K, Borsheim KY, Thingstad TF (1988) Grazing rates on bacteria by marineheterotrophic microflagellates compared to uptake rates of bacterial-sizedmonodisperse fluorescent latex beads. Mar Ecol Prog Ser44:159-165
    Palkovacs EP, Marshall MC, Lamphere BA, Lynch BRand others (2009) Experimentalevaluation of evolution and coevolution as agents of ecosystem change inTrinidadian streams. Philos T R Soc B364:1617-1628
    Paranjape MA, Conover RJ, Harding GC, Prouse NJ (1985) Microzooplankton andmacrozooplankton on the Nova Scotian shelf in the prespring bloom period: acomparison of their potential resource utilization. Can J Fish Aquat Sci42:1484-1492
    Pedros-Alio C, Calderon-Paz JI, MacLean MH, Medina G, Marrase C, Gasol JM,Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FemsMicrobiol Ecol32:143-155
    Penry DL, Frost BW (1991) Chlorophyll a degradation by Calanus pacificus:dependence on ingestion rate and digestive acclimation to food resources. LimnolOceanogr36:147-159
    Perrin N (1995) About Berrigan and Charnov's life history puzzle. Oikos73:137-139
    Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat147:813-846
    Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio formarine.“oligotrichous” ciliates from estuarine and coastal waters. LimnolOceanogr34:1097-1103
    Rublee PA, Gallegos CL (1989) Use of fluorescently labelled algae (FLA) to estimatemicrozooplankton grazing. Mar Ecol Prog Ser51:221-227
    Sanders RW (1987) Tintinnids and other microzooplankton: seasonal distributions andrelationships to resources and hydrography in a Maine estuary. J Plankton Res9:65-77
    Sanders RW, Berninger UG, Lim EL, Kemp PF, Caron DA (2000) Heterotrophic andmixotrophic nanoplankton predation on picoplankton in the Sargasso Sea and onGeorges Bank. Mar Ecol Prog Ser192:103-118
    Schmid-Araya JM, Schmid PE (2000) Trophic relationships: integrating meiofauna intoa realistic benthic food web. Freshwater Biol44:149-163
    Scott FJ, Davidson AT, Marchant HJ (2001) Grazing by the Antarctic sea-ice ciliatePseudocohnilembus. Polar Biol24:127-131
    Sherr BF, Sherr EB, Mcdaniel J (1992) Effect of protistan grazing on the frequency ofdividing cells in bacterioplankton assemblages. Appl Environ Microb58:2381-2385
    Sherr BF, Sherr EB, Pedrosalio C (1989) Simultaneous measurement ofbacterioplankton production and protozoan bacterivory in estuarine water. MarEcol Prog Ser54:209-219
    Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates.Nature325:710-711
    Sherr EB, Sherr BF (1994) Bacterivory and herbivory: key roles of phagotrophicprotists in pelagic food webs. Microbial Ecol28:223-235
    Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbialfood webs. Antonie van Leeuwenhoek81:293-308
    Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbialfood webs. Antonie van Leeuwenhoek81:293-308
    Sherr EB, Sherr BF, Berman T, Hadas O (1991) High abundance ofpicoplankton-ingesting ciliates during late fall in Lake Kinneret, Israel. J PlanktonRes13:789-799
    Sherr EB, Sherr BF, Fallon RD, Newell SY (1986) Small, aloricate ciliates as a majorcomponent of the marine heterotrophic nanoplankton. Limnol Oceanogr31:177-183
    Sherr EB, Sherr BF, Fessenden L (1997) Heterotrophic protists in the central ArcticOcean. Deep Sea Res Pt II44:1665-1682
    Shuman FR, Lorenzen CJ (1975) Quantitative degradation of chlorophyll by a marineherbivore. Limnol Oceanogr20:580-586
    Sieracki ME, Haas LW, Caron DA, Lessard EJ (1987) Effect of fixation on particleretention by microflagellates: underestimation of grazing rates. Mar Ecol Prog Ser38:251-258
    Simpson EP, Gonzalez MR, Hart CM, Hurlbert SH (1998) Salinity and fish effects onSalton Sea microecosystems: benthos. Hydrobiologia381:153-177
    Skibbe O (1994) An improved quantitative protargol stain for ciliates and otherplanktonic protists Arch Hydrobiol130:339-347
    Smetacek V (1981) The annual cycle of protozooplankton in the Kiel Bight. Mar Biol63:1-11
    Sommer U (1999) The impact of herbivore type and grazing pressure on benthicmicroalgal diversity. Ecology Letters2:65-69
    Sommer U (2000) Benthic microalgal diversity enhanced by spatial heterogeneity ofgrazing. Oecologia122:284-287
    Straile D (1997) Gross growth efficiencies of protozoan and metazoan zooplankton andtheir dependence on food concentration, predator-prey weight ratio, and taxonomicgroup. Limnol Oceanogr42:1375-1385
    Strathmann RR (1967) Estimating organic carbon content of phytoplankton from cellvolume or plasma volume. Limnol Oceanogr12:411-418
    Strom SL, Benner R, Ziegler S, Dagg MJ (1997) Planktonic grazers are a potentiallyimportant source of marine dissolved organic carbon. Limnol Oceanogr42:1364-1374
    Strong DR (1992) Are trophic cascades all wet? Differentiation and donor-control inspeciose ecosystems. Ecology73:747-754
    Taylor WD (1980) Observations on the feeding and growth of the predaciousoligochaete Chaetogaster langi on ciliated protozoa. T Am Microsc Soc99:360-368
    Taylor, W. D.(1978). Maximum growth rate, size and commonness in a community ofbactivorous ciliates. Oecologia36:263–272
    van der Have TM, de Jong G (1996) Adult size in ectotherms: Temperature effects ongrowth and differentiation. J Theor Biol183:329-340
    van Hannen EJ, Veninga M, Bloem J, Gons HJ, Laanbroek HJ (1999) Genetic changesin the bacterial community structure associated with protistan grazers. ArchHydrobiol145:25-38
    Verity PG (1991a) Feeding in planktonic protozoans: evidence for non-randomacquisition of prey. J Protozool38:69-76
    Verity PG (1991b) Measurement and simulation of prey uptake by marine planktonicciliates fed plastidic and aplastidic nanoplankton. Limnol Oceanogr36:729-750
    Vidal J (1980) Physioecology of zooplankton. IV. Effects of phytoplanktonconcentration, temperature, and body size on the net production efficiency ofCalanus pacificus. Mar Biol56:203-211
    Vrba J, Simek K, Nedoma J, Hartman P (1993)4-Methylumbelliferyl-β-N-acetylglucosaminide hydrolysis by a high-affinityenzyme, a putative marker of protozoan bacterivory. Appl Environ Microb59:3091-3101
    Walters K, Jones E, Etherington L (1996) Experimental studies of predation onmetazoans inhabiting Spartina alterniflora stems. J Exp Mar Biol Ecol195:251-265
    Walz, N (1995). Rotifer populations in plankton communities: Energetics and lifehistory strategies. Experientia51:437–453
    Weisse T (2006) Freshwater ciliates as ecophysiological model organisms: lessons fromDaphnia, major achievements, and future perspectives. Arch Hydrobiol167:371-402
    Weisse T, Karstens N, Meyer VCL, Janke L, Lettner S, Teichgraber K (2001) Nicheseparation in common prostome freshwater ciliates: the effect of food andtemperature. Aquat Microb Ecol26:167-179
    Weisse T, Montagnes DJS (1998) Effect of temperature on inter-and intraspecificisolates of Urotricha (Prostomatida, Ciliophora). Aquat Microb Ecol15:285-291
    Weisse T, Müller H (1998) Planktonic protozoa and the microbial food web in LakeConstance. Arch Hydrobiol Spec Issues Advanc Limnol53:223-254
    Weisse T, Stadler P, Lindstr m ES, Kimmance SA, Montagnes DJS (2002) Interactiveeffect of temperature and food concentration on growth rate: a test case using thesmall freshwater ciliate Urotricha farcta. Limnol Oceanogr47:1447-1455
    Welschmeyer NA, Lorenzen CJ (1985) Chlorophyll budgets: Zooplankton grazing andphytoplankton growth in a temperate fjord and the Central Pacific gyres. LimnolOceanogr30:1-21
    Wickham S, Gieseke A, Berninger UG (2000) Benthic ciliate identification andenumeration: an improved methodology and its application. Aquat Microb Ecol22:79-91
    Wickham SA, Nagel S, Hillebrand H (2004) Control of epibenthic ciliate communitiesby grazers and nutrients. Aquat Microb Ecol35:153-162
    Worm B, Lotze HK, Hillebrand H, Sommer U (2002) Consumer versus resource controlof species diversity and ecosystem functioning. Nature417:848-851
    Xu K, Du Y, Lei Y, Dai R (2010) A practical method of Ludox density gradientcentrifugation combined with protargol staining for extracting and estimatingciliates in marine sediments. Eur J Protistol46:263-270
    杜永芬潮间带纤毛虫原生动物和小型底栖生物生态学研究[D].中国科学院海洋研究所.青岛.2007
    类彦立,徐奎栋(2007)海洋底栖原生动物生态学研究方法学综述.海洋科学31:49-57
    王梅,许恒龙,陶振铖,马洪钢,朱明壮,宋微波(2003)海洋纤毛虫实验生态学研究Ⅰ:不同浓度葡萄糖对种群增长的影响.应用与环境生物学报9:627-630
    许恒龙,周丽沙,于丽,周晓苏,江居国,田玉娟,苗月丽(2007)海洋纤毛虫实验生态学研究Ⅳ:不同人工海水培养液及温度对扇形游仆虫种群增长的影响.应用与环境生物学报13:41-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700