用户名: 密码: 验证码:
液压集成块性能评估系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压集成块是集成式液压系统的核心零部件,其内部流动特性直接影响液压系统的能耗和工作性能。从工程实用的角度,液压集成块不仅应具有良好的结构形态,还要具有与其所属液压系统的既定设计要求相匹配的通流品质。本文结合国家自然科学基金项目,以在结构优化设计的基础上实现性能寻优为目标,系统地研究了集成块内流系统的微观流动特性和耗能机理,建立起提高液压集成块通流性能的性能设计准则,依次实现对集成块设计方案的性能评价和方案优选;同时定量校验所得集成块设计结果的性能品质,取得了预期的成果。
     通过对国内外同类研究现状和成果的总结,本文提出针对液压集成块结构优化设计所得结果群体实施性能优选和校验,从而实现对液压集成块性能优化的的设计策略。这是一种复杂的带多性能约束的工程设计问题。其中,性能约束来源于对液压管流特性的深入研究,隶属于流体力学的研究范畴。
     根据液压集成块性能评估系统的功能需求,采用功能驱动的系统规划原理,对液压集成块的设计方案考核、性能评价优选、性能校验以及三者的集成方式进行了详细规划,建立起液压集成块性能评估系统的结构体系和总体工作流程。在此基础上,针对液压集成块管网的结构特点及液压管流的理化特性,提出用于液压集成块管流特性研究的计算流体力学(CFD)关键性建模技术,并实验验证了方法的可行性及结果的可靠性。为全文的研究奠定了基础。
     针对液压管流雷诺数相对较低的特点,运用等效流场分布和分布参数方法建立了局部阻力系数的计算模型,由此得出局部液阻的低雷诺数局部阻力系数,实现了对局部液阻阻力特性的量化评价,而且对其规律进行了合理的阐述。该方法涵盖了局部液阻引起的全部损失,消除了管壁对流体固有摩擦的影响,提高了局部阻力系数结果的准确性和计算效率。在此基础上,深入研究典型局部液阻的液压管流特性及能耗机理,建立起以获得优良通流品质为目标的局部液阻结构设计规则。
     为了全面性、多角度地评价集成块复杂管网的通流品质,将无因次压降系数和耗散率分别作为评价复杂管网的阻力特性和能耗特性的性能指标。通过对典型复杂管网的CFD研究,揭示了其内部管流的复杂机理,分析了局部液阻之间的相互影响关系,阐述了管网组合方式、工艺孔属性和进出油孔道属性等对管网性能品质产生的影响,并量化评价了三类组合管网的性能品质。在此基础上,确定了面向集成块性能优化的管网结构设计规则。另外,建立了面向多工艺孔复杂管网的虚拟分块原则,为其流动特性的快速分析提供依据。
     为实现集成块结果群体中的方案寻优,提出基于多目标决策方法的集成块性能优选设计策略。将性能约束规则转化成性能子目标,采用线性加权和法建立起集成块性能品质的多目标决策模型;根据实施性能优化必备的原始设计信息,设计科学合理的信息数据结构,从性能优选设计的需求出发,科学地建立面向性能优选的开放式工程数据库系统;通过数据库技术自动识别结构设计结果的孔道结构特征,实现对集成块设计方案的性能考核;依据性能考核结果实施集成块性能品质的量化评价;根据结果样本的性能评价函数值,实现集成块设计方案的性能优选。
     为了快速、准确地校验液压集成块的管网性能,运用CFD和最小二乘支持向量机(LS-SVM)相结合的方法实现了管网压降的建模和预测。基于CFD的基础研究,确定出压降预测模型的参数驱动变量,并借鉴正交实验的方法提取模型的训练数据和测试数据,从而建立基于LS-SVM的压降预测模型。经对比研究确立适合用于管网压降参数化预测的核函数,并与基于BP神经网络的预测模型在预测精度、必要的训练样本数及训练时间等方面进行了对比。开发了面向工程应用的液压集成块管网压降校验的实用性工具软件系统。
     基于上述研究,应用VC++6.0开发环境和ObjectARX开发工具包,实现各个子模块的衔接及封装,开发出基于MDT环境的液压集成块性能评估系统,成功实现了液压集成块设计结果的性能优选设计。该软件系统主要包括数据输入模块、性能评价优选模块和管网性能校验模块三部分。通过典型工程实例验证了本系统的有效性及本文所用方法的可行性。
Hydraulic Manifold Block(HMB) is the key part of the integrated hydraulic system, and energy loss and working performance of the hydraulic system are directly influenced by the flow performance. For engineering application, the design result of HMB need have good structure and the performance in according with the fixed design demand of hydraulic system. Combination with the National Natural Science Foundation project and taking permormance optimization baesd on structure optimization for object, the microcosmic flow and energy-loss mechanism is systematically investigated, and the design rules for enhancing through flow quality are established in the paper. Based above, the permormance appraisal and result optimization are achieved. And that the resistance characteristic of the design scheme is validated. The prospective achievements are obtained.
     After summarizing the research status at home and abroad, the optimization strategy is put forward to performance optimization by performance evaluation for structure design result population. It is a complex optimization design problem with muti-performance constraints which are derived from the thorough research on the hydraulic pipe flow, and belongs to the research category of hydrodynamics.
     According to the function requirements of performance evaluation system for HMB, a detailed planning is carried out based on functional driven system planning principle,including design scheme evaluation, performance appraisal and optimization, and performance validation. The architecture and work flow of the system are established.Based above, the key Computational Fluid Dynamics (CFD) technology for investigating on pipe flow mechanism inside HMB is presented, in accordance with the structure characteristic of the pipe inside HMB and the physicochemical properties of hydraulic pipe flow. The method possibility and the results reliability are validated by experiments.The work lays a foundation for the the paper.
     According to the characteristic of low Reynolds number inside hydraulic pipe flow, the computation modle of the local resistance number is established by the equivalent flow field and the distributed method, and the local resistance number at low Reynolds number are obtained. The resistance characteristic of local block is furthmore quantified, and the rules are reasonably explained. All local loss is included in the mothod, and the influence of wall on fluid is eliminated. The computation efficiency and the accuracy of local resistance coefficient are enhanced. Based above, the hydraulic pipe-flow characteristic and energy-comsuption mechanism are analyzed, and the structure design rules for local block inside HMB are determined to improve the throughflow performance.
     To comprehensivly evaluate the throughflow performance of the complex pipe inside HMB, the dimensionless pressuredrop coefficient and dissipation rate are used for evaluation index of resistance characteristic and energy-comsuption characteristic.by the CFD research on the typical complex channel, the complicated mechanism is revealed, and the nonlinear influence is analyzed. The influence of combination mode, attribute of aid hole and the input and output hole are described, and the throughflow quality of three combination channels are quantitatively evaluated. The structure design rules are determined for performance optimization of HMB. In addition, the virtual block rules are established for complex channel with fabrication holes, and its provide reference for engineering personnal to quickly analyze the complex flow characteristic.
     To realize the optimization for HMB results population, the optimization stratety based on Multi-Object Decision-Making method is presented. The perforamance constraints rules are converted to performance subgoals, and the Multi-Object Decision-Making model for HMB performance quality is established by linear weighted method.According to the original design data for performance optimization, the data structure is scientifically designed. From the requirement of performance optimization design, the engineering database system is built up. The automatic recognition of channel feature is achieved by database technology to appraisal the performance of the design scheme. The performance quality is quantitatively evaluated by the judgement result. The good scheme is determined by comparison with evaluation function value of the result sample.
     To calibrate the performance quality of HMB fastly and accurately, CFD in combination with Least Square Support Vector Machine (LS-SVM) is used to build the parametric model for pressuredrop prediction of channel. Based on the basic research by CFD, the parametric driving variables are determined, the training date and test date of the model are obtained by Orthogonal Experiments, and the pressuredrop prediction model is established with the kernel of LS-SVM model. By contrast, the kernel function suitable for pressuredrop prediction of channel is determined. The model is also compared with the prediction model based on BPNN in prediction accuracy, the number of necessary training samples and the training time. Practical tool software is successfully developed for engineering application to predict the pressurdrop of channel inside HMB.
     Based above research, VC++6.0 developing environment and ObjectARX developing toolkit are used to realize the connection and package of every submodules, the performance evaluation system is developed based on MDT software, and the performance optimization of the HMB design results are successfully achieved. Data input module, performance evaluation and selection module, and performance verification module of pipeline are incuded in the system. The effectiveness of the system and the feasibility of the method applied in the paper are validated by typical engineering example.
引文
[1]曹玉平,阎祥安.液压传动与控制[M].天津:天津大学出版社,2003.6.
    [2]Jacobs,E.Look at Hydraulic Manifolds.Hydraulics & Pneumatics[J].1991,44(10):51
    [3]Foszcz Joseph L.,Caputo Don..Manifolds simplify fluid power systems[J].Plant Engineering,2002,56(6):40-44
    [4]高殿荣,王益群.液压集成块内弯曲管网流场数值计算与分析[J].机床与液压,2001(6):34-35.
    [5]周惠友.液压集成块孔系优化设计的理论与方法研究[D].上海:上海交通大学,2001.
    [6]Rudolf Koller,Andrea Ludwig,Hans-Peter Mannweiler.Program for Automating Hydraulic Control Manifold Design[J].Maschinenmarkt,1982,88(37):745-748
    [7]Backe,W.Program Package HYKON For Planning And Design Of Hydraulic Control Blocks[J].Computer Aided Design in High Pressure Hydraulic Systems,1983:97-98
    [8]Woodwark,J.R.Solid Modelling Of Fluid Power Components[J].Computer Aided Design in High Pressure Hydraulic Systems,1983:99-101
    [9]Cooper,B.S.Application of the Euclid System in the Design and Manufacture of Hydraulic Manifolds - A Case Study[J].Computer-Aided Engineering Journal,1985,2(2):50-56
    [10]Rinkinen,J.A.,Vilenius,M.J.Cad in Hydraulic Cartridge Valve Block Design[J].Hydraulic Pneumatic Mechanical Power,1985,31(364):90-93
    [11]Friedrich.CAD/CAM System for Manifold Block Production.Tampere International Conference on Fluid Power,Finland,1987
    [12]J.A.Rinkinen.HYBLO-CAD/CAM:Interactive Program Package for Hydraulic Cartridge Valve Blocks[C].Tampere International Conference on Fluid Power,Finland,1987
    [13]Feldman D.G.Concept for CAD support for designers of fluid component--status and potential of realization[C],nangzhou International Conference of Fluid Power,1989
    [14]Schechner Y.CAD shines in hydraulic manifold design[J].hydraulics & pneumatics,1990,43(3):16-17
    [15]Chambon,R.,Chevalier,P.M.,Descotte,Y.and Tollenaere,M.An Expert System for Object Placing in 3D Space[C].Proc.2nd AAIE Boston,USA(Aug 1987)
    [16]Chambon,R.,Tollenaere,M.Automated Al-based mechanical design of hydraulic manifold blocks[J].Computer Aided Design,1991,23(3):213-222
    [17]Tollenaere,M.Benefits of an Object Based Approach for the Development of an Intelligent CAD System[C].Proceedings of AIENG'92 Applications of Artificial Intelligence in Engineering,1992,Waterloo,Ont.,Canada
    [18]FOK S C,XIANG W,YAP F F.Feature-based component models for virtual prototyping of hydraulic systems[J].International Journal of Advanced Manufacturing Technology,2001(18):665-672
    [19]B.Pott,D.G.Feldmann.吴根茂,陈鹰(译).液压控制集成块的产品模型化--提高工程设计效率的一条途径[J].工程设计,2001(1):37-42
    [20]MDTools 5_0.http://www.vestusa.com/MDTools700Audiovisual.asp
    [21]SICV Library.http://eatonhydraulics.com/sicv/sicv_body.html
    [22]张海平,钟廷修.插装阀体复杂孔系的CAD[J].机床与液压,1987(1):15-16
    [23]陈子侠.二通插装阀集成系统CV-CAD实用软件开发[J].机械设计与制造,1995(4):17-18
    [24]乔进友,金忠孝,李元勋等.液压集成块CAD软件的研究开发.液压气动与密封,1997(3):42-44
    [25]李元勋,钟廷修,乔进友等.基于图形界面的液压集成块CAD系统[J].机床与液压.1998(5):56-59
    [26]金忠孝,乔进友,钟廷修.基于约束的液压集成块智能CAD研究[J].机床与液压,1999(1):54-55
    [27]周惠友,钟廷修.液压集成块路径优化设计[J].上海交通大学学报,2001(12):1842-1845
    [28]李从心.液压系统原理图设计的专家系统[D].武汉:原华中理工大学,1988
    [29]熊壮,喻道远,段正澄.液压集成块CAD/CAM系统的设计与研究[J].原华中理工大学学报,1999,27(8):27-29
    [30]冯磊,易孟林,龚从容.液压集成阀块CAD的参数化方法研究[J].机床与液压,1998(6):53-54
    [31]阮春红,冯磊,曹树平.李氏迷宫算法在液压阀块CAD中的应用研究[J].机械科学与技术,2001(4):590-592
    [32]陈鹰.二通插装阀液压控制系统和控制阀块计算机智能辅助设计研究及软件开发[D].杭州:浙江大学,1989
    [33]汪诚波,王荣良.液压集成块孔系干涉计算机自动分析研究[J].机电工程,1999(1):5-8
    [34]Rongliang Wang,Junsheng Qu,Qihua Wang,Bing Ye,Ying Chen.CAD of Hydraulic Manifold with Object-Orient Feature-Based Solid Modeling[C].Proceedings of the 48th National Conference on Fluid Power,USA,2000:187-191
    [35]叶冰,陈鹰.液压集成块三维参数化设计研究[J].工程设计,2001(2):88-92
    [36]Wong,P.K.,Chuen,C.W.,Leung,T.P.CAD of hydraulic manifold blocks using an object-oriented approach.American Society of Mechanical Engineers[J].The Fluid Power and Systems Technology Division(Publication) FPST,1997(4):183-189
    [37]P.K.Wong,L.M.Tam,S.C.Tam.Research on Intelligence CAD for Hydraulic Manifold Blocks.Proceedings of the 3rd China Association for Science and Technology(CAST) Conference of Young Scientists(Beijing,China,August 20-22,1998:118-121
    [38]贺继钢,司徒忠等.液压集成块CAD/CAM的信息编码设计[J].机床与液压,1998(1):16-17
    [39]赵葛霄,贺继钢,司徒忠.液压集成块智能化设计系统应用研究[J].机床与液压,2000(1):13-14
    [40]赵葛霄,司徒忠,贺继钢等.液压集成块CAM系统开发研究[J].机床与液压,2000(6):25-26
    [41]李卫民,谢里阳.基于SolidWorks的液压集成块虚拟设计[J].东北大学学报,2006,27(6):681-684.
    [42]高卫国,徐燕申,牛文铁.基于广义装配的液压集成块设计过程建模[J].天津大学学报,2006, 39(4):443-448.
    [43]高卫国,徐燕申,牛文铁.液压集成块三维设计方法研究[J].液压与气动,2007(2):23-26.
    [44]高卫国.液压集成块设计过程建模理论、方法及应用研究[D].天津:天津大学,2006.
    [45]刘惠敏,张亚平,郑玉明.液压集成阀块CAD/CAM方法研究[J].机械科学与技术,1998,17(1):135-137
    [46]胡萍,丁子佳,冯晓梅.交互式设计液压系统集成块[J].机械设计与制造,1997(6):30-31
    [47]贾竹青.液压集成块设计法分析[J].液压与气动,1998(1):7-8
    [48]董华.液压系统智能CAD技术开发及软件实现方法研究[D].大连:大连理工大学,1990.
    [49]王琦.液压系统插装阀块CAD[D].大连:大连理工大学,1991.
    [50]Dong Hua.CAD/CAM for Hydraulic systems.Proceedings of the 46th National Conference of Fluid Power,USA,1994
    [51]苏萌.液压阀块的三维交互设计及装配图CAD软件的开发[D].大连:大连理工大学,1995.
    [52]薄占滨.基于特征的液压阀块CAD研究与开发[D].大连:大连理工大学,1997.
    [53]邢志伟.液压集成块CAD的研究与开发[D].大连:大连理工大学,2000.
    [54]谢琳.基于特征的插装阀块类零件CAD/CAM集成系统的开发与研究[D].大连:大连理工大学,1995.
    [55]Lin Xie,Hua Dong,Xinan Feng,Wei Xiang.Research on feature-based CAD/CAM for hydraulic valve block[J]s.Proceedings of the 47th National Conference on Fluid Power,USA,1996:359-367
    [56]冯毅,李利,田树军.液压集成块虚拟设计建模技术研究[J].机床与液压,2002(5):111-112.
    [57]田树军.液压系统动态建模与仿真方法研究及通用仿真软件包开发[D].大连:大连理工大学,1991.
    [58]田树军,冯毅,高艳明,张宏.液压集成系统智能化虚拟设计中的核心算法研究[J].系统仿真学报,2006(3):607-612
    [59]张宏.基于管网液流特性仿真的液压集成块优化设计[D].大连:大连理工大学,2006.
    [60]BabuV,and Korpela A.Numerical simulation of the incompressible three dimensional Navier-Stokes Equations[J].Computer fluids.1994:Vol.23(5):675-691
    [61]Mahesh C and Kwon TH.Accuracy and efficiency of multi-variant finite element for three-Dimensional simulation of viscous incompressible flows[J].Communication in numerical methods in engineering.1994,10(2):135-148
    [62]熊杰,愈守勤.N-S方程SUPG有限元法[J].水力学研究与进展.1991:Vol.16(1)120-127.
    [63]http://www.oplanchina.com/Website/products/systems/flowmaster/
    [64]王福军.《计算流体动力学分析--CFD软件原理与应用》[M].北京:清华大学出版社,2004.
    [65]Courant R,Friedrichs K O and Lewy H.On the Partial Difference Equations of Mathematical Physics[J].IBM Journal.March.1967:215-234.
    [66]魏淑贤,沈跃,黄延军.计算流体力学的发展及应用[J].河北理工学院学报,2005,27(6):115-117.
    [67]傅德熏.流体力学数值模拟[M].北京:国防工业出版社,1993:3-6.
    [68]Vaughan N D,Johnston D N and Bournell L R.The use of computational Fluid Dynamics in Hydraulic Valve Design.Circuit.Component and System Design[J].New York:John Wiley and Sons.1992:226-244.
    [69]Koji YAKAHASHI et al.Discrete-Vortex Simulation of a Two Dimensional Flow in Oil Hydraulic Valve[J].The Journal of Fluid Control.1991,21(1):43-60.
    [70]Guillermo Palau Salvador,Jaime Arviza Valverde,Steven H.Frankel.Three-Dimensional Control Valve With Complex Geometry:CFD Modeling and Experimental Validation[c].34th AIAA Fluid Dynamics Conference and Exhibit 28 June -1 July 2004,Portland,Oregon.
    [71]胡国清,罗任飞ASM和κ-ε模型对比研究液压集成块管网[J].水动力学研究与进展.Vol.12,No.2 June,1997:226-230.
    [72]胡国清.液压阀管网能耗研究[D].成都:成都科技大学,1993.
    [73]王林翔,陈鹰,路甬祥.液压阀道内三维流体流动的数值分析[J].中国机械工程1992,10(2).
    [74]冀宏,傅新,杨华勇,王庆丰.节流槽型阀口噪声特性试验研究[J].机械工程学报,2004,(11):42-46.
    [75]杜学文.液压阀口空化机理及对系统的影响[D].杭州:浙江大学,2008.
    [76]曹秉刚,史维祥,中野和夫.内流式锥阀液动力及阀芯锥面压强分布的实验研究[J].西安交通大学学报,1995,(7):7-13.
    [77]付文智,李明哲,蔡中义等.滑阀式换向阀三维流体速度场的数值模拟[J].哈尔滨工业大学学报,2007,39(1):149-152.
    [78]郑淑娟,权龙,雷红霞.插装型液压锥阀内部流场的数值模拟及可视化分析[J].流体传动与控制,2005,(2):17-22.
    [79]高志亮,李忠良.系统工程方法论[M].西安:西北工业大学出版社,2004.8.
    [80]章梓雄,董曾男.粘性流体力学[M].北京:清华大学出版社,1998.
    [81]陈家旺.射流式液动器仿真计算与实验研究[D]:长春:吉林大学,2007.
    [82]王东屏.CFD数值建模仿真技术研究及其在高速动车组中的验证[D].大连:大连交通大学,2006.
    [83]FLUENT,FLUENT Users Manual.Fluent Inc.
    [84]李人宪.有限体积法基础[M].北京:国防工业出版社,2005.7.
    [85]Patankar S V,Spalding D B.A calculation processure for heat,mass andmomentum transfer in three-dimensional parabolic flows[J].Int J Heat Mass Transfer,1972,15:1787-1806.
    [86]Yutong Liu,Kerem Pekkan,S.Casey Jones.The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection [J].Journal of Biomechanical Engineering,2004,126(12):594-603.
    [87]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.5.
    [88]伍悦滨.工程流体力学(水力学)[M].中国建筑工业出版社,2006.
    [89]E.John Finnemore,B.Franzini.Fluid mechanics with engineering applications[M].北京:清华大学出版社,2003.10.
    [90]雷天觉.液压工程手册[M].北京:机械工业出版社,1990.
    [91]华绍曾,杨学宁.实用流体阻力手册[M].北京:国防工业出版社,1985:20-21.
    [92]Raymond Mulley.Flow of Industrial Fluids-Theory and Equations[M].Florida,ISA:CRC Press LLC,2004:260-261.
    [93]Erwin Fried,I E Idelchik.Flow resistance:a design guide for engineers[M].Washington,USA:Hemisphere Publishing Corporation,1989.
    [94]张长海.液压管道中层流起始段对压力损失的探讨[J].西安联合大学学报,1999,2(4):73-78.
    [95]贾春强.插装式集成块智能优化设计理论与方法研究[D].大连:大连理工大学,2007.
    [96]刘万辉.液压集成块CAD/CAM集成系统理论与与开发技术研究[D].大连:大连理工大学,2007.
    [97]徐玖平,胡知能,李军.运筹学(第二版)[M].北京:科学出版社,2008.
    [98]徐玖平,李军.多目标决策的理论和方法[M].北京:清华大学出版社,2005.
    [99]王珊,陈红.数据库系统原理教程.北京:清华大学出版社,2001.1.
    [100]孙江宏,丁立伟,米洁.AutoCAD objectARX开发工具及应用[M].北京:清华大学出版社,1999.9.
    [101]Vapnik V N.,Estimation of Dependencies Based on Empirical Data[M].Berlin:Springer-Verlag,1982
    [102]Vapnik V N.,The Nature of Statistical Learning Theory[M].NY:Springer-Verlag,1995.张学工译.统计学习理论的本质.北京:清华大学出版社,1999
    [103]VAPNIK V N.统计学习理论[M].北京:电了工业出版社,2004.
    [104]张学工.关于统计学习理论与支持向量机[J].北京:自动化学报,2000,26(1):32-42.
    [105]Cherkassky V.,Mulier F.,Learning from Data:Concepts,Theory and Methods[J].NY:JohnViley&Sons,1997
    [106]谭东宁,谭东汉.小样本机器学习理论:统计学习理论[J].南京理工大学学学报,2001,25(1):108-112.
    [107]Alex J.Smola,Bernhard Schoelkopf,A Tutorial on Support Vector Regression,Neuro-COLT2 Technical Report Series NC2-TR-1998030,October,1998
    [108]Burge.CJC.,A Tutorial on Support Vector Machines for Pattern Recognition[J],Data Mining and Knowledge Discovery,1998,2:121-167
    [109]李萌.旋转机械轴承故障的特征提取与模式识别方法研究[D].长春:吉林大学,2008.
    [110]任能.制冷系统故障故障检测、诊断及校验研究[D].上海:上海交通大学,2008.
    [111]Suykens,J.A.K.,Gestel,T.V,Brabanter,J.D.,et al.Least Squares Support Vector Machines.Singapore[J].World Scientific,2002.
    [112]van Gestel,T.,Suykens,J.,Baesens,B.,et al.Benchmarking Least Squares Support Vector Machine Classifiers[J].Machine Learning.2004,54(1):16-32
    [113]Suykens,J.A.K.,Vandewalle,J.Least Squares Support Vector Machine Classifiers.Neural Processing Letters[J].1999(3):294-298
    [114]Suykens,J.A.K.Nonlinear modelling and support vector machines[C].Instrumentation and Measurement Technology Conference 2001,IMTC 2001.Proceedings of the 18th IEEE.Budapest:2001(1):288-293
    [115]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社,2008.
    [116]郭波,张晓东,段爽月等.基于正交试验与支持向量机的设计时间校验方法研究[J].中国机械工稗,2009,20(9):1087-1091.
    [117]Y.Fujii,W.E.Tobler,G.M.Pitron,et al.Steady State hydraulic valve fluid field estimator based on non-dimensional artificial neural network(NDANN)[J].Journal of Computing and Information Science in Engineering,2004,9(4):257-270.
    [118]X.Fang,H.Luo,J.Tang.Structural damage detection using neural network with learning rate improvement[J].Computers and structures,2005,(83):2150-2161.
    [119]C.Y.Huang,J.Z.Shyu and G.H.Tzeng,Reconfiguring the innovation policy portfolios for Taiwan's SIP Mall Industry[J].Technovation,2007,27(12):744-765.
    [120]翟军红,王红宣.基于VC与MATLAB混合编程的研究[J].微计算机信息,2007,23(11):226-227.
    [121]彭博栋,魏福利.VC6.0与MATLAB7.X混合编程方法研究[J].计算机与数字工程,2008,36(9):174-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700