用户名: 密码: 验证码:
聚合物-TiN纳米复合材料的制备及界面调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用界面改性剂对纳米粒子进行表面修饰以提高其在聚合物基体中的分散性是制备聚合物纳米复合材料的关键技术。大分子表面改性剂的分子结构包括与纳米颗粒表面能形成化学键合的锚固基团和与聚合物基体有较好的相容性的柔性长链两部分,可以有效地控制纳米粒子与聚合物基体间的界面结构,从而改善纳米粒子的分散性,提高聚合物纳米复合材料的宏观性能。本论文利用自由基共聚合技术设计、合成了与MAPTMS、SBR和PS具有相关结构的St/AN/MAPTMS大分子界面改性剂,对比研究大分子界面改性剂与小分子界面改性剂修饰纳米粒子在聚合物基体中分散性的影响规律及其对界面性能的影响。
     1、通过自由基共聚合方法成功合成了大分子界面改性剂St/AN/KH-570共聚物,分子量可控在Mn=10000-20000;通过'H-NMR、FT-IR、GPC等确认了聚合物结构;通过DSC和TGA表征了大分子界面改性剂St/AN/MAPTMS的热性质,数据显示,大分子界面改性剂St/AN/MAPTMS具有良好的热稳定性和较宽的使用温度。
     2、用大分子St/AN/MAPTMS和MAPTMS为界面改性剂、以乙酸乙酯为溶剂对纳米TiN进行改性;用FT-IR和XPS研究了纳米TiN改性前后表面结构的变化,发现界面改性剂的硅醇烷(-SiOCH3)基团能够与纳米TiN表面羟基(-OH)通过脱水反应而接枝在纳米TiN表面;通过XRD、接触角分析、沉降实验,TGA、高分辨TEM等对改性纳米TiN性质进行分析并对比界面改性剂的改性效果。结果表明,界面改性剂的加入没有改变TiN的立方晶体结构;对比发现,大分子界面改性剂能够有效提高纳米TiN在有机溶剂中的分散稳定性、降低粒子团聚,其应用效率远大于小分子的MAPTMS。
     3、采用密炼-开炼两段混合工艺制备了不同界面改性剂修饰纳米TiN填充SBR复合材料,并利用TEM、SEM、橡胶加工分析仪和热分析技术研究了界面改性剂对SBR/TiN纳米复合体系界面性能的影响。研究结果表明:大分子界面改性剂St/AN/MAPTMS引入到SBR/TiN纳米复合材料体系,能够更有效提高纳米TiN在SBR基体中分散性和相容性;改善SBR/TiN混炼胶的硫化性能;在最佳填充量5phr下,混炼胶的拉伸强度提高近80%,同时大分子界面改性剂进一步改善SBR体系的动态加工性;并促进胶体的Tg提高近10℃。
     4、采用熔融共混的方法制备了不同界面改性剂修饰纳米TiN填充PS塑料体系复合材料,并利用TEM、热分析、和旋转流变仪等表征技术研究了界面改性剂对和PS/TiN纳米复合材料界面性能的影响。结果表明,大分子界面改性剂St/AN/MAPTMS比小分子改性剂MAPTMS更能有效提高纳米TiN粒子在PS基体中的分散性,增强界面粘结;大分子界面改性剂扮演了PS/TiN复合体系界面连接的重要角色,在2phr纳米粒子填充量下,大分子界面改性剂的加入,PS体系复合粘度、储能模量和损耗模量等提高近1个数量级,并进一步提高纳米复合材料的玻璃化转变温度和热稳定性。
Surface modification on nano-particles by interfacial modifier is a key technology to improve the dispersion of nano-particles in polymer matrix. Since the movement units of macromolecular chain are more than those of small molecules, we may more effecitively control the interfacial structure between nano-particles and polymer matrix using the macromolecules as interfacial modifier. In this thesis, macromolecular interfacial modifier (St/AN/MAPTMS copolymer) is designed and synthesized using free radical copolymerization technique. The influences of molecular interfacial modifier and macromolecular interfacial modifier on dispersion of nano-particles and interfacial properties were studied and compared. The interfacial structure and property of nano-particle/polymer matrix are considered in detail by various examination techniques and property tests.
     1. Macromolecular interfacial modifier (St/AN/MAPTMS copolymer) was synthesized by free radical copolymerization with molecular weight Mn=10000-20000. The structures of St/AN/MAPTMS copolymer were confirmed by methods of1H-NMR and FT-IR. The thermal properties of macromolecular interfacial modifier were characterized by DSC and TGA technology. Macromolecular interfacial modifier (St/AN/MAPTMS) possess good thermal stability and wide using temperature.
     2. Nano-TiN particles were modified by St/AN/MAPTMS copolymer and MAPTMS respectively. The structures of native and modified nano-TiN were studied by FT-IR and XPS. The effect of interfacial modifier on nano-TiN was analyzed and compared by XRD, contact angle analysis, sedimentation experiment, TGA and high resolution TEM. The results show both surface modification show no effect on cubic crystal structure of TiN. The dispersion stability of nano-TiN in organic solvent is obviously improved by macromolecular interfacial modifier. it's the application efficiency of macromolecular interfacial modifier was59.45%, which is far more than that of small molecular MAPTMS.
     3. Modified nano-TiN was filled into SBR using a hybrid technology of mixer-mixing. The influence of interfacial modifiers on properties of SBR/TiN nanocomposites was researched using TEM, SEM, rubber processing analyzer (RPA) and thermal analysis technology. Researching results show that macromolecule interfacial modifier (St/AN/MAPTMS) more effectively improve the dispersion and compatibility of nano-TiN in SBR matrix that MAPTMS alone does. Under the optimum condition, the tensile strength of the mixing rubber was increased about80%, and rubber's Tg was increased almost10℃when SBR rubber filled with nano-TiN modified by macromolecular interfacial modifier.
     4. PS/nano-TiN composites was prepared using melting blending method. Nano-TiN was modified by MAPTMS and St/AN/MAPTMS respectively. The influence of interfacial modifier on properties of PS/TiN nanocomposites was studied using TEM, thermal analysis and rotational rheometer devices. Results show that the dispersion of nano-TiN in PS matrix can be effectively improved by macromolecule interfacial modifier (St/AN/MAPTMS copolymer) than small molecular interfacial modifier (MAPTMS). Macromolecular coupling agent played an important role on interfacial connection of PS/TiN composite system. The dynamic modulus of nano-TiN/polymer composites were significantly improved, and the glass transition temperature and thermal stability of nanocomposites were further improved.
引文
[1]Vaia R A, Krishnamoorti R. polymer nonocomposites[M]. ACS Symposium Series:ACS publication, Chapter 1,2001,1-5.
    [2]Leszczynska A, Njuguna J, Pielichowski K, et al. Polymer/montmorillonite nanocomposites with improved thermal properties Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement:Review[J], Thermochimica Acta,2007,453:75-96.
    [3]Leszczynska A,Njuguna J,Pielichowski K,Banerjee. J R. Polymer/montmorillonite nanocomposites with improved thermal properties Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes:Review [J], Thermochimica Acta,2007,454:.1-22.
    [4]刘明贤.具有新型界面结构的聚合物-埃洛石纳米复合材料[D].博士学位论文,华南理工大学,2010,5
    [5]孔祥鹏,赵煜,张林香,王俊文.氮化钛纳米粉体材料的研究进展[J].材料导报,2010,24(5):110-113.
    [6]闵新民,邓志平,李嘉宇,袁润章.碳化钛与氮化钛类陶瓷材料结构、性能与量子化学计算研究[J].计量物理,1997,14(1):1-5.
    [7]Yazdani A, Soltanieh M, Hossein Aghajani H, Rastegari S. A new method for deposition of nano sized titanium nitride on steels [J], Vacuum,2011,86:131-139.
    [8]Sen U. Friction and wear properties of thermo-reactive diffusion coatings against titanium nitride coated steels [J], Mater. Design,2005,26:167-174.
    [9]Kaskel S, Schlichte K, Kratzke T. Catalytic properties of high surface area titanium nitride materials[J], J, Mol, Catal, A-Chem.,2004,208:291-298.
    [10]Rosu R A, Serban V A, Bucur A I, Dragos U. Deposition of titanium nitride and hydroxyapatite-based biocompatible composite by reactive plasma spraying [J], Appl. Surf. Sci.,2012,258:3871-3876.
    [11]Annunziata M, Oliva A, Basile M A, et al.The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces [J]. J. dent.,2011, 39:720-728.
    [12]Gao W, Ma X Y, Wang Z C, Zhu Y C. The influence of surface modification on the structure and properties of a calcium carbonate filled poly (ethylene terephthalate)[J], Colloids. Surf. A:Physicochem. Eng. Aspects,2011,389:230-236.
    [13]Kato R, Liauw C M, Allen N S, Ainhoa Irure, et al. Interfacial interactions in polymer-layered silicate nanocomposites [J], Langmuir,2008,24:1943-951.
    [14]柳建宏,于杰,何敏,鲁圣军.KH570用量对纳米SiO2接枝改性的影响[J].胶体与聚合物,2010,28(1):19-21.
    [15]Li Z W, Zhu Y F. Surface-modification of SiO2 nanoparticles with oleic acid [J]. Appl. Surf. Sci.,2003,211:315-320.
    [16]Li X H, Cao Z, Zhang Z J, Dang H X. Surface-modification in situ of nano-SiO2 and its structure and tribological properties [J]. Appl. Surf. Sci.,2006,252: 7856-7861.
    [17]Chen W W, Wu S W, Lei Y D, et al. Interfacial structure and performance of rubber/boehmite nanocomposites modified by methacrylic acid[J], Polymer,2011,52: 4387-4395.
    [18]Ananthapa P V, Taylor P R, Zhu W X. Synthesis of titanium nitride in a thermal plasma reactor [J], J. Alloy. Compd.,1999,287:126-129.
    [19]Janes R A, Aldissi M, Kaner R B. Controlling surface area of titanium nitride using metathesis reactions [J]. Chem. Mater.,2003,15:4431-4435.
    [20]Carole D, Frety N, Etienne-Calas S, et al. Microstructural and mechanical characterization of titanium nitride produced by S.H.S.[J]. Mater. Sci. Eng. A,2006, 419:365-371.
    [21]Zhang F, Kaczmarek W A, Lu L, Lai M O. Formation of titanium nitrides via wet reaction ball milling[J]. J. Alloy. Compd.,2000,307:249-253.
    [22]Ma J H, Wu M N, Du Y H, et al. Synthesis of nanocrystalline titanium nitride at low temperature and its thermal stability [J]. J. Alloy. Compd.,2009,476:603-605.
    [23]Kakati M, Bora B, Sarma S, Saikia B J, et al. Synthesis of titanium oxide and titanium nitride nano-particles with narrow size distribution by supersonic thermal plasma expansion [J]. Vacuum,2008,82:833-841.
    [24]李景国,高镰,张青红,等.纳米氮化钛粉体的制备及其影响因素[J].无机材料学报,2003,18(4):765-771.
    [25]张现平,张志,崔作林.氮化钛纳米粒子的制备及表征[J].青岛科技大学学报,2004,25(3):235-237.
    [26]王淑涛,张祖德.化学气相沉积法制备氮化钛[J].化学进展,2003,15(5):375-378.
    [27]李世直,赵程,石玉龙,等.等离子体化学气相沉积氮化钦[J].真空科学与技术,1989,9(5):327-331.
    [28]Zhang H J, Li F L, Jia Q L. Preparation of titanium nitride ultrafine powders by sol-gel and microwave carbothermal reduction nitridation methods[J]. Ceram. Int.,2009,35:1071-1075.
    [29]罗锡山.氢化钛直接反应合成氮化钛的研究[J].粉末冶金工业,1997,7 (3):28-30.
    [30]Sanyal S, Waghmare U V, Ruud J A. Adsorption of water on TiN (100), (110) and (111) surfaces:A first-principles Study [J]. Appl. Surf. Sci.,2011,257: 6462-6467.
    [31]韩修训,阎鹏勋,阎逢元,等.两种物理气相沉积氮化钛涂层的结构及摩擦性能研究[J].摩擦学学报,2002,22(3):175-179.
    [32]Giordano C, Erpen C, Yao W T, et al. Metal nitride and metal carbide nanoparticles by a soft urea pathway[J]. Chem. Mater.,2009,21:5136-5144.
    [33]Glandut N, Valette S, Brossard M. Electrooxidation of substoichiometric titanium nitrides, TiN1-x,0    [34]Tachibana A, Nakamura K. Quantum chemical study of aluminum CVD reaction for titanium nitride (111) surface with terminal fluorine[J]. J. Mol. Struct-Theochem,2000,506:273-286.
    [35]Tuilier M H, Pac M J, Anokhin D V, et al. Nano-structured titanium and aluminium nitride coatings:Study by grazing incidence X-ray diffraction and X-ray absorption and anomalous diffraction[J]. Thin Solid Films,2012,526:269-273.
    [36]贺品,任哲铮,黄维刚.氨解H2[TiO(C2O4)2]制备纳米氮化钛粉体[J].硅酸盐学报,2009,37(1):67-70.
    [37]Sundgren J E, Johansson B O, Karlsson S E, et al.Mechanisms of reactive sputtering of titanium nitride and titanium carbide II:Morphology and structure[J]. Thin Solid Films,1983,105:367-384.
    [38]Janes R A, Aldissi M, Kaner R B. Controlling surface area of titanium nitride using metathesis reactions [J]. Chem. Mater.,2003,15,4431-4435.
    [39]Subramanian B, Muraleedharan C V, Ananthakumar R, et al. A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAIN), as surface coatings for bio implants [J]. Surf. Coat. Tech.,2011,205, 5014-5020.
    [40]Rodriguez-Reyes J C F, Ni C C, Bui H P,et al. Reversible tuning of the surface chemical reactivity of titanium nitride and nitride-carbide diffusion barrier thin films[J]. Chem. Mater.,2009,21,5163-5169.
    [41]Sun D F, Lang J W, Yan X B, et al. Fabrication of TiN nano rods by electrospinning and their electrochemical properties [J]. J. Solid. State. Chem.,2011, 184,1333-1338.
    [42]Ros R A, Dragos V S. Deposition of titanium nitride and hydroxyapatite-based biocompatible composite by reactive plasma spraying [J]. Appl. Surf. Sci.,2012,258, 3871-3876.
    [43]Liu R, Lun N, Qi Y X, et al. Microwave absorption properties of TiN nanoparticles [J]. J. Alloy. Compd.,2011,509,10032-10035.
    [44]Ma S R, Shi L Y, Feng X, et al. Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent [J]. J. Shanghai. Univ. (English Edition),2008,3,278-282.
    [45]Su J Y, Lu Y, Zhao J J, et al. Nano-cubic structured titanium nitride particle films as cathodes for the effective electrocatalytic debromination of BDE-47[J]. J. Hazard. Mater.,2012,231-232:105-113.
    [46]Yang W W, Miao J B, Xia R, Qian J S, et al. On surface modification of nano-TiN with graft copolymer LMPB-g-KH570[J]. J. Disper. Sci. Technol.,2012, 33:827-834.
    [47]Didziulis S V, Butcher K D. A perspective on the properties and surface reactivities of carbides and nitrides of titanium and vanadium[J]. Coordin. Chem. Rev.,2013,257:93-109.
    [48]Yan C, Cheng X Q, Zhang Y, et al. Ferromagnetism and microwave electromagnetism of iron-doped titanium nitride nanocrystals[J]. J. Phys. Chem. C, 2012,116:26006-26012.
    [49]徐国财,张立德.纳米复合材料[M].北京,化学工业出版社,2002.
    [50]杨建.石墨填充橡胶材料的性能研究及纳米复合材料的制备[D].北京化工大学,博士论文,2008,5.
    [51]Chevigny C, Dalmas F, Cola E D, et al. Polymer-grafted-nanoparticles nanocomposites:dispersion, grafted chain conformation, and rheological behavior[J]. Macromolecules,2011,44:122-133.
    [52]Riedel R,Toma L, Fasel C, Miehe G. Polymer-derived mullite-SiC-based nanocomposites[J]. J. Eur. Ceram. Soc.,2009,29:3079-3090.
    [53]Rao Y Q and Blanton T N. Polymer nanocomposites with a low thermal expansion coefficient [J]. Macromolecules,2008,41:935-941.
    [54]Jung H Y, Kim J Y, Park J K. Effect of Nafion dispersion solvent on the interfacial properties between the membrane and the electrode of a polymer electrolyte membrane-based fuel cell [J]. Solid State Ionics,2011,196:73-78.
    [55]Mayavan S, Dutta N K, Choudhury N R, et al. Self-organization, interfacial interaction and photophysical properties of gold nanoparticle complexes derived from resilin-mimetic fluorescent protein recl-resilin [J]. Biomaterials,2011,32: 2786-2796.
    [56]Zhao F, Huang Y D. Improved interfacial properties of carbon fiber/epoxy composites through grafting polyhedral oligomeric silsesquioxane on carbon fiber surface [J]. Mater. Lett.,2010,64:2742-2744.
    [57]Zare Y, Daraei A, Vatani M, Aghasafari P. An analysis of interfacial adhesion in nanocomposites from recycled Polymers[J]. Comp. Mater. Sci., In press.
    [58]Doan T T L, Brodowsky H, Mader E. Jute fibre/epoxy composites:Surface properties and interfacial adhesion[J]. Compos. Sci. Technol.,2012,72:1160-1166.
    [59]杨洪斌,岑浩,傅雅琴.硅溶胶改性碳纤维对其复合材料界面性能的影响[J].现代纺织技术,2013,4:4-7.
    [60]李慧,张鹏,程永奇,孙友松.金属表面预处理对金属/聚合物界面粘结强度的影响[J].玻璃钢/复合材料,2013,4:51-54.
    [61]Zhang J N, Deng S Q, Wang Y L, et al. Effect of nanoparticles on interfacial properties of carbon fibre-epoxy composites[J]. Composites:Part A,2013,55:35-44.
    [62]Aman Z M, Olcott K, Pfeiffer K, et al. Surfactant adsorption and interfacial tension investigations on cyclopentane hydrate[J]. Langmuir,2013,29:2676-2682.
    [63]Song Y M and Dai L L. Two-particle interfacial microrheology at polymer-polymer interfaces[J]. Langmuir,2010,26:13044-13047.
    [64]Vautard F, Fioux P, Vidal L, et al. Influence of the carbon fiber surface properties on interfacial adhesion in carbon fiber-acrylate composites cured by electron beam[J]. Composites:Part A,2011,42:859-867.
    [65]Tostado C P, Xu J H, Du A W, Luo G S. Experimental study on dynamic interfacial tension with mixture of SDS-PEG as surfactants in a coflowing microfluidic device[J]. Langmuir,2012,28:3120-3128.
    [66]Zartman G D and Wang S Q. A particle tracking velocimetric study of interfacial slip at polymer_polymer interfaces[J]. Macromolecules,2011,44:9814-9820.
    [67]李健芳,张娅婷,孙宏杰.国产高性能碳纤维复合材料界面性能研究[J].玻璃钢/复合材料,2013,5:28-31.
    [68]杨玲.碳纤维/环氧复合材料界面优化研究进展[J].高科技纤维与应用,2013,38(3):39-46.
    [69]李盼.基于表/界面调控的无机粉体材料的结构设计与性能研究[D].山东大学,博士论文,2013,4.
    [70]刘东.射频感应耦合等离子体处理对PBO/BMI复合材料界面性能影响的研究[D].大连理工大学,博士论文,2012,7.
    [71]马克明.RTM成型碳/环氧复合材料非平衡浸润过程与界面性能调控[D].大连理工大学,博士论文,2011,12.
    [72]Maldonado-Valderrama J, Miller R, Fainerman V B, et al. Effect of gastric conditions on β-lactoglobulin interfacial networks:Influence of the oil phase on protein structure[J]. Langmuir,2010,26:15901-15908.
    [73]Li J W, Wu Z X, Huang C J, et al. Plasma functionalization for improving dispersion and interfacial bonding of multi-wall carbon nanotubes in cyanate ester/epoxy nanocomposites[J]. Colloid. Surface. A,2013,433:173-180.
    [74]张慧梅,陆明,何波,张立群,等.β-甲基苯乙烯与丙烯腈共聚物交联纳米微球的制备及其与橡胶界面作用研究[J].橡胶工业,2013,60(7):389-395.
    [75]潘明珠,梅长彤.纳米SiO2-APP对木塑复合材料界面特性及力学性能的影响[J].北京林业大学学报,2013,35(5):117-122.
    [76]Bunio P, Chlebicki J.New sorbic-type quaternary ammonium single-chain and gemini polymerizable surfactants:Synthesis, interfacial properties and anti-electrostatic activity [J]. Colloid. Surface. A,2012,413:119-124.
    [77]Dai Z H, Shi F H, Zhang B Y, et al. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial Adhesion [J]. Appl. Surf. Sci.,2011,257: 6980-6985.
    [78]Chen D K, Li J, Ren J, et al. Influence of fiber surface-treatment on interfacial property of poly(1-lactic acid)/ramie fabric biocomposites under UV-irradiation hydrothermal aging[J]. Mater. Chem. Phys.,2011,126:524-531.
    [79]Zaman I, Phan T T, Kuan H C. Epoxy/graphene platelets nanocomposites with two levels of interface strength[J]. Polymer,2011,52:1603-1611
    [80]Somia A, Chen H M, Chen G D. Free volumes, glass transitions, and cross-links in zinc oxide/waterborne polyurethane nanocomposites[J]. Macromolecules,2011,44: 29-38.
    [81]Veerapandian M, Yun K. Ultrasono chemically conjugated metalloid/triblock copolymer nanocomposite and subsequent thin solid laminate growth for surface and interface studies[J]. Langmuir,2010,26:14216-1422.
    [82]Zhang L, Lu Q Y, Xu Z H, et al.Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions[J]. J. Colloid. Interf. Sci.,2012,378:222-231.
    [83]Mortezaei M, Famili M H N, Kokabi M. The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite[J]. Compos. Sci. Technol.,2011,71:1039-1045.
    [84]Shalwan A, Yousif B F. Investigation on interfacial adhesion of date palm/epoxy using fragmentation technique [J]. Mater. Design,2014,53:928-937.
    [85]Fang L, Chang L, Guo W J, Chen Y P, Wang Z. Influence of silane surface modification of veneer on interfacial adhesion of wood-plastic plywood[J]. Appl. Sur. Sci., In press.
    [86]Li Y, Liu Y L, Peng X H, et al. Pull-out simulations on interfacial properties of carbon nanotube-reinforced polymer nanocomposites [J]. Comp. Mater. Sci.,2011,50: 1854-1860.
    [87]Faludi G, Dora G, Renner D K, et al. Improving interfacial adhesion in pla/wood biocomposites[J]. Compos. Sci. Technol.,2013,89:77-82.
    [88]Song W, Gu A J, Liang G Z, Yuan L. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites [J]. Appl. Surf. Sci.,2011,257:4069-4074.
    [89]Tannenbaum R, Zubris M, Kasi D. FTIR characterization of the reactive interface of cobalt oxide nanoparticles embedded in polymeric matrices[J]. J. Phys. Chem. B,2006,110:2227-2232
    [90]Ciprari D, Jacob K, Tannenbaum R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties [J]. Macromolecules,2006,39: 6565-6573.
    [91]Wilson K S, Allen A J, Washburn N R. Interphase effects in dental nanocomposites investigated by small-angle neutron scattering[J]. J. Bio. Mate.r Res., Part A,2007,81:113-123.
    [92]Dong H C, Ye P L, Zhong M J. Superhydrophilic surfaces via polymer-SiO2 nanocomposites [J]. Langmuir, 2010,26:15567-15573.
    [93]Tai Y L, Qian J S, Zhang Y C, Miao J B. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH) [J]. Chem. Eng. J., 2008,141:354-361.
    [94]Shanmugharaj A M, Bae J H, Lee K Y, et al. Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites [J]. Compos. Sci. Technol.,2007,67:1813-1822.
    [95]Edyham M R, Wirjosentono B. Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent[J]. Polym. Testing,2002,21:139-144.
    [96]Dao T D, Lee H I, Jeong H M. Alumina-coated graphene nanosheet and its composites of acrylic rubber [J]. J. Colloid Interf. Sc.e, In Press
    [97]Markovid G, Marinovic-Cincovic M, Jovanovic V, NR/CSM/biogenic silica rubber blend composites[J]. Compos. Part B-Eng.,2013,55:368-373.
    [98]Cao X D, Xu C H, Liu Y H, Chen Y K.Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites[J]. Carbohyd. Polym.,2013,92:69-76.
    [99]Seta L, Baldino N, Gabriele D, et al. The influence of carrageenan on interfacial properties and short-term stability of milk whey proteins emulsions [J]. Food Hydrocolloid.,2013,32:373-382.
    [100]Burmistr M V, Sukhyy K M, Shilov V V, et al. Synthesis, structure, thermal and mechanical properties of nanocomposites based on linear polymers and layered silicates modified by polymeric quaternary ammonium salts (ionenes)[J]. Polymer, 2005,46:12226-12232.
    [101]Wang S J, Liu L M, Fang P F, et al. Microstructure of polymer-clay nanocomposites studied by positrons[J]. Radiat. Phys. Chem.,2007,76:106-111.
    [102]Bhattacharya M, Bhowmick A K. Polymer-filler interaction in nanocomposites:New interface area function to investigate swelling behavior and Young's modulus[J]. Polymer,2008,49:4808-4818.
    [103]彭人勇,张英杰.聚合物/蒙脱石纳米复合材料制备机理及研究进展[J].华东地质学院学报,2003,26(4):357-360.
    [104]Tai Y L, Qian J S, Miao J B, Zhang Y C. Preparation and characterization of Si3N4/SBR nanocomposites with high performance [J]. Mater. Design.,2012,34: 522-527.
    [105]李莎,段菲菲,杨永珍,等.硅烷偶联剂对碳微球的表面化学修饰[J].功能材料,2011,42(1):25-29.
    [106]Xie Y J, Hill C A S, Xiao Z F, Militz H, et al. Silane coupling agents used for natural fiber/polymer composites:A review [J]. Compos. Part A-Appl. S.,2010,41: 806-819.
    [107]胡福增,陈国荣,杜永娟.材料表界面[M].华东理工大学出版社,上海,2007.
    [108]李敏.原位聚合聚乙烯/蒙脱土纳米复合材料的研究[D].吉林大学,博士论文,2007,6.
    [109]Qiu U L, Mai K C, Zeng H M. Effect of macromolecular coupling agent on the property of PP/GF composites [J]. J. Appl. Polym. Sci.,1999,71:1537-1542.
    [110]徐翔民,张予东,李宾杰,等.尼龙66/Si02纳米复合材料的界面结构及其对材料力学性能的影响[J].材料科学与工程学报,2009,25(2):41-44.
    [111]Zhang Q, Liu Q F, Zhang Y D, et al. Silane-grafted silica-covered kaolinite as filler of styrene butadiene rubber[J]. Appl. Clay Sci.,2012,65-66:134-138.
    [112]Mallakpour S, Hatami M. Production and evaluation of the surface properties of chiral poly (amide-imide)/TiO2 nanocomposites containing L-phenylalanine units [J]. Progress in Organic Coatings,2012,74:564-571.
    [113]Imre B, Bedo D, Domjan A, et al. Structure, properties and interfacial interactions in poly (lactic acid)/polyurethane blends prepared by reactive processing [J]. Eur. Polym. J.,2013,49:3104-3113.
    [114]Romero A, Verwijlen T, Guerrero A, Vermant J. Interfacial properties of crayfish protein isolate/chitosan mixed films [J]. Food Hydrocolloid.,2013, 32:395-401.
    [115]Ahmadi S J, Mohaddespour A, Huang Y D, et al. The effects of coupling agents on the mechanical properties of NBR-Clay nanocomposites and its conventional composites[J]. J. Compos. Mater.,2010,44:2975-2989.
    [116]Jinkui W, Xinglong G, Lin C. Preparation and characterization of isotropic polyurethane magnetorheological elastomer through in situ polymerization[J]. J. Appl. Polym. Sci.,2009,114:901-910.
    [117]Hidekazu N, Jun N, Takahiro S, et al. Silane coupling agent bearing a photo removable succinimidyl carbonate for patterning amines on glass and silicon surfaces with controlled surface densities[J]. Colloid Surface B,2010,76:88-97.
    [118]Luo Y J, Dang J, Qi H Y. Studies on preparation and property researches of EP/SiC thermal conductivity composites[J]. Polym-Plast. Technol.,2009,48: 877-881.
    [119]Wang X, Tang W, Wang L L, et al. Influence of NDZ-401 titanate coupling agent on surface properties of nano carbonate calcium [J]. Rare Metal. Mater. Eng., 2008,37:340-343.
    [120]Xia R, Zhang Y C, Zhu Q R, et al. Surface modification of nano-sized silicon nitride with BA-MAA-AN tercopolymer[J]. J. Appl. Polym. Sci.,2008,107:562-570.
    [121]Xia R, Li M H, Zhang Y C, et al. Synthesis of tercopolymer BA-MMA-VTES and surface modification of nano-size Si3N4 with this macromolecular coupling agent[J]. J. Appl. Polym. Sci.,2008,107:1100-1107.
    [122]Song B, Meng L H, Huang Y D. Improvement of interfacial property between PBO fibers and epoxy resin by surface grafting of polyhedral oligomeric silsesquioxanes (POSS)[J]. Appl. Surf. Sci.,2012,25:10154-10159.
    [123]Bai Z Q, Guo H X. Interfacial properties and phase transitions in ternary symmetric homopolymerecopolymer blends:A dissipative particle dynamics study [J]. Polymer,2013,54:2146-2157.
    [124]Wernik J M, Cornwell-Mott B J, Meguid S A. Determination of the interfacial properties of carbon nanotube reinforced polymer composites using atomistic-based continuum model [J]. Int. J. Solids. Struct.,2012,49:1852-1863.
    [125]Shi W X and Guo H X.Structure, interfacial properties, and dynamics of the sodium alkyl sulfate type surfactant monolayer at the water/trichloroethylene interface: A molecular dynamics simulation study[J]. J. Phys. Chem. B,2010,114:6365-6376.
    [126]李兆乾.大分子偶联剂的合成及其对天然纤维/聚乳酸复合材料的界面改性[D].华东理工大学,2010,5.
    [127]Park J T, Seo J H, Ahn S H, et al. Surface modification of silica nanoparticles with hydrophilic polymer[J]. J. Indu. Eng. Chem.,2010,16:517-522.
    [128]Ma C G, Rong M Z, Zhang M Q, Friedrich K. Irradiation-induced surface graft polymerization onto calcium carbonate nanoparticles and its toughening effects on polypropylene composites[J]. Polym. Eng. Sci.,2005,45:529-538.
    [129]Ciprari D, Jacob K, Tannenbaum R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties [J]. Macromolecules,2006,39(19):6565-6573.
    [130]Zhan H W, Jiang Y, Dong Y Q, et al. Synthesis and properties of novel macromolecular coupling agents prepared by ATRP[J]. J. Appl. Polym. Sci.,2006, 102(4):3919-3926.
    [131]高燕,周山花,王炎涛,等St/TMA/KH570嵌段共聚物的ATRP合成及其在复合材料中的应用[J].华东理工大学学报(自然科学版),2006,32(10):1201-1205.
    [1]Feng J, Liu H, Huan Y. Micro-phase separation of diblock copolymer in a nanosphere:Dissipative particle dynamics approach [J]. Fluid Phase Equilibr.,2007, 261:50-57.
    [2]Gromadzki D, Lokaj J, Slouf M, Stepanek P. Dilute solutions and phase behavior of polydisperse A-b-(A-co-B) diblock copolymers [J]. Polymer,2009,50:2451-2459.
    [3]Tai Y L, Qian J S, Zhang Y C, et al. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH) [J]. Chem. Eng. J.,2008,141: 354-361.
    [4]Sun Y, Liu W Q. Synthesis and characterization of a new fluorinated macroinitiator and its diblock copolymer by AGET ATRP [J]. J. Fluorine Chem., 2011,132:9-14.
    [5]Plentz R S, Miotto M, Schneider E E. Effect of a macromolecular coupling agent on the properties of aluminum hydroxide/PP composites [J]. J. Appl. Polym. Sci., 2006,101:1799-1805.
    [6]Qiu W L, Mai K C, Zeng H M. Effect of macromolecular coupling agent on the property of PP/GF composites [J]. J. Appl. Polym. Sci.,1999,71:1537-1542.
    [7]Wang L Y, Li K C, Lin H C. Synthesis and characterization of side-chain liquid-crystalline block-copolymers containing laterally attached photoluminescent quinquephenyl units via ATRP [J]. Polymer,2010,51:75-83.
    [8]Liu R, Li Z Y, Yuan D, et al. Synthesis and self-assembly of miktoarm star copolymers of (polyethylene)2-(polystyrene)2 [J]. Polymer,2011,52:356-362.
    [9]Xia R, Zhang Y C, Q R Zhu, Qian J S, et al. Surface modification of nano-sized silicon nitride with BA-MAA-AN tercopolymer [J]. J. Appl. Polym. Sci.,2008,107: 562-570.
    [10]Xia R, Li M H, Zhang Y C, Zhu Q R, Qian J S. Synthesis of tercopolymer BA-MMA-VTES and surface modification of nano-size Si3N4 with this macromolecular coupling agent [J]. J. Appl. Polym. Sci.,2008,107:1100-1107.
    [11]张波,陆绍荣,王敏,刘婷.含柔性链大分子偶联剂对SF/PP木塑复合材料结构和性能的影响[J].高分子材料科学与工程,2010,26(3):35-38.
    [12]Qiu W L, Mai K C, Zeng H M. Effect of macromolecular coupling agent on the property of PP/GF composites J]. J. Appl. Polym. Sci.,1999,71:1537-1542.
    [13]Plentz R S, Miotto M, Schneider E E, et al. Effect of a macromolecular coupling agent on the properties of aluminum hydroxide/PP composites [J]. J. Appl. Polym. Sci.,2006,101:1799-1805.
    [14]王勇,仲含芳,韦平,江平开.大分子偶联剂对PE/氢氧化铝阻燃复合材料性能的影响[J].中国塑料,2004,18(1):67-70.
    [15]Dong H C, Ye P L, Zhong M J, Pietrasik J. Superhydrophilic surfaces via polymer-SiO2 nanocomposites [J]. Langmuir,2010,19:15567-15573.
    [16]Yu Y Y, Chien W C, Rao Y C, Liao S C. Synthesis and characterization of semiconductor nanoparticles by the amphiphilic block copolymers [J]. Curr. App. Phys.,2012,12:1-8.
    [17]Xie Y J, Hill CAS, Xiao Z F, Militz H, et al. Silane coupling agents used for natural fiber/polymer composites:A review [J]. Compos. Part A-Appl. S.,2010,41: 806-819.
    [18]高燕,周山花,王炎涛,董擎之St/TMA/KH570嵌段共聚物的ATRP合成及其在复合材料中的应用[J].华东理工大学学报(自然科学版),2006,32(10):1201-1205.
    [19]周颖坚,张锴,孙刚,危大福,等.苯乙烯/丁二烯聚合反应挤出多嵌段共聚物结构表征及共聚机理的研究[J].高分子学报,2006,3:436-441.
    [20]张会枝,柴仕淦,曹猛,程时远,等.NMR分析聚苯乙烯序列结构[J].胶体与聚合物,2007,25(3):39-41.
    [21]薛松.有机结构分析[M].合肥:中国科学技术大学出版社,2005:96-97.
    [22]王寅,蒋旭,杨永兵,黄冕,等.一种BA/KH-570/MMA/St四元共聚大分子偶联剂的合成与应用研究[J].材料导报B:研究篇,2011,25(9):92-95.
    [23]张永明,罗宁,余海霞,应圣康.聚苯乙烯-甲基丙烯酸甲酯接枝共聚物的合成[J].合成橡胶工业,1999,22(2):83-86.
    [24]朱红平,吴水珠,佘卫龙,罗锻斌.新型含偶氮苯生色团聚合物的制备和性能[J].材料研究学报,2005,19(3):282-286.
    [25]Xia R. Li M H, Zhang Y C, Qian J S. et al. Surface modification of MWNTs with BA-MMA-GMA terpolymer by single-step grafting technique [J]. J. Appl. Polym. Sci.,2011,119:282-289.
    [26]章永化,邓沁瑜,龚克成.可聚合性季铵盐及其聚合物的合成与表征[J].华南理工大学学报(自然科学版),2009,28(7):45-50.
    [27]乔恒婷,夏茹,章于川.大分子偶联剂马来酸酐-丙烯酸丁酯-苯乙烯三元共聚物的合成及其对纳米氮化铝的表面改性[J].应用化学,2010,27(1):16-20.
    [28]Hu Z, Shen X, Qiu H, Lai G. AGET ATRP of methyl methacrylate with poly(ethylene glycol) (PEG) as solvent and TMEDA as both ligand and reducing agent [J]. Eur. Polym. J.,2009,45:2313-2318.
    [29]Bury K, Neugebauer D, Biela T. Methacrylate copolymers with hydroxyl terminated caprolactone chains via ATRP. A route to grafted copolymers [J]. React. Funct. Polym.,2011,71:616-624.
    [30]段微微,黄一平,李培欣.差示扫描量热法测定聚丙烯腈纤维玻璃化转变温度[J].天津化工,2010,24(1):37-38.
    [31]Nachtigall S M B, Miotto M, Schneider E E, Mauler R S, et al. Macromolecular coupling agents for flame retardant materials [J]. Eur. Polym. J.,2006,42:990-999.
    [1]Arita T, Moriya K I, Yoshimura T, et al. Dispersion of phosphonic acids surface-modified titania nanocrystals in various organic solvents [J]. Ind. Eng. Chem. Res.,2010,49:9815-9821.
    [2]Arita T, Yu U, Minami K, et al. Dispersion of fatty acid surface modified ceria nanocrystals in various organic solvents [J]. Ind. Eng. Chem. Res.,2010,49: 1947-1952.
    [3]Kuma K K, Raole P M, Rayjada P A,et al. Study of structure development of titanium nitride on inclined substrates [J]. Surf. Coat. Tech.,2011,205:187-191.
    [4]Chen W W, Wu S W, Lei Y D, et al. Interfacial structure and performance of rubber/boehmite nanocomposites modified by methacrylic acid [J]. Polymer,2011,52: 4387-4395.
    [5]Gupta S, Ramamurthy P C, Madras G. Covalent grafting of polydimethylsiloxane over surface-modified alumina nanoparticles [J]. Ind. Eng. Chem. Res.,2011,50: 6585-6593.
    [6]Parlinska W M, Meier S, Patscheider J. Transmission electron microscopy characterization of TiN/SiNx multilayered coatings plastically deformed by nanoindentation [J]. Thin Solid Films,2010,518:4890-4897.
    [7]Janes R A, Aldissi M, Kaner R B. Controlling surface area of titanium nitride using metathesis reactions [J]. Chem. Mater.,2003,15:4431-4435.
    [8]Subramanian B, Muraleedharan C V, Ananthakumar R, et al. A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAIN), as surface coatings for bioimplants [J]. Surf. Coat. Tech.,2011,205: 5014-5020.
    [9]Rodriguez-Reyes J C F, Ni C C, Bui H P, et al. Reversible tuning of the surface chemical reactivity of titanium nitride and nitride-carbide diffusion barrier thin films [J]. Chem. Mater.,2009,21:5163-5169.
    [10]Sun D F, Lang J W, Yan X B, et al. Fabrication of TiN nano rods by electrospinning and their electrochemical properties [J]. J. Solid. State. Chem.,2011, 184:1333-1338.
    [11]Ros R A, Dragos V S. Deposition of titanium nitride and hydroxyapatite-based biocompatible composite by reactive plasma spraying [J]. Appl. Surf. Sci.,2012,258: 3871-3876.
    [12]Liu R, Lun N, Qi Y X, et al. Microwave absorption properties of TiN nanoparticles [J]. J. Alloy. Compd.,2011,509:10032-10035.
    [13]Ma S R, Shi L Y, Feng X, et al. Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent [J]. J. Shanghai. Univ. (English Edition),2008,3:278-282.
    [14]Yao Q Z, Zhou Y M, Sun Y Q, et al. Synthesis of TiO2 hybrid molecular imprinted polymer for ethofumesate linked by silane coupling agent [J]. J. Inorg. Organomet. Polym.,2008,4:477-484.
    [15]Deng C, Yao N, Lu X, et al. Comparison of Ca/P mineralization on the surfaces of poly (s-caprolactone) composites filled with silane-modified nano-apatite [J]. J. Mater. Sci.,2009,16:4394-4398.
    [16]Fu T, Zhao J L, Wei J H, et al. Preparation of carbon fiber fabric reinforced hydroxyapatite/epoxy composite by RTM processing [J]. J. Mater. Sci.,2004,4: 1411-1413.
    [17]Annunziata M, Oliva A, Basile M A, et al. The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces [J]. J. Dent.,2011, 39:720-728.
    [18]李莎,段菲菲,杨永珍,刘旭光,等.硅烷偶联剂对碳微球的表面化学修饰[J].功能材料,2011,42(1):25-29.
    [19]Chen D, Li J H. Interfacial Functionalization of TiO2 with smart polymers: pH-controlled switching of photocurrent direction [J]. J. Phys. Chem. C,2010,114: 10478-10483.
    [20]Dong H C, Ye P L, Zhong M J, Pietrasik J. Superhydrophilic surfaces via polymer-SiO2 nanocomposites [J]. Langmuir,2010,19:15567-15573.
    [21]Yu Y Y, Chien W C, Rao Y C, Liao S C. Synthesis and characterization of semiconductor nanoparticles by the amphiphilic block copolymers [J]. Curr. App. Phys.,2012,12:1-8.
    [22]Xie Y J, Hill C A S, Xiao Z F, Militz H, et al. Silane coupling agents used for natural fiber/polymer composites:A review [J]. Compos. Part A-Appl. S.,2010,41: 806-819.
    [23]Sun Y, Liu W Q. Synthesis and characterization of a new fluorinated macroinitiator and its diblock copolymer by AGET ATRP [J]. J. Fluorine Chem.,2011, 132:9-14.
    [24]Tai Y L, Qian J S, Zhang Y C, Miao J B. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH) [J]. Chem. Eng. J., 2008,141:354-361.
    [25]Jackson A, Shebanova O, Hector A L, et al. Amorphous and nanocrystalline titanium nitride and carbonitride materials obtained by solution phase ammonolysis of Ti(NMe2)4 [J]. J. Solid. State. Chem.,2006,179:1383-1393.
    ]26] Zhou X S, Peng F, Wang H J, et al. Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2[J]. Mater. Res. Bull.,2011, 46:840-844.
    [27]车剑飞,龚婕,杨绪杰,等.纳米A1203表面接枝修饰的XPS研究[J].光谱学与光谱分析,2006,26(4):757-760.
    [28]Xia R, Zhang Y C, Q R Zhu, Qian J S, et al. Surface modification of nano-sized silicon nitride with BA-MAA-AN tercopolymer [J]. J. Appl. Polym. Sci.,2008,107: 562-570.
    [29]Ismail I M Abdallah B, Abou-Kharroub M, et al. XPS and RBS investigation of TiNxOy films prepared by vacuum arc discharge [J]. Nucl. Instrum. Meth. B,2012, 271:102-106.
    [30]Zhao J, Garza E G, Lam K, et al. Comparison study of physical vapor-deposited and chemical vapor-deposited titanium nitride thin films using X-ray photoelectron spectroscopy [J]. Appl. Surf. Sci.,2000,158:246-251.
    [31]Qiu Y C, Yan K Y, Yang S H, et al. Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase/titanium oxynitride/titanium nitride graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance [J]. ACS Nano,2010,4:6515-6526.
    [32]Galvanetto E, Galliano F P, Borgioli F, et al. XRD and XPS study on reactive plasma sprayed titanium-titanium nitride coatings [J]. Thin Solid Films,2001,384: 223-229.
    [33]徐爱菊,林勤,照日格图,等FTIR和XPS光谱分析Co-V-O催化剂的丙烷氧化脱氢活性氧物种[J].光谱学与光谱分析,2009,29(2):346-350.
    [34]吴小利,岳涛,陆荣荣,朱志远,等.碳纳米管的表面修饰及FTIR, Raman和XPS光谱表征[J].光谱学与光谱分析,2005,25(10):1595-1598.
    [35]Giordano C, Erpen C, Yao W T, et al. Metal nitride and metal carbide nanoparticles by a soft urea pathway[J]. Chem. Mater.,2009,21:5136-5144.
    [36]Zhang F, Kaczmarek W A, Lu L, Lai M O. Formation of titanium nitrides via wet reaction ball milling[J]. J. Alloy. Compd.,2000,307:249-253.
    [37]Sanyal S, Waghmare U V, Ruud J A. Adsorption of water on TiN (100), (110) and (111) surfaces:A first-principles study[J]. Appl. Surf. Sci.,2011,257: 6462-6467.
    [38]Chen L, Wang S Q, Zhou S Z, et al. Microstructure and mechanical properties of Ti(C, N) and TiN/Ti(C, N) multilayer PVD coatings[J]. Int. J. Refract. Met. H.,2008, 26:456-460.
    [39]Gao W, Ma X Y, Wang Z C, et al. The influence of surface modification on the structure and properties of a calcium carbonate filled poly(ethylene terephthalate) [J]. Colloid. Surf. A,2011,389:230-236.
    [40]段杰.氮化硼和氮化钛纳米材料的合成与表征[D].硕士学位论文,重庆大学,2008,5.
    [41]徐淑杰.柔性分子链聚合物/纳米Si_3N_4复合材料结晶性能的研究[D].硕士学位论文,安徽大学,2012,5.
    [42]Tai Y L, Qian J S, Miao J B, Zhang Y C. Preparation and characterization of Si3N4/SBR nanocomposites with high performance [J]. Mater. Design.,2012,34: 522-527.
    [43]Xia R, Li M H. Zhang Y C, Qian J S, et al. Surface modification of MWNTs with BA-MMA-GMA terpolymer by single-step grafting technique [J]. J. Appl. Polym. Sci.,2011,119:282-289.
    [44]Schmidt D F and Giannelis E P. Silicate dispersion and mechanical reinforcement in polysiloxane/layered silicate nanocomposites [J]. Chem. Mater.,2010,22:167-174.
    [45]Xia R, Li M H, Zhang Y C, Zhu Q R, et al. Synthesis of tercopolymer BA-MMA-VTES and surface modification of nano-size Si3N4 with this macromolecular coupling agent [J]. J. Appl. Polym. Sci.,2008,107:1100-1107.
    [46]Li X H, Cao Z, Zhang Z J, Dang H X. Surface-modification in situ of nano-SiO2 and its structure and tribological properties [J]. Appl. Surf. Sci.,2006,252: 7856-7861.
    [47]Ren C Y, Jiang Z Y, Du X H, et al. Microstructure and deformation behavior of polyethylene/montmorillonite nanocomposites with strong interfacial interaction [J]. J. Phys. Chem. B,2009,113:14118-14127.
    [48]Hu Z H, Deng Y L. Superhydrophobic surface fabricated from fatty acid-modified precipitated calcium carbonate [J]. Ind. Eng. Chem. Res.,2010, 49:5625-5630.
    [1]Hern M, Gonz J C, Verdejo R, Ezquerra T A, et al. Molecular dynamics of natural rubber/layered silicate nanocomposites As studied by dielectric relaxation spectroscopy [J]. Macromolecules.2010.43:643-651.
    [2]Zhang X G and Loo L S. Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites[J]. Macromolecules,2009,42:5196-5207.
    [3]Mariano R M. Picciani P H S, Nunes R C R. Visconte L L Y. Preparation, structure, and properties of montmorillonite/cellulose Ⅱ/natural rubber nanocomposites[J]. J. Appl. Polym. Sci.,2011,120:458-465.
    [4]Du M L, Guo B C, Lei Y D.et al. Enhancement of mechanical properties of poly(vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube [J]. Polymer,2008,49:4871-4876.
    [5]Chakraborty S, Sengupta R, Dasgupta S, et al. Synthesis and characterization of styrene butadiene rubber—Bentonite clay nanocomposites [J]. Polym. Eng. Sci.,2009, 49:1279-1290.
    [6]Ansarifar A, Nijhawan R, Nanapoolsin T, Song M. Reinforcing effect of silica and silane fillers on the properties of some natural rubber vulcanizates[J]. Rubber Chem. Technol.,2003,76:1290-1310.
    [7]Rezende C A, Braganca F C, Doi T R. et al. Natural rubber-clay nanocomposites: Mechanical and structural properties[J]. Polymer,2010,51:3644-3652.
    [8]Rattanasom N, Prasertsri S, Suchiva K. Mechanical properties. thermal stability, gas permeability, and phase morphology in natural rubber/bromobutyl rubber blends [J]. J. Appl. Polym. Sci.,2009,113:3985-3992.
    [9]Dong W F, Liu Y Q, Zhang X H, et al. Preparation of High Barrier and Exfoliated-Type Nylon-6/Ultrafine Full-Vulcanized Powdered Rubber/Clay Nanocomposites [J]. Macromolecules,2005,38:4551-4553.
    [10]Ali Z, Le H H, Ilisch S, et al. Morphology development and compatibilization effect in nanoclay filled rubber blends [J]. Polymer,2010,51:4580-4588.
    [11]Yang S Y, Liu L, Jia Z X, Jia D M, Luo Y F. Structure and mechanical properties of rare-earth complex La-GDTC modified silica/SBR composites [J]. Polymer,2011, 52:2701-2710.
    [12]Halbach T S, Mulhaupt R. Boehmite-based polyethylene nanocomposites prepared by in-situ polymerization [J]. Polymer,2008,49:867-876.
    [13]Stockelhuber K W, Das A, Jurk R, Heinrich G. Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber [J].Polymer,2010,51:1954-1963.
    [14]Guo B C, Lei Y D, Chen F,et al. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid [J]. Appl. Surf. Sci.,2008,255: 2715-2722.
    [15]Choudhury A, Bhowmick A K, Ong C. Novel role of polymer-solvent and clay-solvent interaction parameters on the thermal, mechanical and optical properties of polymer nanocomposites [J]. Polymer,2009,50:201-210.
    [16]Siengchin S, Karger-Kocsis J. Mechanical and stress relaxation behavior of Santoprene(?) thermoplastic elastomer/boehmite alumina nanocomposites produced by water-mediated and direct melt compounding [J]. Compos. Part A-Appl. S.,2010,41: 768-773.
    [17]吴静珍.RPA2000检测功能的研究[J].橡塑资源利用,2010,4:11-16.
    [18]苏忠铁,刘淑梅,汪慧玲,等.RPA2000橡胶加工分析仪的检测功能[J].橡胶工业,2002,49(4):235-237.
    [19]Payne A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. [J]. J. Appl. Polym. Sci.1962,19:57-63.
    [20]Asaletha R, Kumaran M G, Thomas S. Thermoplastic elastomers from blends of polystyrene and natural rubber:morphology and mechanical properties[J]. Euro. Polym. J.1999,35:253-271.
    [21]Chen W W, Wu S W, Lei Y D, et al. Interfacial structure and performance of rubber/bochmite nanocomposites modified by methacrylic acid [J]. Polymer,2011,52: 4387-4395.
    [22]Tai Y L, Qian J S, Miao J B, Zhang Y C. Preparation and characterization of Si3N4/SBR nanocomposites with high performance [J]. Mater. Design.2012,34: 522-527.
    [23]Leblanc J L. Rubber-filler interactions and rheological properties in filled compounds [J]. Prog. Polym. Sci.,2002,27:627-687.
    [24]郭建华.氟橡胶/硅}橡胶共混胶的制备、结构与性能研究[D].华东理国大学博士论文,2009,9.
    [25]冯圣玉,李美江,朱庆增.有机高分子及其心用[M].北京,化学工业出版,2004.
    [26]杨建.石墨填充橡胶材料的性能研究(及纳米复合材料的制备[D].北京化工大学,博士论文,2008.5.
    [27]Guo B C, Chen F, Lei Y D, et al. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid[J]. Appl. Surf. Sci.,2009,255:7329-7336.
    [28]Rooj S, Das A, Thakur V, Mahaling R N, et al. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes[J]. Mater. Design.,2010,31:2151-2156.
    [29]Carli L N, Roncato C R. Zanchet A, et al. Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method[J]. Appl. Clay. Sci..2011.52:56-61.
    [30]Parlinska W M, Meier S, Patscheider J. Transmission electron microscopy characterization of TiN/SiNx multilayered coatings plastically deformed by nanoindentation[J]. Thin Solid Films,2010,518:4890-4897.
    [31]Wang Z B, Zhang Y X, Du F L, Wang X. Thermoplastic elastomer based on high impact polystyrene/ethylene-vinyl acetate copolymer/waste ground rubber tire powder composites compatibilized by styrene-butadiene-styrene block copolymer[J]. Mater. Chem. Phys.,2012,136:1124-1129.
    [32]汤龙程.纳米颗粒改性环氧树脂的断裂行为及其和纤维的界面性能研究[D].中国科学技术大学,博士论文,2011.5.
    [33]孙晋.白炭黑填充溶液聚合丁苯橡胶的流变行为研究[D].浙江大学,博士论文,2009,6.
    [34]陈雪.高分子复合材料的界面研究[D].吉林大学,博士论文,2010,6.
    [35]徐丽,游长江,莫海林,等.改性炭黑增强三元乙丙橡胶的力学性能与加工性能[J].合成橡胶工业,2007,30(3):215-218.
    [36]彭华龙,刘岚,罗远芳,等.含硫硅烷偶联剂对天然橡胶/白炭黑复合材料力学性能及动态力学性能的影响[J].高分子材料科学与工程,2009,25(6):88-91.
    [37]Gao X Y, Zhou B, Guo Y P, et al. Synthesis and characterization of well-dispersed polyurethane/CaCO3 nanocomposites[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2010,371:1-7.
    [38]Jirglova H, Maldonado-hodar F J. Chemical Interactions of Surface-Active Agents with Growing Resorcinol-Formaldehyde Gels[J]. Langmuir,2010,26: 16103-16109.
    [39]Wang L L, Ning N Y, Zhang L Q, et al. Filler dispersion evolution of acrylonitrile-butadiene rubber/graphite nanocomposites during processing [J]. Compos. Part A-Appl. S.,2013,47:135-142.
    [40]Zhang J, Wang J L, Wu Y Q, et al. Evaluation of the improved properties of SBR/weathered coal modified bitumen containing carbon black[J].Constr. Build. Mater.,2009,23:2678-2687.
    [41]Payne A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates[J]. J. Appl. Polym. Sci.,1962,19:57-63.
    [42]Frohlich J, Niedermeier W, Luginsland H D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement[J]. Compos.Part A-Appl. S., 2005,36:449-460.
    [43]刘冬,王庆富,宋智彬,等.不同聚丁二烯橡胶RPA动态性能分析[J].世界橡胶工业,2009,36(6):19-24.
    [44]王永周,陈美,张福全,等.用橡胶加工分析仪研究微波干燥天然橡胶的性能[J].特种橡胶制品,2011,32(1):66-69.
    [45]Stockelhuber K W, Svistkov A S, Pelevin A G, et al. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites[J]. Macromolecules,2011,44:4366-4381.
    [46]曾季,李文东.RPA2000橡胶加工分析仪对SBR1723和SBR1712E性能分析[J].世界科技市场,2010,17:4-10.
    [47]Diani J, Gilormini P, Merckel Y, Vion-Loisel F. Micromechanical modeling of the linear viscoelasticity of carbon-black filled styrene butadiene rubbers:The role of the filler-rubber interphase[J]. Mech. Mater.,2013,59:65-72.
    [48]Wu J R, Huang G S, Pan Q Y, Zheng J, et al. An investigation on the molecular mobility through the glass transition of chlorinated butyl rubber[J]. Polymer,2007,48: 7653-7659.
    [49]Wollscheid D, Lion A. Predeformation-and frequency-dependent material behaviour of filler-reinforced rubber:Experiments, constitutive modelling and parameter identification [J]. Int. J. Solids. Struct.,2013,50:1217-1225.
    [50]Wu Y P, Zhao Q S, Zhao S H, Zhang L Q. The influence of in situ modification of silica on filler network and dynamic mechanical properties of silica-filled solution styrene-butadiene rubber[J]. J. Appl. Polym. Sci.,2008,108:112-118.
    [51]Bhattacharyya S, Sinturel C, Bahloul O, et al. Improving reinforcement of natural rubber by networking of activated carbon nanotubes[J]. Carbon,2008,46:1037-1045.
    [52]Jayalatha G, Kutty S K N. Effect of short nylon-6 fibres on natural rubber-toughened polystyrene [J]. Mater. Design.,2013,43:291-298.
    [53]贺国文,谢玲,谭凯元,李衡峰.碳纳米管/聚酰亚胺纳米复合材料的制备及动态力学性能和介电性能[J].中国有色金属学报,2011,21(5):1123-1130.
    [54]杨绪迎.硫化剂对丙烯酸酯/丁腈并用胶物理性能、形态及其动态力学性能的影响[J].世界橡胶工业,2011,38(1):1-7.
    [55]郭丽云,邓志峰,徐玲,华静.钼系1,2-聚丁二烯橡胶混炼胶动态性能研究[J].橡胶工业,2011,58(6):334-338.
    [56]高天明,王平粤,吕明哲,王永周.微生物凝固天然橡胶加工性能的研究[J].特种橡胶制品,2010,31(1):29-31.
    [57]Dick J S, Harmon C, Vare A. Quality assurance of natural rubber using the rubber process analyzer[J]. Polym. Testing,1999,18:327-362.
    [58]Stockelhuber K W, Das A, Jurk R, et al.Contribution of physico-chemical properties of interfaces on dispersibility,adhesion and flocculation of filler particles in rubber[J]. Polymer,2010,51:1954-1963.
    [59]Bartholome C, Beyou E, Bourgeat-Lami E, et al. Viscoelastic properties and morphological characterization of silica/polystyrene nanocomposites synthesized by nitroxide-mediated polymerization[J]. Polymer,2005,46:9965-9973.
    [60]Reuvekamp L, Brinke J W, Wan-Swaaij P J, et al. Effects of time and temperature on the reaction of TESPT silane coupling agent during mixing with silica filler and tire rubber[J]. Rubber Chemistry and Technology,2002,75:187-198.
    [61]朱琳.白炭黑填充溶聚丁苯橡胶的动态力学性能[J].橡胶参考资料,2009,39(5):21-26.
    [62]王宝珍,胡时胜,周相荣.不同温度下橡胶的动态力学性能及本构模型研究[J].实验力学,2007,22(1):1-6.
    [63]Zhang Q, Liu Q F, Zhang Y D, et al. Silane-grafted silica-covered kaolinite as filler of styrene butadiene rubber[J]. Appl. Clay Sci.,2012,65:134-138.
    [64]杜娟,王孝平,曹玉梅,等.含低PAH油的橡胶的动态力学性能[J].世界橡胶工业,2011,38(11):1-3.
    [65]Wu G L, Zhou L, Ou E C, et al. Preparation and properties of hydroxylated styrene-butadiene-styrene tri-block copolymer/multi-walled carbon nanotubes nanocomposites via covalent bond[J]. Mat. Sci. Eng. A-Struct.,2010,527:5280-5286.
    [66]Bera O, Pilic B, Pavlicevic J, et al. Preparation and thermal properties of polystyrene/silica nanocomposites [J]. Thermochim. Acta,2011,515:1-5.
    [67]Chakraborty S, Kar S, Dasgupta S, Mukhopadhyay R, et al. Study of the properties of in-situ sodium activated and organomodified bentonite clay-SBR rubber nanocomposites-Part Ⅰ:Characterization and rheometric properties [J]. Polym. Test., 2010,29:181-187.
    [68]Yao Q Z, Zhou Y M, Sun Y Q, Ye X J. Synthesis of TiO2 hybrid molecular imprinted polymer for ethofumesate linked by silane coupling agent[J]. J. Inor. Organomet Polym.,2008,4:477-484.
    [69]Yu Y, Gu Z, Song G J, et al. Structure and properties of organo-montmorillonite/nitrile butadiene rubber nanocomposites prepared from latex dispersions[J]. Appl. Clay Sci.,2011,52:381-385.
    [70]Zhu J H, Wei S Y, Li Y T, et al. Surfactant-Free Synthesized Magnetic Polypropylene Nanocomposites:Rheological, Electrical, Magnetic, and Thermal Properties[J]. Macromolecules,2011,44:4382-4391.
    [1]史铁钧,吴德峰.高分子流变学基础[M].化学工业出版社,2008年,北京.
    [2]朱怀江译.实用流变测量学[M].石油工业出版社,2009年,北京.
    [3]Qiu U L, Mai K C, Zeng H M.Effect of Macromolecular Coupling Agent on the Property of PP/GF Composites [J]. J. Appl. Polym. Sci.,1999,71:1537-1542.
    [4]何之贤.石墨烯/聚苯乙烯纳米复合材料导电和流变性能研究[D].北京化工大学,博士论文,2012,6.
    [5]Mohammady S Z, Mansour A A, Knoll K, Stoll B. Detection of the alss relaxation process of the PS-phase in block copolymers[J]. Polymer,2002,43:2467-2478.
    [6]李敏.元位聚合聚乙烯/蒙脱土纳米复合材料的研究[D].吉林大学,博士论文,2007,6.
    [7]Zhou T H, Ruan W H, Yang J L. A novel route for improving creep resistance of polymers using nanoparticles [J]. Composites Sci. Technol.,2007,67:2297-2302.
    [8]Plentz R S, Miotto M, Schneider E E,et al. Effect of a Macromolecular Coupling Agent on the Properties of Aluminum Hydroxide/PP Composites [J]. J. Appl. Polym. Sci.,2006,101:1799-1805.
    [9]贾玉.碳纳米管/热塑性聚合物复合材料的制备及蠕变行为研究[D].中国科学技术大学,博士论文,2012,5.
    [10]赵春宝,杨绪杰,金湾.PS/POSS复合材料的阻燃性能和流变性能研究[J].塑料科技,2008,36(7):32-36.
    [11]王进,郑学晶,刘琛阳,等.轻度磺化聚苯乙烯与聚苯乙烯共混物的流变性能表征[J].高等学校化学学报,2002,23(7):1437-1443.
    [12]Choi W S, Ryu S H. Electrical and rheological properties of MWCNT/ polycarbonate nanocomposites [J]. Polym. Bull.,2013,70:1709-1721.
    [13]Vaziri H S, Omaraei I A, Abadyan M. Thermophysical and rheological behavior of polystyrene/silica nanocomposites:Investigation of nanoparticle content[J]. Mater. Design.,2011,32:4537-4542.
    [14]吴林波,李伯耿,李宝芳,等.超高分子量聚苯乙烯的流变性能[J].高分子学报,2001,5:633-639.
    [15]方芳,常振军,张清华,陈大俊.碳纳米管/聚苯乙烯复合材料的制备及流变行为[J].高分子材料科学与工程,2008,24(1):10-12.
    [16]Hoffmann B, Dietricha C, Thomann R, et al. Morphology and rheology of polystyrene nanocomposites based upon organoclay [J]. Macromol. Rapid Commun., 2000,21:57-61.
    [17]Lin B, Gelves G A, Haber J A, Sundararaj U. Electrical, rheological, and mechanical properties of polystyrene/copper nanowire nanocomposites[J]. Ind. Eng. Chem. Res.,2007,46:2481-2487.
    [18]Amr I T, Al-Amer A, Thomas S, et al. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites[J]. Composites:Part B,2011,42:1554-1561.
    [19]Chevallier C, Becquart F, Taha M, et al. Polystyrene/polycarbonate blends compatibilization:morphology, rheological and mechanical properties[J]. Mater. Chem. Phy.,2013,139:616-622.
    [20]Zhong Y, Zhu Z Y, Wang S Q, et al. Synthesis and rheological properties of polystyrene/layered silicate nanocomposite[J]. Polymer,2005,46:3006-3013.
    [21]赵丽.VGCF填充聚合物体系的结构、导电性与流变行为研究[D].浙江大学,博士论文,2011,7.
    [22]董琦琼.粒子填充高密度聚乙烯复合材料体系形态结构与动态流变行为[D].浙江大学,博士论文,2005,6.
    [23]左敏.LCST型高分子共混体系相分离行为与粘弹弛豫的研究[D].浙江大学,博士论文,2007,3.
    [24]Ghanbari A, Heuzey M C, Carreau P J, et al. Morphological and rheological properties of PET/clay nanocomposites[J]. Rheol. Acta,2013,52:59-74.
    [25]Tiwari R R, Paul D R. Polypropylene-elastomer (TPO) nanocomposites:1. Morphology [J]. Polymer,2011,52:4955-4969.
    [26]国明涛,韩青,钟宇,张庆昌PTT/CF复合材料的动态流变和动态力学性能[J].高分子材料科学与工程,2011,27(12):68-71.
    [27]Triebel C, Munstedt H. Temperature dependence of rheological properties of poly(methyl methacrylate) filled with silica nanoparticles[J]. Polymer,2011,52: 1596-1602.
    [28]Huang C L, Chen Y C, Hsiao T J, et al. Effect of tacticity on viscoelastic properties of polystyrene [J]. Macromolecules,2011,46:6155-6161.
    [29]Kota A K, Cipriano B H, Duesterberg M K, et al. Electrical and rheological percolation in polystyrene/MWCNT nanocomposites[J]. Macromolecules,2007,4: 7400-7406.
    [30]李爱英,常杰云,王凯全,等.PC/HBPS共混物的流变性能[J].高分子材料科学与工程,2006,22(3):149-152.
    [31]周大鹏,许平华,范宏.玻纤增强酚醛树脂复合材料的粘弹性—材料储能模量模型的建立[J].材料科学与工程学报,2008,26(6):963-966.
    [32]Bartholome C, Beyou E, Bourgeat-Lami E, et al. Viscoelastic properties and morphological characterization of silica/polystyrene nanocomposites synthesized by nitroxide-mediated polymerization[J]. Polymer,2005,46:9965-9973.
    [33]徐翔民,张予东,李宾杰,等.尼龙66/Si02纳米复合材料的界面结构及其对材料力学性能的影响[J].材料科学与工程学报,2009,25(2):41-44.
    [34]卢家荣,曾钫,赵建青,等.阻燃高抗冲聚苯乙烯的动态流变性能研究[J].合成材料老化与应用,2008,37(3):19-23.
    [35]Malwela T, Ray S S. Study of morphology and crystal growth behaviour of nanoclay-containing biodegradable polymer blend thin films using atomic force microscopy[J]. Polymer,2012,53:2705-2716.
    [36]陈大柱,何平笙,姚远.高抗冲聚苯乙烯/粘土纳米复合材料的制备、热稳定性及流变性能[J].高分子学报,2005,1:102-107.
    [37]殷先泽,谭业强,林雷,等.核/壳纳米复合粒子填充聚苯乙烯的流变行为[J].高分子学报,2012,11:1335-1342.
    [38]Guan W S, Huang H X. Superimposed effects in high-shear-rate capillary rheology of polystyrene melt[J].Polym. Eng. Sci.,2013,10:1563-1560.
    [39]Livi S, Duchet-Rumeau J, Pham T N, Gerard J F. A comparative study on different ionic liquids used as surfactants:Effect on thermal and mechanical properties of high-density polyethylene nanocomposites [J]. J. Colloid Interf. Sci., 2010,349:424-433.
    [40]Perez L D, Lopez J F, Orozco W H, et al. Effect of the chemical characteristics of mesoporous silica MCM-41 on morphological, thermal, and rheological properties of composites based on polystyrene[J]. J. Appl. Polym. Sci.,2009,111:2229-2237.
    [41]Rama M S, Swaminathan S. Polycarbonate/clay nanocomposites via in situ melt polycondensation[J]. Ind. Eng. Chem. Res.,2010,49:2217-2227.
    [42]Chiu F C, Li B H, Jiang J Y, et al. Syndiotactic polystyrene/multi-walled carbon nanotube nanocomposites:Polymorphism, thermal properties, electrical conductivity, and rheological properties[J]. Composites:Part A,2012,43:2230-2240.
    [43]Chen L, Chai S G, Liu K, et al. Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface[J]. Appl. Mater. Interfaces, 2012,4:4398-4404.
    [44]Cerna A, Cibulkova Z, Simon P. DSC study of selected antioxidants and their binary mixtures in styreneebutadiene rubber[J]. Polym. Degrad. Stabil.,2012,97: 1724-1729.
    [45]Afzal A, Siddiqi H M. A comprehensive study of the bicontinuous epoxyesilica hybrid polymers:I. Synthesis, characterization and glass transition[J]. Polymer,2011, 52:1345-1355.
    [46]Livi S, Duchet-Rumeau J, Pham T N, et al. A comparative study on different ionic liquids used as surfactants:Effect on thermal and mechanical properties of high-density polyethylene nanocomposites [J]. J. Colloid Interf. Sci.,2010,349: 424-433.
    [47]Ocando C, Tercjak A, Mondragon I. Nanostructured systems based on SBS epoxidized triblock copolymers and well-dispersed alumina/epoxy matrix composites[J]. Comp. Sci. Tech.,2010,70:1106-1112.
    [48]Zhang Q, Liu Q F, Zhang Y D, et al. Silane-grafted silica-covered kaolinite as filler of styrene butadiene rubber[J]. Appl. Clay Sci.,2012,65-66:134-138.
    [49]Mallakpour S, Hatami M, et al. Production and evaluation of the surface properties of chiral poly(amide-imide)/TiO2 nanocomposites containing L-phenylalanine units[J]. Progress in Organic Coatings,2012,74:564-571.
    [50]Bury K, Neugebauer D, Biela T. Methacrylate copolymers with hydroxyl terminated caprolactone chains via ATRP. A route to grafted copolymers [J]. Reac.Func. Polym.,2011,71:616-624.
    [51]蒋世俊,杨其,朱家玉,等SBS/EP共混体系改性PS[J].塑料,2012,41(3):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700