用户名: 密码: 验证码:
工程陶瓷高速深磨机理及热现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程陶瓷具有强度高、硬度大且耐磨损等优越的性能。然而,这也使工程陶瓷材料难于加工、在加工表面/亚表面易产生损伤,导致其加工效率低、成本高。正是这些加工难题限制了工程陶瓷的广范使用。本课题旨在将高速深磨工艺应用于工程陶瓷加工,深入研究工程陶瓷磨削机理和高速深磨的磨削机制,为该难题的解决提供有效方案、实验基础以及理论依据。
     本课题对氧化铝、氧化锆和氮化硅这三种陶瓷进行了系统的高速深磨实验,研究了陶瓷材料的显微结构、物理性能及磨削参数对磨削表面/亚表面特征、磨削力、磨削能量和磨削温度的影响,并对部分工况下磨削温度中途急剧升高的原因和机理进行了系统的研究。磨削实验中,使用最高砂轮线速度达160m/s、最大磨削深度达6mm、从而使最大磨除率达到120 mm~3/(mm·s),工件亚表面残留裂纹的深度不大于10μm,这种损伤深度能在后续的精加工中轻易去除。
     大量的研究表明工程陶瓷材料的去除机理在很大程度上受其显微结构和物理特性的影响。本课题选用的三种材料在其显微结构和物理性能上具有独特的特征。晶粒尺寸大、硬度大且韧性低的特点使氧化铝的延/脆性临界切深小,易发生脆性断裂去除,它的磨削表面以脆性断裂痕迹为主要特征,亚表面频繁出现沿着晶粒边界的裂纹。部分稳定氧化锆的晶粒细密、韧性最好、硬度最低,延/脆性临界切深也最高,磨削表面以显微塑性变形为主要特征,只是部分区域出现了脆性剥落坑,与之相吻合的是在它的亚表面也偶尔可观察到尺寸较大的横向裂纹。氮化硅晶粒细密,具有较高的韧性和较低的硬度,综合的延性指标较好,磨削表面和氧化锆的类似,也以显微塑性变形为主要特征。三种材料中氧化铝的表面粗糙度最大(R_a约为0.9μm),氧化锆与氮化硅的表面粗糙度值接近(R_a约为0.7μm)。最大未变形切屑厚度降低,磨削表面的塑性去除痕迹增加,脆性断裂痕迹减少。
     为了更进一步地了解工程陶瓷在高速深磨中的材料去除机理,本课题建立了工程陶瓷高速深磨的磨削力模型,该模型计算值和实测值的趋势一致,数值也相近。理论和实验结果均表明,陶瓷磨削力与陶瓷材料力学性质、去除方式及磨削参数有着密切关系。在以塑性变形为主的磨削过程中磨削参数对磨削力的影响要大于以脆性断裂为主的磨削过程。塑性变形为主的磨削过程中,显微硬度高的材料磨削力大,而在以脆性断裂行为主的磨削过程中,断裂韧性高,显微硬度低的陶瓷磨削力大。高速深磨试验也表明塑性去除为主的氧化锆和氮化硅的比磨削能高于以脆性断裂去除为主的氧化铝。
     磨削温度的测试和分析表明93%以上的能量消耗于金刚石砂轮对陶瓷工件的划擦和塑性耕犁作用过程,并转化为热能,且只有极少一部分的热传入工件,绝大部分的热量被冷却液、磨屑和砂轮带走,使得磨削区的温度通常保持在100~300℃范围内。各种陶瓷材料的磨削温度和磨削区热通量有着良好的线性关系。在实验过程中发现部分工况的最高温度可达600~1100℃,接近干磨温度。研究确定产生这一现象的原因是磨削区的冷却液沸腾。
Advanced engineering ceramics have excellent mechanical properties, such as high strength, high hardness and great resistance to friction. However, these excellent properties also render their manufacturing difficult and easily cause damage in the machined surface and subsurface. As a result, the machining efficiency is low and its associated cost is high. This has thus limited the widespread applications of advanced engineering ceramics. This thesis project thus aimed at developing a high speed deep grinding (HSDG) technology for efficiency machining of advanced ceramics and investigating the associated removal mechanisms.
     Three advanced engineering ceramics, including alumina, nitride silicon and yttria partially stabilized tetragonal zirconia (PSZ), were ground under various HSDG conditions. Effects of microstructures, mechanical properties of the ceramics and grinding conditions on grinding surface/subsurface characteristics, grinding force, grinding energy and grinding temperature were systematically investigated. A study was also performed to understand the generation of grinding heat and the mechanism responsible for the rapid rise of temperature under some extreme HSDG conditions. Based on the results from the investigations, we have successfully applied the HSDG for grinding the ceramics using a wheel velocity up to 160m/s. This enabled to achieve a depth of cut of 6 mm, producing a removal rate of 120 mm~3/(mm·s), while the depth of subsurface micro crack was not greater than 10μm which can be removed readily by the following grinding process.
     The investigations indicated that the removal modes of ceramics were determined by their microstructures and mechanical properties. The alumina used had relatively large grains size, high hardness and low fracture toughness, so the critical depth of ductile and brittle transition was relatively low, having tendency towards fracturing during grinding. The ground surfaces of alumina were generated by brittle fracture and the cracking along grain boundaries were observed frequently in its subsurface. The PSZ and silicon nitride had relatively small grains, low hardness and high fracture toughness, so the surfaces of PSZ and nitride silicon were generated by the combined removal modes of brittle and ductile, and the lateral cracking were generated occasionally in the subsurface of PSZ. Under the same grinding conditions, the value of surface roughness of the ground alumina (R_a about 0.9μm) was the highest among the three ceramics, and the surface roughness values of PSZ and silicon nitride were very close (R_a about 0.7μm).
     In order to understand the removal mechanism of engineering ceramics under HSDG, an analytical grinding force model of the HSDG ceramic was developed. The model results were in good agreement with the experimental results. Experiment and numerical results indicated that the material mechanical properties, removal modes and grinding conditions significantly influenced the grinding force of the ceramics. The increase in microhardness of ceramics resulted in a greater grinding force when the ductile removal was dominant. When the brittle fracture was dominant, the increase in fracture toughness of ceramics and the decrease in micro hardness of ceramics resulted in greater grinding forces. The experiment also showed that the special energy of PSZ or silicon nitride was higher than that of alumina.
     The measurement of grinding temperature involved in the HSDG processes indicated that 93 percent of the grinding energy was expended on the attrition and ploughing between the wheel and the workpiece, which was then generated into grinding heat. A small portion of the grinding heat was transferred into the workpiece, but the majority of the heat was removed from the grinding zone by the coolant and the removal of chips, and was transferred into the grinding wheel. Under the normal HSDG conditions, the temperature was in the range of 100~300℃. There existed quite linear relationships between the heat flux and temperature of grinding zone for the three ceramics. Under some extreme conditions, the temperature could rapidly rise to about 600 to 1100℃, close to the temperature of dry grinding. The experiment and theoretical investigations indicated that the film boiling of coolant in grinding zone might be responsible for this rapid temperature rise.
引文
[1]金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2000,1-227
    [2]任敬心,康仁科,史兴宽.难加工材料磨削.北京:国防工业出版社,1999,423-498
    [3]黄春峰.工程陶瓷的加工技术.航空精密制造技术,2001,37(01):31-35
    [4]于怡青,徐西鹏,沈剑云等.陶瓷磨削机理及磨削加工技术研究进展.湖南大学学报,1999,26(2):48-56
    [5]I.Inasaki.High efficiency grinding of advanced ceramics.Annals of CIRP.1986,35(1):211-214
    [6]L.C.Zhang,T.Suto,H.Noguchi,et al.A study of creep-feed grinding of metallic and ceramic materials.Journal of Materials Processing Technology,1995,48(1-4):267-274
    [7]I.Inasaki.Grinding of hard and brittle materials.Annals of CIRP,1987,36(2):463-471
    [8]W.Pfeiffer,T.Hollstein.Influence of grinding parameters on strength-dominating near-surface characteristics of silicon nitride ceramics.Journal of the European Ceramic society,1997,17(2-3):487-494
    [9]赵恒华,冯宝富,高贯斌等.超高速磨削技术在机械制造领域中的应用.东北大学学报,2003,24(6):564-568
    [10]李伯明,赵波.现代磨削技术.北京:机械工业出版社,2003,44-69
    [11]苏彰道.新的磨削技术——高效深磨.现代机械.1997,(3):15-20
    [12]T.Tawakoli.High Efficiency Deep Grinding:Technology,Process Planning,and Economic Application.London:Mechanical Engineering Publications Limited,1993,21-72
    [13]符锡仁,郭景坤,陈辛尘等.现代陶瓷.上海:上海科技出版社,1980,55-86
    [14]龚江宏.陶瓷材料断裂力学.北京:清华大学出版社,2001,82-124
    [15]王敏.国外特种陶瓷发展新动向.江苏陶瓷,2001,34(3):22-23
    [16]谢征芳,陈朝辉,李永清.特种陶瓷的发展与展望.中国陶瓷工业,2000,7(1):31-36
    [17]干福熹.无机非金属材料的发展.硅酸盐通报,1995,14(4):13-17
    [18]周水仙.特种陶瓷在现代工业中的应用现状.江苏陶瓷,1998,14(1):30-32
    [19]郭景坤.中国结构陶瓷研究的进展及其应用前景.硅酸盐通报,1995,14(4):18-28
    [20]陈永胜,胡永强,余雷等.工程陶瓷材料的现状及发展趋势.会刚石与磨料磨具工程,1998,104(2):37-39
    [21]康凤华,冯申.高性能陶瓷材料的磨削性能研究.沈阳大学学报,2003,15(2):15-16
    [22]潘立,张国林,王磊等.陶瓷磨削技术的研究进展.浙江工业大学学报,2003,31(6):641-646
    [23]Kun Li,T.Warren Liao.Modeling of ceramic grinding processes,part Ⅰ.Number of cutting points and grinding forces per grit.Journal of Material Processing Technology,1997,65(1-3):1-10.
    [24]I.Marinescu,W.B.Rowe,L.Yin,et al.Abrasive processes in handbook of ceramic grinding and polishing.New York:Noyes Publications/William Andrew Publishing LLC,2000:84-189
    [25]Julathep Kajornchaiyakul.Abrasive Machining of Ceramics:Assessment of Near-surface Characteristics in High Speed Grinding:[dissertation PhD].Connecticut:University of Connecticut,2000,94-141
    [26]S.Malkin,T.W.Hwang.Grinding mechanisms for ceramics.Annals of CIRP,1996,45(2):569-580
    [27]于爱兵,田欣利,韩建华等.应用压痕断裂力学分析陶瓷材料的磨削加工.硅酸盐通报,2002,21(1):58-61
    [28]邓朝晖,张璧,周志雄等.陶瓷磨削的表面/亚表面损伤.湖南大学学报,2002,29(5):61-71
    [29]B.R.Lawn,E.R.Fuller.Equilibrium penny-like cracks in indentation fracture.Journal of Materials Science,1975,10(12):2016-2024
    [30]M.V.Swain,B.R.Lawn.Indentation fracture in brittle rocks and glasses.International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1976,13(11):311-319
    [31]B.R.Lawn,A.G.Evans.A model for crack initiation in elastic/plastic indentation fields.Journal of Materials Science,1977,12(11):2195-2199
    [32]D.B.Marshall,B.R.Lawn.Residual stress effects in sharp contact cracking Part 1.Indentation fracture mechanics.Journal of Materials Science,1979,14(8):2001-2012.
    [33]A.Arora,D.B.Marshall,B.R.Lawn,et al.Indentation deformation/fracture of normal and anomalous glasses.Journal of Non-Crystalline Solids,1979,31(3): 415-428
    [34]B.R.Lawn,N.P.Padture,F.Guiberteau,et al.A model for microcrack initiation and propagation beneath Hertzian contacts in polycrystalline ceramics.Acta Metallurgica et Materialia,1994,42(5):1683-1693
    [35]A.G.Evans,D.B.Marshall.'Wear mechanisims in ceramics',fundamental of friction and wear of materials.Ohio:American Society for Metals,1981,439-452
    [36]S.Lathabai,J.Rodel,T.Dabbs,et al.Fracture mechanics model for subthreshold indentation flaws:Part Ⅱ Non-equilibrium fracture,Journal of Materials Science,1991,26(9):2313-2321
    [37]S.Lathabai,J.Rodel,T.Dabbs,et al.Fracture mechanics model for subthreshold indentation flaws:Part I Equilibrium fracture.Journal of Materials Science,1991,26(8):2157-2168
    [38]T.G.Bifano,T.Dow,R.O.Scattergood.Ductile-regime:a new technology for machining brittle material.Journal of Engineering for Industry,1991,113(2):184-189.
    [39]Ren Y.H.,Zhou Z.X.,Deng Z.H.Microgrinding of nanostructured carbide coating:ground surface and subsurface damage observations.Key Engineering Materials,2006,304-305:276-280
    [40]O.Desa,S.Bahadur.Material removal and subsurface damage studies in dry and lubricated single-point scratch tests on alumina and silicon nitride.Wear,1999,225-229(11):1264-1275
    [41]Y.Ichida,K.Kishi.Nanotopography of ultraprecise ground surface of fine ceramics using atomic force microscope.Annals of CIRP,1993,42(1):647-650
    [42]B.Z hang,X.L.Zheng,H.Tokura,et al.Grinding induce damage in ceramics.Journal of Materials Processing Technology,2003,132(1-3):353-364.
    [43]张壁,孟鉴.工程陶瓷磨削加工损伤的探讨.纳米技术与精密工程,2003,1(12):48-56
    [44]H.H.K.Xu,S.Jahanmir.Microstructure and material removal in scratching of alumina.Journal of Materials Science,1995,30(9):2335-2247
    [45]R.Komandury.On material removal mechanisms in finishing of advanced ceramics and glasses.Annals of C 1RP,1996,45(1):509-513
    [46]S.Jahanmir,H.H.K.Xu,L.K.Ives.Mechanisms of materials removal in abrasive machining,in Machining of Ceramics and Composites,New York:Marcel Dekker,1999,11-84
    [47]朱洪涛,林滨,吴辉等.陶瓷磨削的材料去除机理.精密制造与自动化,2004,158(2):15-18
    [48]Zhang B,Howes T D.Material removal mechanisms in grinding ceramics.Annals of the CIRP.1994,43(1):305-308
    [49]邓朝晖,张璧,孙宗禹等.陶瓷磨削材料去除机理的研究进展.中国机械工程,2002,13(18):1608-1611
    [50]邓朝晖,张璧,孙宗禹等.陶瓷磨削的材料去除机理.金刚石与磨料磨具工程,2002,128(2):47-51
    [51]I.Zarudi,L.C.Zhang.On the limit of surface integrity of alumina by ductile-mode grinding.Journal of Engineering Materials and Technology,2000,122(1):129-134
    [52]柯宏发,张耀辉.陶瓷半延性磨削试验研究.金刚石与磨料磨具工程,1998,103(1):25-28
    [53]郑建新,徐家文,吕正兵.陶瓷材料延性域磨削机理.硅酸盐学报,2006,34(1):102-106
    [54]J.E.Mayer,G.P.Fang.Diamond grinding of silicon nitride ceramic.In:Proceedings of the International Conference on Machining of Advanced Materials,NIST Special Publication.Gaithersburg:Natl Inst of Standards &Technology,1993,205-222
    [55]史兴宽,滕霖,李雅卿等.硬脆材料延性域磨削的临界条件.航空精密制造技术.1996,32(4):10-13
    [56]F.Klocke,E.Brinksmeier,C.evans,et al.High speed grinding:fundamental and state of art in Europe,Japan and USA.Annals of CIRP,1997,46(2):715-724.
    [57]T.W.Hwang,C.J.Evans,S.Malkin.An investigation of high speed grinding with electroplated diamond wheels.Annals of CIRP,2000,49(1):245-248
    [58]H.Huang,S.Kanno,X.D.Liu,et al.Highly integrated and automated high speed grinding system for printer heads constructed by combination materials.International Journal of Advanced Manufacturing Technology,2005,25(1-2):1-9
    [59]陆名彰,熊万里,黄红武等.超高速磨削技术的发展及其主要相关技术.湖南大学学报,2002,29(5):45-49
    [60]金滩.高效深切磨削技术的基础研究:[东北大学博士学位论文].沈阳:东北大学,1999,1-5
    [61]M.J.Jacksona,C.J.Davisb,M.P.Hitchinerc,et al.High-speed grinding with CBN grinding wheels-applications and future technology.Journal of Materials Processing Technology,2001,110(1):78-88
    [62]冯宝富,蔡光起,邱长五.超高速磨削的发展及关键技术.机械工程师.2002,1:5-9
    [63]宋贵亮,巩亚东,蔡光起.超高速磨削及应用.航空精密制造技术,2000,36(3):16-20
    [64]W.B.Rowe,M.N.Morgan,S.C.E.Black.Validation of thermal properties in grinding.Annals of the CIRP,1998,47(1):275-279.
    [65]John A Webster.Design of a 250 m/s CBN grinding machine.Society of Manufacturing Engineers,1990,(10):2-18.
    [66]T.W.Hwang,C.J.Evans,E.P.Whitenton,et al.High speed grinding of silicon nitride with electroplated diamond wheels,part Ⅰ:wear and wheel life.Journal of Manufacturing Science and Engineering,2000,122(2):32-41
    [67]T.W.Hwang,C.J.Evans,S.Malkin.High speed grinding of silicon nitride with electroplated diamond wheels,part 2:wheel topography and grinding mechanisms.ASME Journal of Manufacturing Science and Engineering,2000,122(2):42-50.
    [68]A.Yuik,H.S.LEE.Surface grinding with ultra high speed CBN wheel.Journal of Materials Processing Technology,1996,62(4):393-396.
    [69]J.Shimizu,L.B.Zhou,H.Eda.Simulation and experimental analysis of super high-speed grinding of ductile material.Journal of Material Processing Technology,2002,129(1-3):19-24
    [70]L.B.Zhou,J.Shimizu,A.Muroya,et al.Material removal mechanism beyond plastic wave propagation rate.Precision Engineering,2003,27(2):109-116
    [71]陈根余,周志雄,李立钧.高速高效低粗糙度磨削工艺参数寻优.湖南大学学报,2000,27(3):54-62
    [72]T.Jin,G.Q.Cai,H.D.Jeong,et al.Study on heat transfer in super-high-speed grinding:energy partition to the workpiece in HEDG.Journal of Materials Processing Technology,2001,111(1-3):261-264
    [73]T.Jin,G.Q.Cai.Analytical thermal models of oblique moving heat source for deep grinding and cutting.Journal of Manufacturing Science and Engineering,2001,123(2):185-190.
    [74]宋贵亮,蔡光起.超高速单颗粒CBN磨削的试验研究.新技术新工艺,2000,9(7):12-13
    [75]冯宝富,赵恒华,蔡光起等.高速单颗粒磨削机理的研究.东北大学学报, 2002,23(5):470-473
    [76]宋贵亮,蔡光起.200m/s电镀CBN超高速砂轮的设计与制造.会刚石与磨料磨具工程.2000,115(1):2-4
    [77]Y.D.Gong,Z.Shao,W.Wang.Research on visualization in scientific computation of grinding temperature field.In:Proceedings of the 10~(th)International Manufacturing Conference.Xiamen:Xiamen University Press,2002.1-54.
    [78]G.Q.Cai,B.F.Feng,T.Jin,et al.Study on the friction coefficient in grinding.Journal of Materials Processing Technology,2002,129(1-3):25-29.
    [79]G.Werner,T.Tawakoli.High efficiency deep grinding with CBN.Industrial Diamond Review,1988,48(526):124-128.
    [80]T.Tawakoli.Requirements for high-efficiency deep grinding.Metalworking,1990,50(539):177-182.
    [81]D.J.Stephenson,T.Jin,J.Corbett.High efficiency deep grinding of a low alloy steel with plated CBN wheels.Annals of the CIRP,2002,51(1):94-97.
    [82]J.A.Kovach,M.A.Laurich,S.Malkin,et al.A feasibility investigation of high-speed,low-damage grinding for advanced ceramics.In:Fifth International Grinding Conference.Cincinnati:SME,1993,26-28
    [83]K.Inoue,Y.Sakai,K.Ono,et al.Super high speed grinding for ceramics with vitrified diamond wheel.International Journal of Japan Society for Precision Engineering,1994,28:344-345.
    [84]K.Ramesh,S.H.Yeo,S.Gowri,et al.Experimental evaluation of super high speed grinding of advanced ceramics.Journal of Advanced Manufacturing Technology,2001,17(2):87-92.
    [85]H.Huang,L.Yin,L.Zhou.High speed grinding of silicon nitride with resin bond diamond wheels.Journal of Materials Processing Technology,2003,141(1):329-336
    [86]L.Yin,H.Huang.Ceramic response to high speed grinding.Machining Science and Technology.2004,8(1):21-37
    [87]L.Yin,H.Huang,K.Ramesh,et al.High speed versus conventional grinding in high removal rate machining of alumina and alumina-titania.International Journal of Machine Tools and Manufacture.2005,45(7-8):897-907
    [88]H.Huang,L.Yin.Grinding characteristics of engineering ceramics in high speed regime.International Journal of Abrasive Technology,2007,1(1):78-93
    [89]H.Huang.Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding.Materials Science and Engineering A,2003,345(1-2):155-163
    [90]H.Huang,Y.C.Liu.Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding.International Journal of Machine Tools & Manufacture.2003,43(8):811-823
    [91]张幼祯.金属切削理论.北京:航空工业出版社,1988,11-161
    [92]徐鸿钧,李迎,徐西鹏等.缓磨烧伤过程的计算机仿真研究.航空学报,1996,17(4):503-507
    [93]徐鸿钧,徐西鹏,许洪昌.缓磨时工件表层温度分布的计算机仿真研究.应用科学学报,1996,14(2):199-207
    [94]徐鸿钧,徐西鹏,林涛等.断续磨削时工件表层温度场解析.机械工程学报,1994,13(1):30-36
    [95]W.B.Rowe.Thermal analysis of high efficiency deep grinding.International Journal of Machine Tools & Manufacture,2001,41(1):1-19
    [96]W.B.Rowe,T.Jin.Temperatures in high efficiency deep grinding(HEDG).Annals of the CIRP,2001,50(1):205-208
    [97]T.Jin,W.B.Rowe,D.McCormack.Temperatures in deep grinding of finite workpieces.International Journal of Machine Tools & Manufacture.2002,42(1):53-59
    [98]A.D.Batako,W.B.Rowe,M.N.Morgan.Temperature measurement in high efficiency deep grinding.Intemational Journal of Machine Tools & Manufacture,2005,45(11):1231-1245
    [99]S.Malkin,C.Guo.Thermal analysis of grinding.Annals of CIRP,2007,56(2):760-782
    [100]曾伟民,李亮斌,徐西鹏.大切深磨削温度场的理论解析.金刚石与磨料磨具工程,2002,128(2):44-46
    [101]F.E.Pfefferkom,J.C.Rozzi,F.P.Incropera,et al.Surface temperature measurement in laser-assisted machining processes.Experimental Heat Transfer,1997,10(4):291- 313
    [102]徐西鹏.双色红外系统测量脆性材料磨削温度的研究.红外与毫米波学报,2002,21(2):99-103
    [103]J.Hwang,S.Kompella,S.Chandrasekar,et al.Measurement of temperature field in surface grinding using Infra-Red(IR) imaging system.Journal of Tribology,2003,125(2):377-383.
    [104]A.C.Curry,A.J.Shih,J.Kong,et al.Grinding Temperature Measurements in Magnesia-Partially-Stabilized Zirconia Using Infrared Spectrometry.Journal of American Ceramic Society,2003,86(2):333-341
    [105]X.P.Xu,S.Malkin.Comparison of methods to measure grinding temperatures.Journal of Manufacturing Science and Engineering,2001,123(2):191-195
    [106]徐西鹏,徐鸿钧.磨削弧区温度在线监测技术研究.制造技术与机床,1998,(2):24-27
    [107]R.P.Upadhyaya,S.Malkin.Thermal Aspects of Grinding With Electroplated CBN Wheels.Journal of Manufacturing Science and Engineering,2004,126(1):107-114
    [108]T.Kuriyagawa,K.Syoji,H.Ohshita.Grinding temperature within contact arc between wheel and workpiece in high-efficiency grinding of ultrahard cutting tool materials.Journal of Materials Processing Technology,2003,136(10):39-47
    [109]T.Kato,H.Fujii.Temperature measurement of workpieces in conventional surface grinding.Journal of Manufacturing Science and Engineering,2000,122(2):297-303
    [110]I.M.Walton,D.J.Stephenson,A.Baldwin.The measurement of grinding temperatures at high specific material removal rates.International Journal of Machine Tools & Manufacture,2006,46(12-13):1617-1625
    [111]池震宇.磨削加工与磨具选择.北京:兵器工业出版社,1996,44-67
    [112]钦征骑,钱杏南,贺盘发.新型陶瓷材料手册.南京:江苏科学技术出版社,234-286
    [113]周志朝,杨辉,朱永花.无机材料显微结构分析,杭州:浙江大学出版社,1988,195-207
    [114]孙方宏,傅玉灿,徐鸿钧.磨削液的加注方式对冷却效果的影响及其对策.机械设计与制造工程,1998,27(6):51-54
    [115]F.Klocke,A.Baus.Coolant induced forces in CBN high speed grinding with shoe nozzles.Annals of CIRP,2000,49(1),241-244
    [116]K.Ramesh,H.Huang,L.Yin.Analytical and Experimental Investigation of Coolant Velocity in High Speed Grinding.International Journal of Machine Tools and Manufacture,2004,44(10):1069-1076
    [117]巩亚东.超高速磨削砂轮气流场的基础研究:[东北大学博士学位论文].沈阳:东北大学,2004,21-58
    [118]王西彬,任敬心.磨削温度及热电偶测量的动态分析.中国机械工程,1997,8(7):77-80
    [119]A.Y.C.Nee,A.O.Tay.On the measurement of surface grinding temperature. International Journal of Machine Tool Design & Research,1981,21(3-4):279-291
    [120]苏真伟.磨削温度的半人工热电偶测量误差分析.机械,1992,19(3):14-15
    [121]S.马尔金.磨削技术理论与应用.蔡光起,巩亚东,宋贵亮.沈阳:东北大学出版社,2002,84-136
    [122]B.Zhang,H.Tokura,M.Yoshikawa.Study on surface cracking of alumina scratched by single-point diamonds.Journal of Materials Science,1988,23(9):3214-3224
    [123]B.Zhang,T.D.Mowes.Subsurface evaluation of ground ceramics.Annals of the CIRP.1995,44(1):263-266
    [124]K.Minowa,K.Sumina.Stress-induced amorphization of silicon crystal by mechanical scratching.Physical Review Letters.1992,69(2):320-322
    [125]T.W.Liao,K.Li,S.B.McSpadde,et al.Wear of diamond wheels in creep-feed grinding of ceramic materials I.Mechanisms.Wear.1997,211(1):94-103
    [126]K.Li,T.W.Liao,L.J.O'Rourke,et al.Wear of diamond wheels in creep-feed grinding of ceramic materials Ⅱ.Effects on process responses and strength.Wear.1997,211(1):104-112
    [127]T.W.Liao,K.Li,S.B.McSpadden Jr.Wear mechanisms of diamond abrasives during transition and steady stages in creep-feed grinding of structural ceramics.Wear.2000,242(1):28-37
    [128]W.Li,Y.Wang,Shouhong Fan,et al.Wear of diamond grinding wheels and material removal rate of silicon nitrides under different machining conditions.Materials Letters.2007,61(1):54-58
    [129]殷玲,刘忠,陈日曜.陶瓷磨削中金刚石砂轮磨损形式及其生成原因.华中理工大学学报,1996,24(4):19-22
    [130]王西彬,任敬心,乐兑谦.结构陶瓷磨削力的实验研究.中国机械工程,1996,7(2):78-81
    [131]Lichun Li,Jizai Fu.A study of grinding force mathematical model.Annals of the CIRP,1980,29(1):245-249
    [132]K.Li,T.W.Liao.Modeling of Ceramic Grinding Processes Part Ⅰ.Number of Cutting Points and Grinding Forces per Grit.Journal of Material Processing Technology,1997,65(1-3):1-10
    [133]M.J.Andrews,M.K.Ferber,E.Lara-Curzio.Mechanical properties of zirconia-based ceramics as functions of temperature.Journal of the European Ceramic Society.2002,22(14-15):2633-2639
    [134]罗学涛,张立同.自韧Si_3N_4陶瓷的高温性能特征.现代技术陶瓷,1996,69(3):19-23
    [135]白世鸿,乔生儒,舒武炳等.先进结构陶瓷高温力学性能测试与表征.材料工程,2000,(10):45-48
    [136]张炳荣,沈建兴,刘宏.Si_3N_4/MoSi_2陶瓷材料力学性能研究.机械工程材料,2000,24(6):11-13
    [137]V.E.Annamalai,T.Sornakumar,C.V.Gokularathnam,et al.Efficient Grinding of Ce-TZP with SiC Wheels.Journal of the European Ceramic Society,1993,11(5):463-469
    [138]X.B.Wang,H.M.Shi,J.X.Ren.An investigation on the transformations in grinding affected layer of ZTC.International Journal of Machine Tools &Manufacture,2000,40(2):165-172
    [139]Alberto Juy,Marc Angladaw.Surface Phase Transformation During Grinding of Y-TZP.Journal of American Ceramic Society,2007,90(8) 2618-2621
    [140]T.W.Hwang,S.Malkin.Grinding mechanism and energy balance for ceramics.Journal of Manufacturing Science and Engineering,1999,121(4):623-631
    [141]T.W.Hwang,C.J.Evans,S.Malkin.Size effect for specific energy in grinding of silicon nitride.Wear,1999,225-229(11):862-867
    [142]T.W.Hwang,S.Malkin.Upper bound analysis for specific energy in grinding of ceramics.Wear,1999,231(2):161-171
    [143]沈剑云.结构陶瓷磨削机理与热特性分析.[天津大学博士学位论文].天津:天津大学,2004,40-49
    [144]S.Ebbrell,N.H.Woolley,Y.D.Tridimas,et al.The effects of cutting fluid application methods on the grinding process.International Journal of Machine Tools & Manufacture,2000,40(2):209-223
    [145]V.K.Gviniashvili,N.H.Woolley,W.B.Rowe.Useful coolant flowrate in grinding.International Journal of Machine Tools & Manufacture,2004,44(6):629-636
    [146]S.Banerjee,S.Ghosal,T.Dutta.Development of a simple technique for improving the efficacy of fluid flow through the grinding zone.Journal of Materials Processing Technology,2008,197(1-3):306-313
    [147]V.Gviniashvili,J.Webster,B.Rowe.Fluid Flow and Pressure in the Grinding Wheel-Workpiece Interface.Journal of Manufacturing Science and Engineering,2005,127(1):198-205
    [148]B.Zhang,A.Nakajima.Hydrodynamic Fluid Pressure in Grinding Zone During Grinding With Metal-Bonded Diamond Wheels. Journal of Tribology, 2000,122(3): 603-608
    [149] M. R. Schumack, Jin-Bok Chung, W. W. Schultz, et al. Analysis of fluid flow under a grinding wheel. Journal of Engineering for Industry, 1991,113(2):190-197
    [150] C. Guo, S. Malkin. Analysis of fluid flow through the grinding zone. Journal of Engineering for Industry, 1992,114(4): 427-434
    [151] C. C. Chang, S. H. Wang, A. Z. Szeri. On the mechanism of fluid transport across the grinding zone. Journal of Manufacturing Science and Engineering,1996,118(3): 332-338
    [152] T. C. Jen, A. S. Lavine. A variable heat flux model of heat transfer in grinding: model development. Journal of Heat Transfer, 1995,177(2):473-478
    [153] M.D. Demetriou, A.S. Lavine. Thermal aspects of grinding: the case of up-grinding. Journal of Manufacturing Science and Engineering, 2000,122(4): 605-611.
    [154] D. Butterworth, G.F. Hewitt. Two-phase flow and heat transfer. Oxford: Oxford University Press, 1977,128-294
    [155] L. S. Tong, Y. S. Tang. Boiling heat transfer and two-phase flow. Washington: Taylor & Francis, 1997, 245-302
    [156] S. Ramanath, M.C. Shaw. Abrasive Grain Temperature at the beginning of a Cut in Fine Grinding. Journal of Engineering for Industry, 1988, 110(1): 15-18
    [157] A.S. Lavine. A simple model for convective cooling during the grinding process. Journal of Engineering for Industry, 1988,110(1): 1-6
    [158] B. Zhu, C. Guo, J. E. Sunderland, et al. Energy Partition to the Workpiece for Grinding of Ceramics. Annals of the C1RP, 1995,44(1): 267-271
    [159] Guo C, Malkin S. Heat transfer in grinding. Journal of Materials Processing and Manufacturing Science, 1992,1(1):16-27.
    [160] C. Guo, S. Malkin. Analysis of energy partition in grinding. Journal of Engineering for Industry, 1995,117(1): 55-61
    [161] S. Kohli, C. Guo, S. Malkin. Energy partition to the workpiece for grinding with aluminum oxide and CBN abrasive wheels. Journal of Engineering for Industry,1995,117(2): 160-168
    [162] N. K. Kim, C. Guo, S. Malkin. Heat flux distribution and energy partition in creep-feed grinding. Annals of the C1RP, 1997, 46(1): 227-232
    [163] W.B. Rowe, S.C.E. Black, B. Mills, et al. Grinding temperatures and energy partitioning. Proceedings of the Royal Society of London, Series A:Mathematical, Physical and Engineering Sciences, 1997, 453(1960): 1083-1104
    [164] C. Guo, Y. Wu, V. Varghese, et al. Temperature and energy partition for grinding with vitrified CBN wheels. Annals of CIRP, 1999,48(1): 247-250
    [165] X.P. Xu. Experimental study on temperatures and energy partition at the diamond-granite interface in grinding.Tribology International, 2001,34(6): 419-426
    [166] T. Jin, D.J. Stephenson. Investigation of the heat partitioning in high efficiency deep grinding. International Journal of Machine Tools & Manufacture, 2003,43(11):1129-1134
    [167] S.B. Wang, H.S. Kou. Selections of working conditions for creep feed grinding Part I Thermal partition ratios. International Journal of Advantage Manufacture Technology, 2004,23(9-10):700-706
    [168] T Jin, D.J. Stephenson. Analysis of grinding chip temperature and energy partitioning in high-efficiency deep grinding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2006, 220(5): 615-626
    [169] T. Jin, D.J. Stephenson. Heat flux distributions and convective heat transfer in deep grinding. International Journal of Machine Tools & Manufacture, 2006,46(14):1862-1868
    [170] H.J. Kim, N.K. Kim, J.S. Kwak. Heat flux distribution model by sequential algorithm of inverse heat transfer for determining workpiece temperature in creep feed grinding. International Journal of Machine Tools & Manufacture,2006,46(15):2086-2093.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700