用户名: 密码: 验证码:
含瓦斯煤岩本构模型与失稳规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上煤与瓦斯突出最严重的国家之一。近年来,随着开采深度的增加、瓦斯压力的增大和开采条件的日趋复杂,煤与瓦斯突出发生的强度及造成的伤亡不断增长,煤与瓦斯突出的预测和防治工作形势十分严峻。煤与瓦斯突出机理的综合作用假说表明,煤与瓦斯突出是地应力、瓦斯压力和煤岩的物理力学性质三者的综合作用结果。在煤与瓦斯突出过程中,主要是含瓦斯煤岩的力学性质、蠕变特性以及渗透特性对突出的发生和发展在起作用。因此研究与这些内容相关的含瓦斯煤岩的本构模型及破坏准则,对进一步揭示煤与瓦斯突出机理和防治煤与瓦斯突出有着十分重要的作用。本文基于前人的研究成果,利用实验研究、理论分析和数值模拟相结合的方法,旨在建立符合含瓦斯煤岩特性的本构模型和失稳准则,并利用实验结果对之进行验证。本文的主要研究成果如下:
     ①利用自主研制的含瓦斯煤岩三轴蠕变瓦斯渗透装置与材料试验机组成的实验系统,对含瓦斯煤岩的力学性质、蠕变特性和渗透特性进行了系统深入的实验研究。在含瓦斯煤岩力学性质的实验研究中,分析了围压和瓦斯压力对含瓦斯煤岩变形特性和抗压强度的影响,得出了相关规律;分析总结出了含瓦斯煤岩三轴压缩下的破坏形式。在含瓦斯煤岩蠕变特性的实验研究中,根据实验结果总结出了含瓦斯煤岩蠕变规律;详细分析了含瓦斯煤岩衰减蠕变阶段和稳态蠕变阶段的蠕变变形和蠕变速率,得到了偏斜应力、围压和瓦斯压力三者对蠕变速率的影响规律;分析总结出了含瓦斯煤岩加速蠕变阶段的启动条件及该阶段的蠕变速率特征。在含瓦斯煤岩渗透特性的实验研究中,根据实验结果总结出了围压和瓦斯压力对含瓦斯煤岩渗透率的影响规律,分析了Klinkenberg效应和应力-应变全过程对含瓦斯煤岩渗透率影响,并得出了一些有价值的分析结果。
     ②基于实验结果,利用模型辨识方法得到了描述含瓦斯煤岩粘弹性流变特性的最适合流变模型为伯格斯体;提出了一种能反映含瓦斯煤岩加速蠕变的改进的粘弹塑性模型,将之与伯格斯体一起组成了一维含瓦斯煤岩的非线性粘弹塑性流变模型,进而推导得出了含瓦斯煤岩三维非线性粘弹塑性流变模型,并利用实验结果进行了验证;利用常微分解的稳定性理论,对含瓦斯煤岩非线性粘弹塑性流变模型进行了稳定性分析,得到了含瓦斯煤岩的流变失稳条件。
     ③在不可逆热力学框架内,利用连续介质损伤力学方法建立了用以描述含瓦斯煤岩的弹塑性变形、瓦斯吸附效应、体积膨胀、围压敏感、弹性模量的退化、各向异性损伤、应变强化及软化、非关联塑性流动等物理现象及力学行为的弹塑性耦合损伤本构模型,并对之进行了实验验证。
     ④在多孔介质有效应力原理中引入了煤岩吸附瓦斯的膨胀应力,建立了含瓦斯煤岩的固气耦合动态模型,该模型不但考虑了含瓦斯煤岩在变形过程中孔隙度和渗透率的动态变化特征,而且还反映了瓦斯气体可压缩性和煤岩骨架可变形的特点,从而更真实全面地反映了含瓦斯煤岩的固气耦合效应;利用COMSOL-Multiphysics有限元软件根据所提出的含瓦斯煤岩的固气耦合本构模型建立了有限元模型,得到了含瓦斯煤岩固气耦合动态模型的数值解,同时还分析了Klinkenberg效应对含瓦斯煤岩渗透率的影响。
     ⑤利用初等突变理论建立了基于试验机-试样分析系统的含瓦斯煤岩蠕变破坏的尖点突变失稳模型,得出三轴压缩条件下含瓦斯煤岩蠕变失稳破坏条件。
     ⑥在总结国内外关于岩石类材料的强度准则及实验结果基础上,提出了一种符合含瓦斯煤岩三轴应力条件下变形的强度判据,该判据不但能描述三轴压缩下中间主应力的影响及含瓦斯煤岩非线性应变强化特征,而且还可以描述含瓦斯煤岩的拉伸破坏。
Our country is one of the most serious coal and gas outburst countries in the world. In the recent years, the intensity of coal and gas outburst and the fatalities caused by the outburst are growing with the increasing of mining depth, pressure of gas and complexity of mining condition, and the work of forecasting, preventing and controlling coal and gas outburst is very severe urgent. The comprehensive effect hypothesis shows that coal and gas outburst is caused by the comprehensive effect of ground stress, gas pressure and the physical and mechanical properties of coal. In the course of a coal and gas outburst, mechanical properties, creep characteristics and seepage characteristics of gas-saturated coal are the main factors which control the occurring and development of the outburst. Therefore, research on constitutive model and failure criterion of gas-saturated coal is very important for further revealing the mechanism of coal and gas outburst and preventing and controlling the outburst. Based on the research results of predecessors, applying experimental study, theory analysis and numerical simulation, the goal of this paper is establishing constitutive models and failure criterions of gas-saturated coal and validating them by using testing data.
     The main research results obtained in this paper are as follows:
     ①By using of a testing system which is made up of a self-made triaxial gas-seepage device and a servo-controlled testing machine, mechanical properties, creep characteristics and seepage characteristics of gas-saturated coal were systematically studied in laboratory. In experimental study of mechanical properties of gas-saturated coal, the effects of both confining pressure and gas pressure on deformation characteristics and compressive strength were analyzed, and related rules were summarized. At the same time, the failure mode of gas-saturated coal under triaxial compression was also derived. In experimental study of creep characteristics of gas-saturated coal, the universal law of creep deformation of gas-saturated coal was summarized bases on testing results. In addition, the creep deformation and creep rate of attenuating and steady-state creep stages were analyzed in detail, the rules of effects of deviatoric stress, confining pressure and gas pressure on creep rate were obtained. Moreover, the start condition and creep rate characteristics of accelerating creep stage were also educed. In experimental study of seepage characteristics of gas-saturated coal, in according to the testing data, the effect rules of confining pressure and gas pressure on permeability of gas-saturated coal were worked out, as well as the Klinkenberg effect and the effect of complete stress-strain curve were analyzed simultaneously, and some valuable analysis results were found out.
     ②On the basis of testing data, by means of model indentification method, Burgers body is considered as the optimum rheological model for describing the visco-elastic rheological properties of gas-saturated coal. In the meanwhile, a modified visco-elastic-plastic model was proposed for depicting the creep deformation of accelerating creep stage. The one-dimensional nonlinear visco-elastic-plastic rheological model for gas-saturated coal was built by connecting the modified model with a Burgers body in parallel, and then the three-dimensional nonlinear visco-elastic-plastic rheological model for gas-saturated coal was derived. The three-dimensional rheological model for gas-saturated coal was verified by using testing data finally. Besides these, the stability analysis of the three-dimensional rheological model of gas-saturated coal was carried out, and the rheological failure condition of gas-saturated coal was obtained.
     ③In irreversible thermodynamics framework, a coupled elastoplastic damage constitutive model for gas-saturated coal was established according to the continuum damage mechanics method. The constitutive model can effective describe many physical phenomena and mechanical behavior of gas-saturated coal, such as elastoplastic deformation, gas adsorption effect, volume expansion, confining pressure sensitivity, degeneration of elastic modulus, anisotropic damage, strain hardening and softening, non-associated plastic flow, and so on. Furthermore, the constitutive model was verified in terms of testing results.
     ④A solid-gas coupling dynamic model for gas-saturated coal was proposed by introducing the swell stress of gas adsorption into the effective stress principle of porous. The dynamic model can more truly and completely reflect the coupling effect between solid and gas in gas-saturated coal than previous similar models developed because not only the dynamic change property of porosity and permeability of gas-saturated coal but also the gas compressibility and the skeleton deformability of gas-saturated coal were taken into account in this model. A finite element model related to the solid-gas coupling dynamic model of gas-saturated coal was constructed by using COMSOL-Multiphyics software, and then the numerical results was yielded. In addition, the Klinkenberg effect was also discussed by means of numerical simulation method.
     ⑤Based on the analysis system of testing machine and specimen, a cusp catastrophe instability model for creep failure of gas-saturated coal was built in terms of elementary catastrophe theory, and then the creep instability condition of gas-saturated coal under triaxial compression was obtained.
     ⑥A strength criterion for gas-saturated coal was proposed in according to the summarization of strength criterions of rock-like material at home and abroad and experimental results. This strength criterion can describe not only the intermediate principle stress effect and the nonlinear strain hardening of gas-saturated coal under triaxial compression but also the tensile failure characteristics.
引文
[1] Hargraves AJ. Instantaneous outburst of coal and gas: a review [J]. Proc Australas Inst Min Metall 1983, 285(3): 1-37.
    [2]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社, 1985, 231~268.
    [3]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社, 1992, 79~91.
    [4] Lama RD, Bodziony J. Management of outburst in underground coal mines [J]. Int J Coal Geol 1998, 35(1): 83-115.
    [5]柴兆喜.各国煤和瓦斯突出概况[J].世界煤炭技术, 1984(4).
    [6]王凯,俞启香.煤与瓦斯突出的非线性特征及预测模型[M].徐州:中国矿业大学出版社, 2005, 1~8.
    [7] Beamish BB, Crosdale JP. Instantaneous outburst in underground coal mines: an overview and association with coal type [J]. Int J Coal Geol 1998; 35: 27-55.
    [8] Flores RM. Coalbed methane: from hazard to resource. Int J Coal Geol 1998; 35: 3-36.
    [9]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社, 2000.
    [10] Farmer, I.W., Pooley, F.D. A hypothesis to explain the occurrence of outbursts in coal, based on a study of West Wales outburst coal [J]. Int. J. Rock Mech. Min. Sci. 1967; 4, 189–193.
    [11] Kidybinski, A. Significance of in situ strength measurements for prediction of outburst hazard in coal mines of Lower Silesia [A]. Proc. The Occurrence, Prediction and Control of Outbursts in Coal Mines [C]. The Aust. Inst. Min. Metall., Melbourne, 1980; 193–201.
    [12] Gray, I. The mechanism of, and energy release associated with outbursts [A]. Proc. The Occurrence, Prediction and Control of Outbursts in Coal Mines [C]. The Aust. Inst. Min. Metall., Melbourne, 1980; 111–125.
    [13] Litwiniszyn, J. A model for the initiation of coal–gas outbursts. Int. J. Rock Mech [J]. Min. Sci. Geomech. Abstr. 1985; 22, 39–46.
    [14] Paterson, L. A model for outburst in coal [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1986; 23, 327–332.
    [15] Jagie??o, J., Lasoń, M., Nodzeński, A. Thermodynamic description of the process of gas liberation from a coal bed [J]. Fuel 1992; 71, 431–435.
    [16] He X.Q, Zhou S.N, Lin B.Q. The rheological properties and outburst mechanism of gaseous coal [J]. Journal of China University of Mining & Technology, 1991; 2(1): 29-36.
    [17]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全, 1995, 2: 17-25.
    [18]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社, 1994, 182~253.
    [19]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社, 2000.
    [20]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社, 1995.
    [21]鲜学福,许江,王宏图.煤与瓦斯突出潜在危险区(带)预测[J].中国工程科学, 2001, 3(2): 39-46.
    [22]孙均,李永盛.岩石流变力学的数值方法及其工程应用[A].中国力学学会岩土力学专业委员会,第一届全国计算岩土力学研讨会论文集[C].成都:西南交通大学出版社, 1987.
    [23]吴立新,王金庄,孟胜利.煤岩流变模型与地表二次沉陷研究[J].地质力学学报, 1997, 3(3); 29-35.
    [24]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版), 1999, 22(5): 99-103.
    [25] Okubo S., Nishimatsu Y and Fukui K. Complete creep curves under uniaxial compression [J].Int. J. Rick Mech. Min. Sci. & Geomech. Ahstr. , 1991, 28(1): 77-82.
    [26]莴勇勤,徐小荷,马新民等.露天煤矿边坡中软弱夹层的蠕动变形特性分析[J].东北大学学报, 1999, 20(6): 612-614.
    [27] Cruden D.M. A Technique for estimating the complete creep curve of a sub-bituminous coal under uniaxial compression [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1987, 24(4): 265-269.
    [28] Saito M. Semi logarithmic representation for forecasting slope failure [A]. Proceedings 3rd International Symposium on Landslides [C], New Dehli, 1980, 1:, 321-324.
    [29] Zavodni Z.M, Broadbent C.D. Slope failure kinematics [J]. Bulletin Canadian Institute of Mining, 1980, 73: 69-74.
    [30] Varnes D.J. Time-deformation relation in creep to failure of earth materials [A]. Proceedings, 7th South East Asian Geotechnical Conferrence [C], 1983, 2:107-130.
    [31] Yang C.H, Daemen J.J.K, Yin J.H. Experimental investigation of creep behavior of salt rock [J]. Int. J. Rock Mech. Min. 1999, 36: 233-242.
    [32] Fernandez G, Hendron A.J. Interpretation of a long-term in situ borehole test in a deep salt formation [J]. Bull. of the Ass. of Eng. Geol. 1984, 21: 23-38.
    [33] Wawersik W.R, Herrmann W, Montgomery S.T, Lauson H.S. Excavation design in rock salt-laboratory experiments, material modeling and validations [A]. Proc. ISRM-Symp. Aachen [C], 1984, 1345-1356.
    [34] Haupt M. A constitutive law for rock salt based on creep and relaxation tests [J]. Rock Mechanics and Rock Engineering, 1991, 24: 179-206.
    [35] Shin K, Okubo S, Fukui K, Hashiba K. Variation in strength and creep life of six Japanese rocks [J]. Int. J. Rock Mech. Min. 2005, 42: 251-260.
    [36] Dubey R.K, Gairola V.K. Influence of structural anisotropy on creep of rocksalt from Simla Himalaya, India: An experimental approach [J]. J. Struct. Geol, 2008, 30: 710-718.
    [37] Bérest P, Antoine P.A, Charpentier J.P, Gharbi H, Vales F. Very slow creep tests on rock samples [J]. Int. J. Rock Mech. Min., 2005, 42: 569-576.
    [38] Zienkiewicz O.C., Nayak G.C., J.Owen D.R. Composite and overlay models in numerical analysis of elasto-plastic continua [A]. Int. Symp. On Foundation of Plasticity [C]. Warsaw, 1972.
    [39] Owen D.R.J., Pralash A., Zienkiewicz O.C. Finite element analysis of non-linear composite materials by use of overlay systems [J]. Compute and Structure, 1974, 4: 1251~1267.
    [40]范厚彬,樊志华,陆耀忠,基于层叠模型的岩土材料流变本构关系识别[J].岩石力学与工程学报,2005, 24 (5): 765~773.
    [41]孙均.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社, 1999, 12.
    [42] J. C.耶格,N. G. W.库克著,中国科学院工程力学研究所译,岩石力学基础[M].科学出版社, 1981.
    [43]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报, 2002, 25(7): 96-98
    [44]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报, 2002. 21(5): 632-634.
    [45]邓荣贵,周德培,张悼元等.一种新的岩石流变模型[J],岩石力学与工程学报, 2001, 20(6): 780-784
    [46]韦立德,徐卫亚,朱珍德等.岩石粘弹塑性模型的研究[J].岩土力学, 2002, 23(5): 583-586
    [47]陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学, 2003, 24(2): 209-214
    [48]陈沅江,潘长良,曹平等.一种软岩流变模型[J].中南工业大学学报(自然科学版), 2003, 34(1): 16-20
    [49]张向东,李永靖,张树光等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报, 2004, 23(10): 1635-1639
    [50]王来贵,何峰,刘向峰等.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报, 2004, 23(10): 1640-1642
    [51]杨彩红,毛君,李剑光.改进的蠕变模型及其稳定性[J].吉林大学学报(地球科学版), 2008, 38(1): 92~97.
    [52]尹光志,王登科,张东明等.含瓦斯煤岩三维蠕变特性及蠕变模型研究[J].岩石力学与工程学报, 2008, 27(增刊1): 2631-2636.
    [53] Boukharov G N., Chanda M. W., Boukharov N.G,The three processes of brittle crystallinerock creep [J]. Int. J. Rock Mech. Min. Sci&Geomech. Abstr. 1995, 32(4): 325-335.
    [54] Ladanyi, B. Time-dependent response of rock around tunnels [A]. In: Hudson, J. A. (ed.), Comprehensive rock engineering [C], 1993, 2: 78-112.
    [55] Cristescu, N. D., Gioda, G. (eds.) Visco-plastic behavior of geomaterials [M]. CISM Courses and Lectures, n. 350, 1994, Springer-Verlag.
    [56] Cristescu, N. D., Hunsche, U. Time effects in rock mechanics [M], 1998, Wiley & Sons.
    [57] Pellet, F., Hajdu, A., Deleruyelle, F., Besnus, F. A visco-plastic model including anisotropic damage for the time dependent behavior of rock [A]. Int. J. Numer. Anal. Meth. Geomech [C]. 2005, 29: 941–970.
    [58] Sterpi D, Gioda G. Visco-plastic behavior around advancing tunnels in squeezing rock [J]. Rock Mech. Rock Engng, 2007, 12.
    [59] Nomura S, Kato K, Komaki I, Fujioka Y, Saito K, Yamaoka I. Viscoelastic properties of coal in the thermoplastic phase [J]. Fuel, 1999, 78: 1583-1589.
    [60] Chopra P.N. High-temperature transient creep in olvine rocks [J]. Tectonophysics, 1997, 279: 93-111.
    [61] Xu P, Yang T.Q, Zhou H.M. Study of the creep characteristics and long-term stability of rock masses in the high slopes of the TGP ship lock, China [J]. Int. J. Rock Mech. Min. Sci. 2004, 41(3): 1-11.
    [62] Tomanovic Z. Rheological model of soft rock creep based on the tests on marl [J]. Mech. Time-Depend Mater., 2006, 10: 135-154.
    [63]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报, 1995, 16(4): 343-346.
    [64]郑永来,周澄,夏颂佑.岩土材料粘弹性连续损伤本构模型探讨[J] .河海大学学报,1997 25(2): 114-116.
    [65]浦奎英,范华林.流变损伤模型及其应用[J].河海大学学报, 2001, 29(增): 17-20.
    [66]秦跃平,王林,孙文标等.岩石损伤流变理论模型研究[J].岩石力学与工程学报,2002, 21(增2): 2291-2295.
    [67]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[[J].岩石力学与工程学报,2002, 21(11): 1602-1604.
    [68]肖洪天,强天弛,周维垣.三峡船闸高边坡损伤流变研究及实测分析[J].岩石力学与工程学报, 1999, 18(5): 497-502.
    [69]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报, 2002(1): 10-15.
    [70]曹树刚,鲜学福.煤岩蠕变损伤特性的实验研究[J].岩石力学与工程学报, 2001, 22(6): 817-821.
    [71]韦立德,杨春和,徐卫亚.基于细观力学的岩盐蠕变损伤本构模型研究[J].岩石力学与工程学报, 2005, 24(23): 4253-4258.
    [72]徐卫亚,周家文,杨圣奇等.绿片岩蠕变损伤本构关系研究[J].岩石力学与工程学报, 2006, 25(增1): 3093-3097.
    [73]朱昌星,阮怀宁,朱珍德等.岩石非线性蠕变损伤模型的研究[J].岩土工程学报, 2008, 30(10): 1510-1513.
    [74] Chan K S, Bodner S R, Fossum A F, etal. A constitutive model for inelastic flow and damage evolution in solids under tri-axial compression [J]. Mech. of Math., 1992, (14): 10-14.
    [75] Chan K S, Brodsky N S, Fossum A F, etal. Damage-induced nonassociated inelastic flow in rock salt [J]. Int. J. Plasticity, 1994, (10): 623-642.
    [76] Fossum A F, Brodsky N S, Chan K S, etal. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression [J]. Int. J. Rock Mech. Min. Sci.& Geom. Abst., 1993, 30: 1341-1344.
    [77] Lux K H, Hou Z. New developments in mechanical safety analysis of repositories in rock salt [A].Pro. Int. Conf.On Radioactive Waste Disposal, Disposal Technologies & Concepts [C]. Berlin: Springer Verlag, 2000, 281-286.
    [78] Aubertin M, Gill D E, Ladayi B. An internal variable model for the creep of rock salt [J]. Rock Mech. and Rock Engin., 1991, 24:81-97.
    [79] Aubertin M, Sgaoula J, Gill D E. A viscoplastic-damage model for soft rocks with low porosity [A]. In: Proc. of 8th Int. Cong, on Rock Mechanics [C]. 1995, 1:283-289.
    [80] Yahya O M L, Aubertin M, Julien M R. A unified representation of plasticity, creep and relaxation behavior of rock salt [J]. Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr., 2000, 37: 787-800.
    [81] Betten J, Sklepus S, Zolochevsky A. A creep damage model for initially isotropic materials with different properties in tension and compression [J]. Eng. Fract. Mech., 1998, 59(5): 623-641.
    [82] Qi W, Bertram A. Anisotropic continuum damage modeling for single crystals at high temperature [J]. Int. J. Plasticity, 1999, 15: 1197-1215.
    [83] Bellenger E, Bussy P. Phenomenological modeling and numerical simulation of different modes of creep damage evolution [J]. Int. J. Solids Struct., 2001, 38: 577-604.
    [84] Shao J.F, Zhu Q.Z, Su K. Modeling of creep in rock materials in terms of material degradation [J]. Computers and Geotechnics, 2003, 30: 549-555.
    [85] Shao J.F, Chau K.T, Feng X.T. Modeling of anisotropic damage and creep deformation in brittle rocks [J]. Int. J. Rock Mech. & Min. Sic., 2006, 43: 582-592.
    [86] Challamel N, Lanos C, Casandjian C. Creep damage modeling for quasi-brittle materials [J].European Journal of Mechanics A/Solids, 2005, 24: 593-613.
    [87] Challamel N, Lanos C, Casandjian C. Stability analysis of quasi-brittle materials-creep under multiaxial loading [J]. Mech. Time-Depend Mater., 2006, 10: 35-50.
    [88] Fabre.G, Pellet F. Multiscale analysis and analytical modeling of creep and damage in argillaceous rocks [A]. In: Proceedings of the International Symposium of the International Society for Rock Mechanics, Eurock 2006 Multiphysics Coupling and Long Term Behaviour in Rock Mechanics [C], 2006, 403-409.
    [89] Fu Zhiliang, Guo Hua, Gao Yanfa. Creep damage characteristics of soft rock under disturbance loads [J]. Journal of Chian University of Geosciences, 2008, 19(3): 292-297.
    [90]张淳源.粘弹性断裂力学[M].武汉:华中理工大学出版社, 1994.
    [91]刘文珽,郑曼中.概率断裂力学与概率损伤容限/耐久性[M].北京:北京航空航天大学出版社, 1998.
    [92]方华灿,陈国民.模糊概率断裂力学[M].东营:石油大学出版社, 1999.
    [93] Kranz R L. Crack growth and development during creep of Barre granite [J]. Int. J. Rock Mech. Min. Sci&Geomech. 1979, 16(1): 23-35.
    [94] Kranz R L. Crack-crack and crack-pore interactions in stressed granite [J]. Int .J. Rock Mech. Min. Sci & Geomech. 1979 , 16(1): 37-47.
    [95] Korzeniowski W. Rheological model of llard rock pillave [J]. Rock Mech. Rock Bng., 1991(24): 155-166.
    [96] Chan K S, Munson D E, Fossum A F, etal. Inelastic flow behaviour of argillaceous salt [J]. Int. J. of Damage Mechanics, 1996, (5): 293-314.
    [97] Chan K S, Bodner S R, Fossum A F, etal. A damage mechanics treatment of creep failure in rock salt [J]. Int. J. of Damage Mechanics, 1996, 6(2): 121-152.
    [98] Chan K S, Munson D E, Bodner S R. Creep deformation and fracture in rock salt [A]. Fracture of Rock [C]. Boston: Southampton WIT press, 1999.
    [99] Miura K, Okui Y, Horii H. Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system [J]. Mech. Mater. 2003, 35: 587-601.
    [100] Barpi F, Valente S. Creep and fracture in concrete: a fractional order rate approach [J]. Eng. Fract. Mech., 2003, 70: 611-623.
    [101] Barpi F, Valente S. A fractional order rate approach for modeling concrete structures subjected to creep and fracture [J]. Int. J Solids Struct., 2004, 41: 2607-2621.
    [102] DenariéE, Cécot C, Huet C. Characterization of creep and crack growth interactions in the fracture behavior of concrete [J]. Cement Concrete Res., 2006, 36: 571-575.
    [103] Chen Y L, Azzam R. Creep fracture of sandstones [J]. Theor. Appl. Fract. Mec., 2007, 47:57-67.
    [104]陈有亮.岩石流变实验系统及岩石蠕变时效断裂特性的研究[D],博士论文上海:同济大学, 1994: 3.
    [105]陈有亮,孙钧.岩石的蠕变断裂特性分析[J].同济大学学报, 1996, 24(5): 504-508.
    [106]陈有亮,刘涛.岩石流变断裂扩展的力学分析[J].上海大学学报,2000, 6(6): 491-496.
    [107]邓广哲,朱维申.裂隙岩体卸荷过程及裂隙蠕滑机制模拟研究[R],武汉:中国科学院武汉岩土力学研究所研究报告, 1996.
    [108]杨松林.不连续岩体弹粘性力学研究[博士后研究报告][R].南京:河海大学, 2003, 6.
    [109]杨松林,徐卫亚.裂隙蠕变的稳定性准则[J].岩土力学, 2003, 24(3): 423-427.
    [110]徐卫亚,杨松林.裂隙岩体松弛模量分析[J].河海大学学报(自然科学版), 2003, 31(3): 295-298.
    [111]徐卫亚,杨松林.断续结构岩体流变力学分析[A].首届全球华人岩土工程论坛论文集[C].上海, 2003: 71-82.
    [112] Costin. L.S. Time-dependent damage and creep of brittle rock [A]. Damage Mechanics and Continuum Modeling [C]. ASCE, New York, 1985: 25-38.
    [113] Murakami S, Liu Y, Mizuno M. Computational methods for creep fracture analysis by damage mechanics [J]. Comput. Method Appl. Mech. Engrg., 2000, 183: 15-33.
    [114] Pedersen R.R, Simone A, Sluys L J. An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model [J]. Eng. Fract. Mech., 2008, 75: 3782-3805.
    [115]陈卫忠,朱维申,李术才.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报, 1999(12): 33-37
    [116]王思敬,杨志法,傅冰骏.中国岩石力学与工程世纪成就[M].南京:河海大学出版社, 2004.
    [117]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报, 1999, 22(5): 99-103.
    [118]宋飞,赵法锁,李亚兰.石膏角砾岩蠕变特性试验研究[J].水文地质工程地质, 2005, 3: 94-96.
    [119] Chen S.H., Pande G. N., Rheological model and finite element analysis of jointed rock masses reinforced by passive, fully-grouted bolts[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr. 1994, 31(3): 273-277.
    [120] Jin J, Cristescu N. D. An elastic/viscoplastic model for transient creep of rock salt[J]. Int. J. Plasticity. 1998, 14: 85-107.
    [121] Nicolae M. Non-associated elasto-viscoplastic models for rock salt [J]. Int. J. of Engng. Sci. 1999, 37: 269-297.
    [122] Munteanu I.P, Cristescu N.D. Stress relaxation during creep of rocks around deep boreholes [J]. Int J Eng. Sci. 2001, 39: 737-754.
    [123] Grgic D, Homand F, Hoxha D. A short- and long-term rheological model to understand the collapses of iron mines in Lorraine, France [J]. Computers and Geotechnics, 2003, 30: 557-570.
    [124] Kachanov L M. On the time to failure under creep condition [J]. Izv, Akad, Nauk, USSR, Otd. Tekhn. Nauk, 1958, 8: 26-31
    [125] Kachanov L M. Introduction to Continuum Damage Mechanics [M].Mattinus Nijhoff publishers, Dordrecht, The Netherlmds,1986
    [126] Rabotnov Y N. On the equations of state for creep [J].In: Progress in Applied Mechanics 1963, 307-315
    [127] Rabotnov Y.N. Creep ruptures [A]. In: Applied Mechanics, Processing of the 12th International Congress of Applied Mechanics [C]. Edited by Hetenyi M., et al, Standfod Springe-Verlag, Berlin,1969, 342-349
    [128] Lemaitre J, Chaboche J. L. Aspect phenomenologique dela ruptrue par endommagement [J]. J. Mec.App1., 1978, 2,.3.
    [129] Lemaitre J. How to use damage mechanics [J]. Nucl. Eng. Des., 1984, 80: 233-245.
    [130] Chaboche J. L. Continuous damage mechanics: A tool to describe phenomena before crack initiation [J]. Nucl. Eng. Des., 1981, 64: 233-247.
    [131] Chaboche J.L. Lifetime predictions and cumulative damage under high-temperature conditions [J]. ASTM Special technical publication, 1982, 770, 81-104.
    [132] Krajcinovic D, Fonseka G. U. The continuous damage theory of brittle materials-part 1, 2 [J]. ASME J. Appl. Mech., 1981, 48: 809-815 and 816-824.
    [133] Krajcinovic D, Silva M.A.G. Statistical aspects of the continuous damage theory [J]. Int. J. Solids Structure, 1982, 18: 7.
    [134] Krajcinovic D. Continuum damage mechanics [J]. Appl. Mech. Reviews, 1984, 37(1): 1-6.
    [135] Budiansky B. Micromechanics: advances and trends in structural and solid mechanics [M]. Pergamon Press, 1983: 3-12.
    [136] Gurson A.L. Plastic flow and fracture behavior of ductile material incorporating void nucleation, growth and interaction [D]. Proridence: Brown University, 1975.
    [137] Gurson A.L. Continuum theory of ductile repture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media [J]. Eng. Mater. Tech., 1977, 99(1): 2-15.
    [138] Grady D.E, Kipp M.L. Continuum modeling of explosive fracture in oil shale [J]. Int. J. Rock Mech. Min. Sci. & Geomech Abstr., 1980, 17(2): 147-157.
    [139] Costin L.S. A microcrack model for the deformation and failure of brittle rock [J]. Geophys.Res., 1983, 88(B11): 9485-9492.
    [140] Hult J. Effect of voids on creep rate and strength[J]. Damage Mechanics and Continuum Modeling , ASCE, 1985.
    [141] Gilormini P, Licht C, Suquet P. Growth of voids in a ductile matix: a review [J]. Arch. Mech., 1988, 40(1): 43-80.
    [142] Tvergaard V. Material failure by growth to coalescence [J]. Adv. Appl. Mech., 1990, 27: 83-151.
    [143] Nemat-Nasser S, Hori M. Micromechanics: overall properties of heterogeneous materials [M]. North-Holland: Elsevier Science Publishers B.V., 1993.
    [144] Schlangen E, Garboczi E. J. Fracture simulations of concrete using lattice models: computational aspects [J]. Engng. Frac. Mech., 1997, 57(2/3): 319-332.
    [145] Schlangen E, Mier J.G. Experimental and numerical analysis of micromechanisms of fracture of cement-based composited [J]. Cement & Concrete Comaosites, 1992, 14(2): 105-118.
    [146]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社, 1990.
    [147]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社, 1997.
    [148]谢强,姜崇喜,凌建明.岩石细观力学实验与分析[M].成都:西南交通大学出版社, 1997.
    [149]唐春安,朱万成.混凝土损伤与断裂-数值试验[M].北京:科学出版社, 2003.
    [150]周维垣,剡公瑞.岩石、混凝土类材料断裂损伤过程区的细观力学研究[J].水电站建设, 1997, 13(1): 1-9.
    [151]刘齐建,杨林德,曹文贵.岩石统计损伤本购模型及其参数反演[J].岩石力学与工程学报, 2005, 24(4): 616-621.
    [152]杨小林,王树仁.岩石爆破损伤断裂的细观机理[J].爆炸与冲击, 2000,20(3): 247-252.
    [153]肖洪天,周维垣.脆性岩石变形与破坏的细观力学模型研究[J].岩石力学与工程学报, 2001, 20(2): 151-155.
    [154]杨强,张浩,周维垣.基于格构模型的岩石类材料破坏过程的数值模拟[J].水利学报, 2002(4): 46-50.
    [155]凌建明.节理岩体损伤力学及时效损伤特征的研究[D].同济大学博士学位论, 1992, 11.
    [156]李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报, 1995, 17(1): 24-31.
    [157]杨更社,谢定义,张长庆等.岩石损伤CT数分布规律的定量分析[J].岩石力学与工程学报, 1998, 17(3): 279-285.
    [158]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报, 1999, 18(5): 497-502.
    [159]任建喜,葛修润,杨更社.单轴压缩岩石损伤扩展细观机理CT实时试验[J].岩土力学, 2001, 22(2): 130-133.
    [160]杨丽娟,邵国建.岩石细观损伤力学模型研究若干进展[J].水利水电科技进展, 2006, Suppl.1: 171-175.
    [161] Krajcinovic D. Constitutive equation for damaging materials [J]. J. Appl. Mech., 1983, 50: 355-360.
    [162] Rousselier G. Finite deformation constitutive relations including ductile fracture damage [A]. Three-Dimensional Constitutive Relations and Ductile Fracture (Eds: S. Nemat-nasser) [C]. North-Holland Publishing Company, 1981, 331-355.
    [163] Marigo J.J. Modeling of brittle and fatigue damage for elasti material by growth of microvoids [J]. Eng. Fract. Mech., 1985, 21(4): 861-874.
    [164] Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. J. Eng. Material Tech., 1985, 83.
    [165] Shen W, Peng L. H. Yue, Shen Z. and Tang X. D. Elastic damage and energy dissipation in anisotropic solid material [J]. Engng. Fracture Mech., 1987, 33(2).
    [166] Simo J. C. and Ju J. W. Strain- and stress-based continuum damage models, part I. formulation, part II. Computation aspects[J]. Int. J. Solid Structures, 1988, 23(3): 921-969.
    [167] Singh U.K, Digby P.J. Application of a continuum damage model in the finite element simulation of the progressive failure and localization of deformation in brittle rock structures [J]. Int. J. Solids Struct. 1989, 25(9): 1023-1038.
    [168] Nawrocki P.A, Mroz Z. Constitutive model for rocks accounting for viscoplastic deformation and damage [A]. Proc. 33rd US Symposium on Rock Mechanics [C], 1992, 619-700.
    [169] Borst R.D, Feenstra P.H. Plasticity and damage based smeared-crack models for finite element analysis of fracture in plain concrete and rock [A]. In: Dam fracture and damage [C]. Proc. workshop, chambery, France, 1994, 3-12.
    [170] Chandrakanth S, Pandey P.C. An isotropic damage model for ductile material [J]. Eng. Fract. Mech., 1995, 50(4): 457-465.
    [171] K?nke C. Coupling of micro- and macro-damage models for the simulation of damage evolution in ductile materials [J]. Computers & Structures, 1997, 64(1-4): 643-653.
    [172] Zhao Y. Crack pattern evolution and a fractal damage constitutive model for rock [J]. Int. J. Rock Mech. & Min. Sci., 1998, 35(3): 349-366.
    [173] Chiarelli A.S, Shao J.F, Hoteit N. Modeling of elastoplastic damage behavior of a claystone [J]. Int. J Plasticity, 2003, 19: 23-45.
    [174] Salari M.R, Saeb S, Willam K.J, Patchet S.J, Carrasco R.C. A coupled elastoplastic damagemodel for geomaterials [J]. Comput. Methods Appl. Mech. Engrg., 2004, 193: 2625-2643.
    [175] Challamel N, Lanos C, Casandjian C. Strain-based anisotropic damage modeling and unilateral effects [J]. Int. J Mech. Sci., 2005, 47: 459-473.
    [176] Shao J.F, Jia Y, Kondo D, Chiarelli A.S. A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions [J]. Mechanical of Materials, 2006, 38: 218-232.
    [177] Mohamad-Hussein A, Shao J.F. Modeling of elastoplastic behavior with non-local damage in concrete under compression [J]. Computers & Structures, 2007, 85: 1757-1768.
    [178] Voyiadjis G. Z, Taqieddin Z. N, Kattan P. I. Anisotropic damage-plasticity model for concrete[J]. International Journal of Plasticity, 2008, 24: 1946-1965.
    [179]秦跃平,孙文标,王磊.岩石损伤力学模型分析[J].岩石力学与工程学报, 2003, 22(5): 702-705.
    [180]崔崧,黄宝宗,张凤鹏.准脆性材料的弹塑性损伤耦合模型[J].岩石力学与工程学报, 2004, 23(19): 3221-3225.
    [181]韦立德,杨春和,徐卫亚.考虑体积塑性应变的岩石损伤本构模型研究[J].工程力学, 2006, 23(1): 139-143.
    [182]栾茂田,王忠昶,杨庆.考虑损伤效应的岩石类材料局部化特性分析[J].岩土力学, 2007, 28(1): 1-6.
    [183]尹光志,王登科,张东明等.基于内时理论的含瓦斯煤岩损伤本构理论[J].岩土力学, 2009, 30(4): 885-889.
    [184]王仁.结构的塑性稳定性[M].北京:中国铁道出版社, 1988.
    [185] Cook N.G.W. The failure of rock [J]. Int. J. Rock Mech. & Min. Sci., 1965, 2: 389-404.
    [186] Salamon M.D.G, Stability, instability and design of pillar workings [J]. Int. J. Rock Mech. & Min. Sci., 1970, 7(6): 613-631.
    [187] Hudson J A, Crouch S L, Fairhurst C. Soft, stiff and servo-controlled testing mechanics: a review with reference to rock failure [J]. Eng. Geol., 1972, 6(3): 155-189.
    [188] Ba?ant Z.P, Panula L, Statistical stability effects in concrete failure [J]. J. Eng. Mech., ASCE, 1978, 104(5): 1195-1212.
    [189] Petukhov I.M, Linkov A.M, The theory of post-failure deformation and the problem of stability in rock mechanics [J]. Int. J. Rock Mech. Min. Sci., 1979, 16(2): 57-76.
    [190] Ottosen N. S, Thermodynamic consequences of strain softening in tension [J]. J. Eng. Mech., ASCE, 1986, 112(11): 1152-1164.
    [191] Ba?ant Z.P. Instability, ductility and size effect in strain-softening concrete [J]. J. Eng. Mech., ASCE, 1976, 102(2): 331-344.
    [192] Sture S, Ko H.Y. Strain-softening of brittle geological materials [J]. Int. J. Num. Anal.Method Geomech., 1978, 2(3): 237-253.
    [193] Ba?ant Z.P. Softening instability: part I-localization into a planar band [J]. J. Appl. Mech. ASME, 1988, 55(3): 517-522.
    [194] Labuz J.F, Biolzi L. Class I vs class II stability: a demonstration of size effect [J]. Int. J. Rock Mech. Min. Sci., 1991, 28(2): 199-205.
    [195] De Borst R, Mühlhaus H.B. Gradient-dependent plasticity: formulation and algorithmic aspects [J]. Int. J. Numer. Methods Eng., 1992, 35(3): 521-539.
    [196] Pamin J, De Borst R. A gradient plasticity approach to finite element predictions of soil instability [J]. Arch. Mech., 1995, 47: 353-377.
    [197] Zhang Chuhan, Wang Guanglun, Wang Shaomin et al. Experimental tests of rolled compacted concrete and nonlinear fracture analysis of rolled compacted concrete dams [J]. J. Mat. Civil Eng., 2002, 14(2): 108-115.
    [198]唐春安,徐小荷.岩石破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,1990, 9(2): 100-107.
    [199]金济山,石泽全,方华等.在三轴压缩下大理岩循环加载实验的初步研究[J].地球物理学报, 1991, 34(4): 488-494.
    [200]梁冰,章梦涛,潘一山等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报, 1995, 20(5): 492-496.
    [201]丁继辉,麻玉鹏,赵国景等.煤和瓦斯突出的固-流耦合失稳理论及数值分析[J].工程力学, 1999, 16(4): 47-53.
    [202]曾亚武,陶振宇,邬爱清.用能量准则分析试验机-试样系统的稳定性[J].岩石力学与工程学报, 2000, 19(增1): 863-867.
    [203]潘岳,刘瑞昌,戚云松.压桩脆坏引发的能量释放量与荷载效应的计算[J].岩石力学与工程学报, 2002, 21(2): 223-227.
    [204]王学滨.应变软化材料变形、破坏、稳定性的理论及数值分析[D],博士论文,辽宁工程技术大学, 2006.
    [205] Drucker D.C. A more fundamental approach of stress-strain relations [A]. Proc. 1st U.S. Nat. Cong., Appl. Mech., ASME [C], 1951, 487-491.
    [206] Hill R. A general theory of uniqueness and stability in elastic-plastic solids [J]. J. Mech. Phys. Solids, 1958, 6: 236-249.
    [207] Hill R. Some basic principal in the mechanics of solids without nature time [J]. J. Mech. Phys. Solids. 1959, 7: 209-225.
    [208] Hill R. Acceleration waves in solids [J]. J. Mech. Phys. Solids, 1962, 10: 1-16.
    [209] Thomas T Y. Plastic flow and fracture in solids [M]. Academic Press, 1961, New York.
    [210] Rudnicki J W, Rice J R. Conditions for the localization of deformation in pressure sensitivedilatant materials [J]. J. Mech. Phys. Solids, 1975, 23: 371-394.
    [211] Rice J.R, Rudnicki J.W. A note on some features of the theory of localization of deformation [J]. Int. J. Solids Structure, 1980, 16: 597-605.
    [212] Vardoulakis I. Shear band inclination and shear modulus of sand in biaxial tests [J]. Int. J. Num. Anal. Mech. Geomech., 1980, 4: 103-119.
    [213] Vardoulakis I. Bifurcation analysis of the triaxial test on sand and samples [J]. Acta Mechanica, 1979, 32: 35-54.
    [214] Vardoulakis I. Constitutive Properties of dry sand observable in the triaxial test [J]. Acta Mechanica, 1981, 38: 219-239.
    [215] Vardoulakis I. Rigid granular plasticity model and bifurcation in the triaxial test [J]. Acta Mechanica, 1983, 49: 57-79.
    [216] Muhlhaus, Vardoulakis I. The thickness of shear bands in granular materials[J]. Geotechnique, 1987, 37: 271-283.
    [217] Vardoulakis I. Shear banding and liquefaction in granular materials on the basis of Cosserat continuum theory [J]. Ingenieur Archiv. 1989, 59(2): 106-113.
    [218] Valanis K.C. Banding and stability in plastic materials [J]. Acta Mechanica, 1989, 79: 113-141.
    [219] Vermeer P.A. A simple shear band analysis using compliance [A]. IUTAM Conf. deformation and failure of granular materials [C]., 1982, 509-516.
    [220] Nova R. An engineering approach to shear band formation in geological media [A]. the 5th. Int Conf. Num. Meth. Geomech [C]., 1985, 179-196.
    [221]尹光志,鲜学福,王宏图.岩石在平面应变条件下剪切带的分叉分析.煤炭学报.1999, 24(4): 364-367.
    [222]张永强,俞茂宏.弹塑性材料的平面应力非连续分岔[J].力学学报,2001, 33(5): 706-713.
    [223]曾亚武,赵震英,朱以文.岩石材料破坏形式的分叉分析[J].岩石力学与工程学报, 2002, 21(7): 948-952.
    [224]赵吉东,周维垣,黄岩松等.岩石混凝土类材料损伤局部化分叉研究及应用[J].岩土工程学报, 2003, 25(1): 80-83.
    [225]徐松林,吴文,李廷等.轴压缩大理岩局部化变形的实验研究及其分岔行为[J].岩土工程学报, 2001, 23(3): 296-301.
    [226]徐松林,吴文.岩土材料局部化变形分岔分析[J].岩石力学与工程学报, 2004, 23(2): 3430-3438.
    [227]潘一山,徐秉业,王明洋.岩石塑性应变梯度与II类岩石变形行为研究[J].岩土工程学报, 1999, 21(4): 471-474.
    [228]王学滨,潘一山,于海军.考虑塑性应变率梯度的单轴压缩岩样轴向响应[J].岩土力学, 2003, 24(6): 943-946.
    [229]王学滨,潘一山.基于梯度塑性理论的岩样单轴压缩扩容分析[J].岩石力学与工程学报, 2004, 23(5): 721-724.
    [230]尹光志,鲜学福,许江等.岩石细观断裂过程的分叉与混沌特征[J].重庆人学学报, 2000, 23(2): 56-59.
    [231]尹光志,代高飞,万玲等.岩石微裂纹演化的分叉混沌与自组织特征[J].岩石力学与工程学报, 2002, 21(5): 635-639.
    [232]尹光志,黄滚,代高飞等.基于CT数的煤岩单轴压缩破坏的分叉与混沌分析[J].岩土力学, 2006, 27(9): 1465-1470.
    [233]张东明.岩石变形局部化及失稳破坏的理论与实验研究[D].博士论文,重庆大学, 2004.
    [234]黄滚.岩石断裂失稳破坏与冲击地压的分叉和混沌特征研究[D].博士论文,重庆大学, 2007.
    [235]吕玺琳,钱建固,黄茂松.基于分叉理论的轴对称条件下岩石变形带分析[J].水利学报, 2008, 39(3): 307-312.
    [236]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报, 1965, 2(1):24-36.
    [237]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报, 1984, 2 (2): 19-28.
    [238]谭学术.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报, 1986, (1): 106-112.
    [239]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探, 1993, 21(1): 32-40.
    [240] Sun Peide. Coal gas dynamics and its applications [J]. Scientia Geologica Sinica. , 1994, 3(1): 66-72.
    [241]魏晓林.煤层瓦斯流动规律的实验和数值方法的研究[J].粤煤科技, 1981, (2) : 35-41.
    [242] Yu C, Xian X. Analysis of gas seepage flow in coal beds with finite element method [A]. Symposium of 7th international conference of FEM in flow problems[C]., Huntsvill, USA, 1989.
    [243] Yu C, Xian X. A boundary element method for inhomogeneous medium problems [A]. Proceedings: 2nd world congress on computational mechanics [C]., Stuttgart, FRG. 1990.
    [244]罗新荣.煤层瓦斯运移物理与数值模拟分析[J].煤炭学报, 1992, 17(2): 49-55.
    [245]张广祥.煤的结构与煤的瓦斯吸附、渗流特性研究[D],重庆:重庆大学, 1995.
    [246]胡耀青,赵阳升,魏锦平等.三维应力作用下煤体瓦斯渗透规律实验研究[J].西安矿业学院学报, 1996, 16(4): 308-311.
    [247]孙培德,凌志仪.三轴应力作用下煤渗透率变化规律实验[J].重庆大学学报, 2000,23(增): 28-31.
    [248]卢平,沈兆武,朱贵旺等.岩样应力应变全过程中的渗透性表征与试验研究[J],中国科学技术大学学报, 2002, 32(6): 678-684.
    [249]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报, 1986, 15(3): 67-72.
    [250]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业大学学报, 1988, 17(1): 1-7..
    [251]许江,鲜学福,杜云贵等.含瓦斯煤的力学特性的实验分析[J].重庆大学学报, 1993, 16(5): 42-47.
    [252]梁冰,章梦涛,潘一山等.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土工程学报, 1995, 17(5): 12-18.
    [253]卢平,沈兆武,朱贵旺等.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报, 2001, 31(6): 686-693.
    [254]苏承东,翟新献,李永明等,煤样三轴压缩下变形和强度分析[J].岩石力学与工程学报, 2006, supp.1: 2963-2968.
    [255]尹光志,王登科,张东明等.两种含瓦斯煤样变形特性与抗压强度的实验分析[J].岩石力学与工程学报, 2009, 28(2): 410-417.
    [256] Terzaghi K. Theoretical soil Mechanics [M], New York, Wiley, 1943.
    [257] Biot M .A .General theory of three-dimension consolidation [J], J. Appl .Phys. 1941, (12): 155-164.
    [258] Biot M. A. Theory of elasticity and consolidation for a porous anisotropic solid[J], J. Appl. Phys. 1954, (26):182-191.
    [259] Biot M. A. general solution of the equation of elasticity and consolidation for porous material[J], J. Appl. Mech. 1956, (78): 91-96.
    [260] Biot M. A. Theory of deformation of porous viscoelastic anisotropic solid[J], J. Appl .Phys. 1956, 27(5): 203-215.
    [261] Verrujit A. Elastic storage of aquifers [A], In: Flow Through Porous Media[C]., R J M, New York, Tiho Wiley, 1969: 5-65.
    [262]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J],地质力学学报, 1999, 5(1): 17-26.
    [263]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院报(自然科学版), 2001, 20(3): 161-167.
    [264] L. Jingo J. A renew paper. F-Iudson. Numerical methods in rock mechanics [J], CivilZone International Journal of Rock Mechanics & Mining Sciences 2002, 39: 409-427.
    [265] Rice J.R. Michael P Cleary. Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents [J]. Rev Geophysics and Space Physics. 1976,14(2): 227-241.
    [266] Wong S.K. Analysis and implications of inset stress changes during steam stimulation of cold lake oil sands [J], SPE Reservoir Engineering. Feb, 1988, 55-61.
    [267] Settal A, Puchyr P J, etc. Partially decoupled modeling of hydraulic fracturing processes [J], SPE Production Engineering, Feb, 1990: 37-44.
    [268] .Lewis R W. Finite element modeling of two-phase heat and fluid flow in deforming porous media [J]. Trans Porous Media, 1989 4: 319-334.
    [269] Lewis R W. Sukirman Y. Finite element modeling of three phase flow in deforming saturated oil reservoirs [J]. Int. J Nun Anal Methods Geoech.1993, 17: 577-598.
    [270] Bear J. Academic Flow and Contaminant Transport in Fractured Rock [M]. San Dieo: Pr Inc .1993.
    [271]王自明.油藏热流固耦合模型研究及应用初探[D].西南石油学院, 2002.
    [272]孔祥言,李道伦,徐献芝等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展, 2005, 20(2): 269-275.
    [273]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报, 1994, 13(3): 229-239.
    [274] Zhao Yangsheng. New advances block-fractured medium rock fluid mechanics [A]. Proceedings of Int. Symp on Coupled Phenomena in Civil, Mining & Petroleum Engineering [C]., Sanya, Hainan, China. Nov. 1999.
    [275]梁冰,章梦涛,王永嘉.煤层瓦斯渗流于煤体变形的耦合数学模型及其数值解法[J],岩石力学与工程学报, 1996, 15 (2) : 135-142.
    [276]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报, 1999, 18(6): 397-401.
    [277]刘建军.煤层气热-流-固耦合渗流数学模型[J].武汉工业学院学报, 2002, 2: 91-94.
    [278]汪有刚,刘建军,杨景贺等.煤层瓦斯流固耦合渗流的数值模型[J].煤炭学报, 2001, 26(3): 285-289.
    [279]丁继辉,麻玉鹏,李凤莲.有限变形下固流多相介质耦合问题的数学模型及失稳条件[J].水利水电技术, 2004, 11: 18-21.
    [280]李祥春,郭勇义,吴世跃等.考虑吸附膨胀应力影响的煤层瓦斯流-固耦合渗流数学模型及数值模拟[J].岩石力学与工程学报, 2007, 26(增1): 2743-2748.
    [281]尹光志,王登科,张东明等.含瓦斯煤岩固气耦合动态模型与数值模拟研究[J].岩土工程学报, 2008,30(10): 1430-1436.
    [282]周晓军,宫敬.气-液两相瞬变流的流固耦合研究[J].石油大学学报, 2002, 26(5): 123-126.
    [283]张玉军.气液二相非饱和岩体热-水-应力耦合模型及二维有限元分析[J].岩土工程学报,2007, 29(6): 901-906.
    [284]郭永存,王仲勋,胡坤.煤层气两相流阶段的热流固耦合渗流数学模型[J].天然气工业, 2008, 28(7): 73-74.
    [285]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报, 1998, 19(1):33-37.
    [286] Tim Douglas J R. Finite difference methods for two-phase Incompressible flow in porous media [J]. Siam J Numer Anal, 1983, 20(4): 681-696.
    [287] Mokhtar Kirane, Said Kouachl. Global solutions to a system of strongly coupled reaction diffusion equations [J]. Nonlinear Analysis: Theory, Methods and Applications, 1996 26(8): 1387-1396.
    [288] Lasseux, Michel Qulntard. Determination of permeability tensor of two phase flow in homogeneous porous medial [J]. Theory. Transport In Porous Media, 1996, 24: 107-137.
    [289] Bishop A.W., Morgenstern N.R. Stability coefficient for earth slope [J]. Geotechnique,1960, 10(4): 129-147.
    [290]陈正汉等,非饱和土的有效应力探讨[J].岩土工程学报, 1994, 16(3): 62-69.
    [291]徐永福.我国膨胀土分形结构的研究[J].海河大学学报, 1997, 25(1): 18-23.
    [292]江伟川,南亚林.与孔隙水形态有关的非饱和土有效应力公式及其参数的定量[J].岩土工程技术. 2003, (1): 1-4.
    [293]éttinger I. L. Swelling stress in the gas-coal system as an energy source in the development of gas burst [J], Soviet Mining Science 1979, 15(5): 494-501.
    [294] Borisenko A. Effect of Gas Pressure in Coal strata [J]. Soviet Mining Science, 1985, 21(5): 88-91.
    [295]赵阳升,胡耀庆.孔隙瓦斯作用下煤体有效应力规律的试验研究[J].岩土工程学报, 1995, (3): 26-31.
    [296]李传亮,孔祥言,徐献芝等.多孔介质的双重有效应力[J].自然杂志, 1999, 21(5): 288-292.
    [297] George J.D. St, Barkat M.A. The change in effective stress associated with shrinkage from gas desorption in coal [J]. International Journal of Coal Geology, 2001, 45:105-113
    [298]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报, 2005, 24(10): 1674-1678.
    [299]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J],中国矿业学院学报, 1987,16(1): 21-28.
    [300] Harpalani S, Guoli Chen. Estimation of changes in fracture porosity of coal with gas emission [J]. Fuel, 1995, 74(10): 1491-1494.
    [301]方恩才,沈兆武,朱贵旺等.含瓦斯煤的有效应力与力学变形破坏特征[J].中国科技大学学报, 2001, 31(6): 686-693.
    [302]孙培德.变形过程中煤样渗透率变化规律的实验研究[J].岩石力学与工程学报, 2001 (S1): 1801-1804.
    [303]傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].高校地质学报, 2003, 9(3): 373-377.
    [304]李传亮,孔祥言,杜志敏等,多孔介质的流变模型研究[J].力学学报, 2003, 35(2):230-234.
    [305]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展, 2003, 18(4): 419-426.
    [306]王学滨,宋维源,马剑等.多孔介质岩土材料剪切带孔隙特征研究(1)——孔隙度局部化[J].岩石力学与工程学报, 2004, 23(15): 2514-2518.
    [307]王学滨,宋维源,马剑等.多孔介质岩土材料剪切带孔隙特征研究(2)——孔隙度局部化[J].岩石力学与工程学报, 2004, 23(15): 2519-2522.
    [308] Zhu W. C., Liu J., Sheng J. C., etc., Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams [J]. International Journal of Rock Mechanics and Mining Science, 2007: 1-10
    [309] Barry D. A., Lockington D. A., etc., Analytical approximations for flow in compressible, saturated, one-dimensional porous media [J]. Advances in Water Resources, 2007, 30: 927-936
    [310]李春光,王水林,郑宏等.多孔介质孔隙率与体积模量的关系[J].岩土力学, 2007, 28(2):293-296.
    [311]隆清明,赵旭生,孙东玲等.吸附作用对煤的渗透率影响规律实验研究[J].煤炭学报, 2008, 33(9): 1030-1034.
    [312]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社, 1997.
    [313]聂百胜.含瓦斯煤岩力电效应及机制的研究[D].徐州:中国矿业大学, 2001.
    [314]姜耀东,祝捷,赵毅鑫等.基于混合物理论的含瓦斯煤本构方程[J].煤炭学报, 2007, 32(11): 1132-1137.
    [315]尤明庆.岩石煤样的强度及变形破坏过程[M].北京:地质出版社, 2000, 13-85.
    [316]叶金汉.岩石力学参数手册[M].北京:水利水电出版社, 1991.
    [317]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社, 2002.
    [318]周维垣.高等岩石力学.北京:水利水电出版社, 1990.
    [319] Vyalov S.S. Rheological fundamentals of soil mechanics [M]. New York: Elsevier, 1986; 147-154.
    [320] Maranini E, Brignoli M. Creep behavior of a weak rock: experimental characterization [J]. Int. J. Rock Mich. Min. Sci. 1999; 36: 127-138.
    [321] Fabre G, Pellet F. Creep and time-dependent damage in argillaceous rock [J]. Int. J. RockMich. Min. Sci. 2006; 43: 950-960.
    [322] Cogan J. Triaxial creep tests of Opohnga limestone and Ophir shale [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976; 15: 1-10.
    [323] Price NJ. A study of time-strain behavior of coal-measure rocks [J]. Int. J. Rock Mech. Min. Sci. 1984; 1: 277-303.
    [324] Gasc-Barbier M, Chanchole S, Bérest P. Creep behavior of Bure clayey rock [J]. Appl. Clay Sci. 2004; 26: 449-458.
    [325] Ma L, Daemen JJK. An experimental study on creep of welded tuff [J]. Int. J. Rock Mech. Min. Sci. 2006; 43: 282-291.
    [326] Suping P, Jincai Z. Engineering geology for underground rocks [J]. New York: Spinger, 2007.
    [327]任中俊,彭向和,万玲等.三轴加载下岩盐蠕变损伤特性的研究[J]. 2008; 25(2): 212-217.
    [328] Chuanliang L, Xiaofan C, Zhimin D. A new relationship of rock compressibility with porosity [A]. SPE Asia Pacific Oil and Gas Conference and Exhibition, APOGCE 2004[C]., 163-167.
    [329] Timoshenko S P. History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures [M]. New York: McGraw-Hill, 1953; 336-357.
    [330] Carter N L. Rheology of salt rock [J]. J. Struct. Geol. 1993; 15 (10): 1257-1272.
    [331] Munson D E. Preliminary deformation mechanism map for salt [A]. SAND-79-0076[C], Albuquerque, N M: Sandia National laboratory, 1979.
    [332]赵延林,曹平,文有道等.岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报, 2008, 27(3): 477-486.
    [333] Ma L. Experimental investigation of time dependent behavior of welded Topopah Spring tuff [D]. University of Nevada, Reno, 2004.
    [334] Cruden DM. The static fatigue of brittle rock under uniaxial compression [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1974; 11: 67-73.
    [335] Kranz RL, Scholz CH. Critical dilatant volume of rocks at the onset of tertiary creep [J]. J. Geophys. Res. 1977; 82(30): 4893-4898.
    [336] Seidal J P. Experimental measurement of coal matrix shrinkage due to gas desorption and implication for cleat permeability increase [A]. In: Proceedings Int. Meeting of Petroleum Eng [C]. Beijing, China. SPE 30010, 1995.
    [337] Harpalani S, Shraufnagel RA. Shrinkage of coal matrix with release of gas and its impact on permeability of coal [J]. Fuel 1990;69:551-556.
    [338] Butt S.D. Development of an apparatus to study the gas permeability and acoustic emissioncharacteristics of an outburst-prone sandstone as a function of stress [J]. Int J Rock Mech Min Sci. 1999, 36: 1079-1085.
    [339] Steve Zou D.H, Yu C, Xian X.F. Dynamic nature of coal permeability ahead of a longwall face [J]. Int J Rock Mech Min Sci. 1999, 36: 693-699.
    [340] ASTM Standard D4525. Standard test method for permeability of rocks by Flowing air, American Society for the Testing of Materials [S], 1990.
    [341]张广洋,胡耀华,姜德义等.煤的渗透性实验研究[J].贵州工学院学报, 1995, 24(4): 65-68.
    [342]高磊.矿山岩石力学[M].北京:机械工业出版社, 1987.
    [343]刘雄.岩石流变学概论[M].北京:地质出版社, 1994.
    [344]王维纲.高等岩石力学理论[M].北京:冶金工业出版社, 1996.
    [345]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社, 2008.
    [346]于学馥,郑颖人,刘怀恒等.地下工程围压稳定性分析[M].北京:煤炭工业出版社, 1983.
    [347]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报, 2006, 25(3): 434-447.
    [348] Ziekiewicz OC, Cormeau IC. Visco-plasticity-Plasticity and creep in elastic solids-A unified numerical solution approach [J]. Int J Numer Meth Eng, 1974, 8(4); 821-845.
    [349] Gioda G. A finite element solution of non-linear creep problems in rocks [J]. Int J Rock Mech Min Sic Geomech Abs, 1981, 18(1): 35-46.
    [350] Owen DRJ, Hinton E. Finite elements in plasticity: Theory and practice. Swansea [M]. Pineridge Press Limited, 1980.
    [351] Zienkiewicz OC, Owen DRJ, Cormeau IC. Analysis of viscoplastic effects in pressure vessels by the finite element method [J]. Nucl Eng Des, 1974, (28): 278-288.
    [352]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社, 1999.
    [353]李青麟.软岩蠕变参数的曲线拟合计算方法[J].岩石力学与工程学报, 1998, 17(5): 559-564.
    [354]王高雄,周之铭,朱思铭等,常微分方程[M].北京:高等教育出版社, 2003, 249~261.
    [355] Krajcinovic, D, Fanilla, D. A micromechanicald amage for concrete.Engineering [J]. Fracture Mechanics, 1986, 25(5/6): 586-596.
    [356] Sumarac, D, Krajcinovic, D. A self-constent model for microcrack-weakened solids [J]. Mech. Mater. 1987, 6: 39–52.
    [357] Khan A.S, Huang S. Contimuum theory of plasticity [M]. John Wiley & Sons, 1995
    [358]匡震邦.非线性连续介质力学[M].上海:上海交通大学出版社, 2001.
    [359] Coleman, B.D, Gurtin M. Thermodynamics with internalv ariables [J]. Journal of Chemistryand Physics, 1967, 47: 597-613.
    [360] Lemaitre J, Desmorat R. Engineering damage mechanics [M]. Spring, 2005.
    [361] Murakami, S. Efects of cavity distribution in constitutivee quations of creep and creep damage [J]. Euro.Meth.Colloque on DamageMechanics, 1981, Cachan, France.
    [362] Lemaitre J. Evaluation of dissipation and damage in metals submitted to dynamic loading [J]. In: Proceeding of ICM-1, Kyoto, 1971.
    [363] Ladeveza J, Poss M, Proslier L. Damage and fracture of tridirectional composites [A]. In: Proc. ICCM-4 [C]., 1982:. 649-658.
    [364] Berthaud Y. Ultrasonic testing method: an aid for material characterization [A]. In: Fracture of Concrete and Rock: SEM-RILEM International Conference [C], Houston, USA. 1987, 644-654.
    [365] Chrysochoos A. Examination of the plastic deformations in a material with infrared thermography [A]. Direction des Recherches, Etudes et Techniques [C], Paris (France). Centre de Documentation de l'Armement., 1985. (in French)
    [366] Lemaitre J. Plasticity and damage under random loading [A]. In: Proceeding of the U.S. National Congress of Applied Mechanics [C], Austin, USA, 1986, 125-134.
    [367] Lemaitre J, Desmorat R, Sauzay S. Anisotropic damage law of evolution [J]. European Journal of Mechanics, A/Solids, 2000, 19(2): 187-208.
    [368] Hill, R. The mathematical theory of plasticity [M]. Oxford University Press, 1950
    [369] Chen, W.F. Constitutive equations for engineering materials [J] Plasticity and modeling. Elsevier, Amsterdam, 1994, (1.2).
    [370] Shen, Z.J. A granular medium model for liquefaction analysis of sands [J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 742-748.
    [371] Brown, E.T. Analytical and computional methods in engineering rock mechanics [J]. Allen&Unwin Ltd. 1987.
    [372]沈珠江.土的弹塑性应力应变关系的合理形式.岩土工程学报,1980, 2(2): 11-19.
    [373]沈珠江.理论土力学[M].北京:中国水利水电出版社, 2000.
    [374] Yong, R.N, Mohamed, A.O. Development of nonassociated flow rule for anisotropic clays [J]. Journal of Engineering Mechanics, 1988, 114(3): 404-420.
    [375] Lade, P.V., et al. Nonassociated flow and stability of granular materials [J]. Journal of Engineering Mechanics, 1987, 113(9): 1302-1318.
    [376] Lade, P.V., Pradel, D. Instability and plastic flow of soils (I): experimental observations [J]. Journal of Engineering Mechanics. 1990.116(11): 2532-2550.
    [377] Pradel, D., Lade, P.V Instability and plastic flow of soils (II): analytical investigation [J]. Journal of Engineering Mechanics, 1990, 116(11): 2551-2566.
    [378] Dafalias, Y F. Il'yushin's postulate and resulting thermodynamic conditions on elastic-plastic coupling [J]. International Journal of Solids and Structures, 1977, 13: 239-251.
    [379]王仁,熊祝华,黄文彬.塑性力学基础[M].科学出版社, 1982.
    [380]郑颖人,沈珠江,龚晓南.广义塑性力学——岩土塑性力学原理[M].北京:中国建筑工业出版社, 2002.
    [381]杨光华.岩土类材料的多重势面弹塑性本构模型理论[J].岩土工程学报, 1991, 13(5): 99-107.
    [382]徐献芝,李培超,李传亮.多孔介质有效应力原理研究[J].力学与实践, 2001, 23(4): 42-45.
    [383]卢平.煤瓦斯共采与突出防治机理及应用研究[D]. [博士学位论文].合肥:中国科学技术大学, 2002.
    [384] Brace W F. A noteon permeability changes in geologic material due to stress.Pure [J]. Appl. Geophys., 1978, 116(3):627-632.
    [385] Bossart P, Meier PM, Moeri A, Trick T, Mayor JC. Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory [J]. Engineering Geology, 2002, 66: 19-38.
    [386] Hansen N.R, Schreyer H.L. A thermodynamically consistent framework for theories of elastoplasticity coupled with damage [J]. International Journal of Solids and Structures, 1994, 31(3): 359-389.
    [387] Shao J.F, Rudnicki J.W. A microcrack based continuous damage model for brittle geomaterials [J]. Mechanical of Materials, 2000, 32: 607-619.
    [388] Jia Y, Song X.C, Duveau G, Su K, Shao J.F. Elastoplastic damage modeling of argillite in partially saturated condition and application [J]. Physics and Chemistry of the Earth, 2007, 32: 656-666.
    [389] Menzel A, Ekh M, Runesson K, Steinmann P. A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage [J]. International Journal of Plasticity, 2005, 21: 397-434.
    [390] Cicckli U, Voyiadjis G. Z, Abu Al-Rub R.K. A plasticity and anisotropic damage model for plain concrete [J]. International Journal of Plasticity, 2007, 23: 1874-1900.
    [391] Chaboche J. L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity [J]. International Journal of Plasticity, 1989, 5:247-302.
    [392] Simo J.C, Honein T. Variational formulation, discrete conservation laws, and path domain independent integrals for elasto-viscoplasticity [J]. Journal of Applied Mechanics; Transaction of the ASME, 1990, 57: 488-497.
    [393] Simo J.C, Hughes T.J.R. Computational inelasticity [J]. Interdisciplinary AppliedMathematics New York: Spinger, 1998.
    [394] Pietruszczak S, Jiang J, Mirza F.A. An elastoplastic constitutive model for concrete [J]. International Journal of Solids and structures 1988, 24(7): 705-722.
    [395] Chiarelli A.S. Experimental investigation and constitutive modeling of coupled elastoplastic damage in hard claystones [D]. University of Lille (in French) 2000.
    [396] Gatelier N, Pellet F, Loret B. Mechanical damage of an anisotropic rock under cyclic triaxial tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(3): 335-354.
    [397]匡震邦,顾海澄,李中华.材料的力学行为[M].北京:高等教育出版社, 1998.
    [398] COMSOL Multiphysics User’s Guide, Version 3.3.
    [399] COMSOL Multiphysics Modeling Guide, Version 3.3.
    [400]孙培德,杨东全,陈奕柏.多物理场耦合模型及数值模拟导论[M].北京:中国科学技术出版社. 2007.
    [401] Klinkenberg L J. The permeability of porous media to liquids and gases [J]. API Drilling and Production Practices, 1941(2), 200-213.
    [402] Jones F O, Owens W W. A laboratory study of low permeability gas sands [J]. J Pet Tech, 1980, 32(9): 1631–1640.
    [403] Wu Y S, Pruess K, Persoff P. Gas flow in porous media with Klinkenberg effects [J]. Transp Porous Media, 1998, 32(11): 117–137.
    [404] Thom R. Stabilitéstructurelle et morphogénése [J]. Berjamin W A, Reading Mass: Berjamin, 1972.
    [405] Thom R. Structural stability and morphogenesis (translated by Fowler G H) [M]. New York, Benjamin-Addison Wesley, 1975.
    [406] Thompson J M T, Zeeman E C. Classification of elementary catastrophes of codimension≤5, Structural stability, the Theory of catastrophes and Applications in the Science [C]. Lecture Notes in Mathematics 525. Berlin: Sping-Verlag, 1976, 263-327.
    [407] Thompson J M T, Hunt G W. Instabilities and catastrophes in science and engineering [M]. Chichester, Wiler, 1982.
    [408] Zeeman E C. Bifurcation, catastrophes and trubulence. New directions in applied mathematics [M]. New York: Spring-Verlag, 1982.
    [409] Poston T, Stewart I. Catastrophes theory and its application [M]. London: Pitman, 1978.
    [410]程不时.突变理论及其应用[J].科学通报, 1978, 23, 513-522.
    [411]陈应天.突变理论在力学中的应用[J]. 1979, 1(3): 9-14.
    [412] Saunders P T.灾变理论入门(凌复华译)[M].上海:上海科学技术文献出版社, 1983.
    [413]凌复华.突变理论及其应用[M].上海:上海交通大学出版社, 1987.
    [414] Cubitt, J M, Shaw B J. Geological implications of steady state mechanisms in catastrophetheory [J]. IntAss Math Geo1, 2006, 38(6):657-662.
    [415] Henley, S J. Catastrophe theory models in geology [J]. Int Ass Math Geo1, 2006, 38(6): 649-655.
    [416] Alberto Carpinteri. Cusp catastrophe interpretation of fracture instability [J]. Journal of the Mechanics and Physics of Solids,2003,52(5):567-582.
    [417] Liu Dingwen, Wang Jingyao, Wang Yongjuan. Application of catastrophe theory inearthquake hazard assessment and earthquake prediction research [J]. Tectonophysics, 2001, 167(2-4): 179-186.
    [418] Cherepanov G P, Germanovich L N. An employment of the catastrophe theory in fracture mechanics as applied to brittle strength criteria [J]. Energy Conversion and Management, 2003, 51(10): 1637-1649.
    [419] Wang J.A, Park H D. Coal mining above a confined aquifer[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(4):537-551.
    [420] Christina Magill, Russell Blong, John McAneney. VolcaNZ-A volcanic loss model for Auckland, New Zealand [J]. Journal of Volcanology and Geothermal Research, 2006, 149(3-4): 329-345.
    [421] Krinitzsky Ellis L. Earthquakes and soil liquefaction in flood stories of the ancient Near East[J]. Engineering Geology, 2005,76(3-4): 295-311.
    [422] Siqing Qin, Jiu Jimmy Jiao, Sijing Wang, Hui Long. A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process[J]. Int Ass Math Geo1, 2001,38(44-45): 8039-8109.
    [423]勾攀峰,汪成兵,韦四江.基于突变理论的深井巷道临界深度[J],岩石力学与工程学报, 2004,23(24): 4137-1411.
    [424]尹光志,王登科,黄滚.突变理论在地表沉陷中的应用[J].矿山压力与顶板管理. 2005, 22(4): 94-96.
    [425]唐春安.岩石破裂过程中的灾变[M],北京:煤炭工业出版社, 1993.
    [426]徐增和.坚硬顶板下煤柱岩爆的尖点突变理论分析[J],煤炭学报, 1996, 21(4): 363-373.
    [427]李造鼎.岩土动态开挖的灰色尖点突变建模[J],岩石力学与工程学报, 1997, 16(2): 252-257.
    [428]潘岳,王志强.狭窄煤柱冲击地压的折迭突变模型[J],岩土力学, 2004, 25(1): 23-30.
    [429]潘岳,王志强,张勇.突变理论在岩体系统动力失稳中的应用[M].北京:科学出版社, 2008.
    [430]过镇海,张秀琴,张达成等.混凝土应力-应变全曲线的试验研究[J].建筑结构学报, 1982, 01: 1-12.
    [431]《数学手册》编写组.数学手册[M].北京:人民教育出版社, 1979.
    [432]尤明庆.岩石的力学性质[M].北京:地质出版社, 2007.
    [433]许江,尹光志,鲜学福等.煤与瓦斯突出潜在危险区预测的研究[M].重庆:重庆大学出版社, 2004.
    [434] Hoek E, Brown E. T. Empirical strength criterion for rock masses [J]. J. Geotech. Engng Div., ASCE. 1980,106 (GT9):10132-1035.
    [435] Hoek E, Wood D. A modified Hoek-Brown failure criterion for jointed rock masses [A]. Proc. Int. Conf. Eurock’92 [C],Chest, England, 1992, 202-214.
    [436] Nadai A. Theory of flow and fracture of solids [M] New York: McGraw-Hill. 1950.
    [437] Mcclintock F A, Walsh J B. Friction on Griffith cracks under pressure [A]. Fourth U.S. Nat. Congress of Appli. Mech., Proc[C]., 1962, 1015-1021.
    [438] Brace W F. An extension of Griffith theory of fracture to rocks [J]. J. Geophys. Res., 1960, 65: 3477-3780.
    [439] Drucker D C, Prage W. Soil mechanics and plastic analysis or limit design [J]. Quart. Appl. Math. 1952, 10: 157-165.
    [440]张鲁渝,刘东升,时卫民.扩展广义Drucker-Prage屈服准则在边坡稳定分析中的应用[J].岩土工程学报, 2003, 25(2): 216-219.
    [441]朱建凯,邓楚键,陈金峰.平面应变条件下的M-C准则的等效广义Mises变换公式及其应用[J].水利学报, 2006, 37(7): 870-873.
    [442] Murrell. S A F. A criterion for brittle frature of rocks and concrete under triaxial and the effect of pore pressure on the criterion [A]. In: Pro. Fifth Rock Mech. Symp., University of Minnesota, Also in: Fairhurst C. Rock Mechanics[C]. Oxford: Pergamon, 1963, 563-577.
    [443]贺永年.关于Griffith准则的Murrell三维推广[J].力学与实践, 1990, 12(5): 22-24.
    [444] Yoshinaka R, Yamabe T. A strength criterion of rocks and rock masses [A]. In: Proc. of the Inter. Symp. on Weak Rock [C], Tokyo, 1981, 613-618.
    [445]尤明庆.岩石的强度和强度准则[J].岩石力学与工程学报, 1998, 17(5): 602-604.
    [446]俞茂宏,何丽南,宋凌宇.双剪应力强度理论及其推广[J].中国科学A辑, 1985, 12: 1113-1120.
    [447] Yu Maohong, He Linan. A new model and theory on the yield and failure of material under the complex stress states [A]. In: Mechanical Behavior of Materials-Ⅵ, Vol. 3 [C]. Oxford: Pergamon Press, 1991, 841-846.
    [448]俞茂宏.岩土类材料的统一强度理论及其应用[J],岩土工程学报, 1994, 16(2): 1-9.
    [449]俞茂宏,杨松岩,范寿昌等.双剪统一弹塑性本构模型及其工程应用[J].岩土工程学报, 1997, 19(6): 2-10.
    [450]张金铸,林天健.三轴试验中岩石的应力状态和破坏性质[J].力学学报, 1979, (2):99-105.
    [451] Mogi K. Effect of triaxial stress systems on the failure of dolomite and limestone [J]. Tectono-physics, 1971, 11: 111-127.
    [452] Mogi K. Fracture and flow of rocks [J]. Tectono-physics, 1972, 13: 541-568.
    [453]耿乃光,许东俊.最小主应力减小引起岩石破坏时中间主应力的影响[J].地球物理学报, 1985, 28(2): 191-197.
    [454] Brace W F. Brittle fracture of rocks [A]. In: Judd W R. State of stress in the earth’s crust [C]. New York: Eleviser, 1964, 111-174.
    [455] Chang C, Haimson B C. Two distinct modes of compressive failure in rocks [A]. In: Elsworth D, Tinucci J, Heasley K. Rock Mechanics in the National Interest (Vol II). Netherlands: A Balkema, 2001, 1251-1258.
    [456] Brown E T. Fracture of rock under uniform biaxial compression [A]. In: Proc. 3rd congr. Int. Soc. Rock Mech. Denver [C], 1974, 2A: 111-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700