用户名: 密码: 验证码:
动力电池组SOC在线估计模型与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近几年国民经济的快速发展和人民生活水平的日益提高,汽车工业在全世界得到了迅猛发展。汽车的大量使用在给人们生活带来便利的同时,也带来了能源消耗、环境污染等诸多负面影响。面对日益严重的石油过快消耗和环保问题,电动汽车作为一种新的绿色交通工具,是各国政府不约而同所提出的一种富有成效的应对措施。在电动汽车中,电池直接作为主动能量供给部件,其工作状态的好坏直接关系到整个汽车的行驶安全性和运行可靠性。为确保电动汽车中的电池组性能良好,延长电池组使用寿命,须及时、准确地了解电池的各种运行状态,其中尤以电池荷电状态(State of Charge, SOC)的精确估算最为关键。本文针对动力锂电池组的SOC在线精确估计这一问题,从锂电池动态模型、估计算法等方面开展了广泛深入的研究。论文主要研究工作如下:
     (1)针对动力电池这一动态非线性系统,提出了一种锂电池过程模型的具体改进方法,并给出了相应的模型参数在线估计算法。该方法使用放电速率比例系数对不同放电速率对动力电池SOC的影响进行建模,采用二阶多项式拟合模型完成实际放电速率下的放电容量到标称容量的折算;另一方面,使用温度比例系数对不同温度条件对动力电池SOC的影响进行建模,采用二阶多项式拟合模型完成实际温度下的放电容量到标称容量的折算。放电速率比例系数和温度比例系数的有机结合可以更加客观地描述锂电池在实际放电速率和温度工作条件下的放电特性,从而有效提高单体锂电池SOC的估计精度。
     (2)利用扩展卡尔曼滤波、Unscented卡尔曼滤波以及粒子滤波等贝叶斯滤波方法,给出了电池SOC估计的具体算法和步骤,并在多种典型电动汽车运行工况下对相关算法进行了仿真,对比分析了它们在SOC估计精度、收敛速度、算法复杂度及鲁棒性等方面的性能。
     (3)针对动力锂电池由于生产、使用过程中所存在的个体差异,以及锂电池使用过程中不可避免的老化现象,提出了一种电池模型参数与SOC联合在线估计方法。该方法在进行锂电池SOC在线估计的同时,可以对电池模型参数尤其是内阻参数进行在线估计和更新,从而可以进一步提高电池SOC估计的精确度。
     (4)实现了一个由4只容量为50Ah的动力电池组嵌入式SOC在线估计原型演示系统,开发了相应的系统硬件和软件。实验结果表明,采用文中所提出的基于采样点卡尔曼滤波的锂电池内阻与SOC联合估计算法可以快速地完成动力电池组的SOC精确估计,其最大估计误差为5%,平均估计误差为3%,一次估计时间约为3~4s;所开发的电池组嵌入式SOC在线估计原型系统符合预期效果,为后续现场应用提供了较为可靠的依据。
With the rapid development of the national economy and increasing living standards in recent years, the automotive industry has been developing rapidly in the world. A large number of cars bring convenience to people's lives, but also has brought many negative effects of energy consumption, and environmental pollution. With these growing excessive oil consumption and environmental issues, Governments in the world coincidently develop electric vehicles (EVs) as a new green transport. In electric vehicles, batteries are used directly as the active energy supply, their working states are very important to driving safety and operational reliability of the whole car. To ensure good performance of the battery pack in an EV so as to extend its service life, a timely and accurate understanding of the various operating status, especially the state of charge (SOC) of the battery pack, are very critical to the whole system. In this paper, the problem of online accurate estimate of the SOC for a lithium power battery pack is considered. Extensive researches on the dynamic lithium battery models and the algorithms for SOC estimation are carried out. The main research works of the thesis are as follows:
     (1)For the power battery dynamic nonlinear system, specific improvements of the process model of lithium batteries are proposed, and the corresponding model parameters estimation algorithms are given. A discharge rate proportional coefficient is used to model the relationship between different discharge rates and the SOC of the battery, which is a second order polynomial; on the other hand, a temperature proportional coefficient is utilized to model the relationship between different temperature conditions and the SOC, which is another second-order polynomial. The combination of the discharge rate proportional coefficient and the temperature proportional coefficient can effectively simulate the discharge characteristics of lithium batteries in real operating conditions, and can effectively improve the estimated accuracy of the SOC of a single battery.
     (2)Bayesian filtering methods such as the extended Kalman filter, the Unscented Kalman filter and the particle filter, are used for battery SOC estimation. Algorithms and specific steps are given in detail. Several typical operating conditions are simulated to verify the effectiveness of the proposed methods. Comparative analysis for the SOC estimation performances of the SOC estimatin algorithms such as the accuracy, convergence speed, complexity and robustness are also shown.
     (3)Individual differences exist inevitablely during production processe or using process. On the other hand, aging effect exist commonly for batteries. All these make the battery model parameters variate timely. In this paper, an online joint estimation method of the lithium battery SOC and the battery model parameters, especially the internal resistance, are proposed, which can further improve the estimation accuracy of the battery SOC.
     (4)A prototype demonstration system of SOC online estimation for battery pack is developed. The battery pack is composed of four lithium-ion batteries with a nominal capacity of50Ampere hours and a nominal voltage of3.2volts. Both the system hardware and software are built. Experimental results show that the sigma point Kalman filter based internal resistance and SOC joint estimation algorithm can be used for a precise estimation of the SOC of the battery pack with a maximum estimation error of5%, while the average estimation error is3%. The time consumed for one step estimation is3~4seconds. The developed embedded prototype system verifies that the proposed methods can be applied for real applications.
引文
[1]于冲.基于运输成本与风险最小化的我国原油供应网络综合优化[D].2012.华南理工大学.
    [2]曹秉刚.中国电动汽车技术新进展[J].西安交通大学学报,2007(01):pp.114-118.
    [3]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].2007.上海交通大学.
    [4]黎林.纯电动汽车用锂电池管理系统的研究[D].2009.北京交通大学.
    [5]汪学明.纯电动汽车传动系统参数优化的仿真研究[D].2009.吉林大学.
    [6]孔庆.混合动力汽车能量管理策略及SOC估计研究[D].2009.山东大学.
    [7]谭强俊.CVT混合动力汽车再生制动系统性能仿真与试验研究[D].2006.重庆大学.
    [8]于远彬,王庆年.基于Advisor的仿真软件的二次开发及其在复合电源混合动力汽车上的应用[J].吉林大学学报(工学版),2005(04):pp.353-357.
    [9]吕赕,张东来,秦海亮,王毅, et al. CNG/汽油双燃料汽车燃气ECU的设计[J].汽车工程,2007(03):pp.187-190+215.
    [10]罗少文.我国新能源汽车产业发展战略研究[D].2008.复旦大学.
    [11]Chern, TL, PL Pan. The research of smart li-ion battery management system [C]. in Industrial Electronics and Applications,2007. ICIEA 2007.2nd IEEE Conference on. 2007:IEEE. pp.2273-2277.
    [12]Hu, J., W. Liu, W. Khalil, M. Ismail. Increasing sleep-mode efficiency by reducing battery current using a DC-DC converter [C]. in Circuits and Systems (MWSCAS),2010 53rd IEEE International Midwest Symposium on.2010:IEEE. pp.53-56.
    [13]张小东.电动汽车磷酸铁锂电池管理系统的研究[D].2008.重庆大学.
    [14]Cheng, KWE, BP Divakar, H. Wu, K. Ding, et al. Battery-management system (BMS) and SOC development for electrical vehicles [J]. Vehicular Technology, IEEE Transactions on,2011.60(1):pp.76-88.
    [15]Juang, L.W., P.J. Kollmeyer, TM Jahns, RD Lorenz. System identification-based lead-acid battery online monitoring system for electric vehicles [C]. in Energy Conversion Congress and Exposition (ECCE),2010 IEEE.2010:IEEE. pp.3903-3910.
    [16]Zheng, M., B. Qi, H. Wu. A Li-ion battery management system based on CAN-bus for electric vehicle [C]. in Industrial Electronics and Applications,2008. ICIEA 2008.3rd IEEE Conference on.2008:IEEE. pp.1180-1184.
    [17]廖晓军,何莉萍,钟志华,周红丽.et al.电池管理系统国内外现状及其未来发展趋势[J].汽车工程,2006(10):pp.961-964.
    [18]Bonnett, W.B. Smart battery adaptive algorithms-system gain calibration elimination by use of adaptive learn cycle in integrated VFC measurement circuit [C]. in Applications and Advances,2001. The Sixteenth Annual Battery Conference on.2001:IEEE. pp. 311-316.
    [19]Pattipati, B., C. Sankavaram, K. Pattipati. System identification and estimation framework for pivotal automotive battery management system characteristics [J]. Systems, Man, and Cybernetics, Part C:Applications and Reviews, IEEE Transactions on,2011.41(6):pp.869-884.
    [20]武鹏.动力电池数字终端管理系统的研究[D].2007.天津大学.
    [21]张金灵.电动汽车智能电池系统的研究[D].2010.北京交通大学.
    [22]雷晶晶,李秋红,陈立宝,张金顶,et al.动力锂离子电池管理系统的研究进展[J].电源技术,2010(11):pp.1192-1195.
    [23]曹珊.基于CAN总线的混合动力汽车辅助动力单元系统与控制策略研究[D].2007.吉林大学.
    [24]刘新天.电源管理系统设计及参数估计策略研究[D].2011.中国科学技术大学.
    [25]田毅.电动汽车运行状态识别及HEV控制策略研究[D].2010.北京交通大学.
    [26]王海英,吴锋,胡宇,贾金林,et al.基于CAN总线的电动车动力电池组采集系统设计[J].电源技术,2010(11):pp.1166-1168.
    [27]杨朔.基于CAN总线的电动汽车电池智能管理系统的研究[D].2004.湖南大学.
    [28]郑敏信,齐铂金,吴红杰.基于双CAN总线的电动汽车电池管理系统[J].汽车工程,2008(09):pp.788-791+795.
    [29]刘纯坚.电动车电池管理系统现状,趋势以及开发研究[D].2011.复旦大学.
    [30]何洪文,余晓江.电动车辆动力电池的性能评价[J].吉林大学学报(上学版),2006(05):pp.659-663.
    [31]苏耿.镍氢电池负极关键技术研究及混合动力车用电池研制[D].2012.中南大学.
    [32]闫孝臣.电动汽车铅酸动力电池管理系统设计[D].2011.哈尔滨工业大学.
    [33]武国良.电动汽车用镍氢电池剩余电量估计方法研究[D].2010.哈尔滨工业大学.
    [34]肖婷.车用动力镍氢电池SOC建模与仿真[D].2008.武汉理工大学.
    [35]刘全兵.锂离子电池正极材料的制备及其性能研究[D].2012.华南理工大学.
    [36]李哲.纯电动汽车磷酸铁锂电池性能研究[D].2011.清华大学.
    [37]付文莉.锂离子电池电极材料的研究进展[J].电源技术,2009(09):pp.822-824.
    [38]工佳元,孙泽昌,魏学哲,戴海峰.电动汽车动力电池分选方法研究[J].电源技术,2012(01):pp.94-98.
    [39]李贵海.电池SOC估算策略研究[D].2006.浙江大学.
    [40]Santhanagopalan, S., R.E. White. State of charge estimation for electrical vehicle batteries [C]. in Control Applications,2008. CCA 2008. IEEE International Conference on.2008:IEEE. pp.690-695.
    [41]黄文华,韩晓东,陈全世,林成涛.电动汽车SOC估计算法与电池管理系统的研究[J].汽车工程,2007(03):pp.198-202.
    [42]刘浩.基于EKF的电动汽车用锂离子电池SOC估算方法研究[D].2010.北京交通大学.
    [43]温家鹏,姜久春,文锋,张维戈.Kalman算法在纯电动汽车SOC估算中的应用误差分析[J].汽车工程,2010(03):pp.188-192+227.
    [44]Di Filippi, A., S. Stockar, S. Onori, M. Canova, et al. Model-based life estimation of Li-ion batteries in PHEVs using large scale vehicle simulations:An introductory study [C]. in Vehicle Power and Propulsion Conference (VPPC),2010 IEEE.2010:IEEE. pp. 1-6.
    [45]Gould, CR, CM Bingham, DA Stone, P. Bentley. New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques [J]. Vehicular Technology, IEEE Transactions on,2009.58(8):pp.3905-3916.
    [46]Haifeng, D., W. Xuezhe, S. Zechang. A new SOH prediction concept for the power lithium-ion battery used on HEVs [C]. in Vehicle Power and Propulsion Conference, 2009. VPPC'09. IEEE.2009:IEEE. pp.1649-1653.
    [47]Kim, I.L.S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer [J]. Power Electronics, IEEE Transactions on,2010.25(4): pp.1013-1022.
    [48]Bhangu, BS, P. Bentley, DA Stone, CM Bingham. State-of-charge and state-of-health prediction of lead-acid batteries for hybrid electric vehicles using non-linear observers [C]. in Power Electronics and Applications,2005 European Conference on.2005:IEEE, pp. 10pp.-P.10.
    [49]Chiang, Y.H., W.Y. Sean. Dynamical estimation of State-of-Health of batteries by using adaptive observer [C]. in Power Electronics and Intelligent Transportation System (PE1TS),2009 2nd International Conference on.2009:IEEE. pp.110-115.
    [50]Chiang, Y.H., W.Y. Sean, J.C. Ke. Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles [J]. Journal of Power Sources,2011.196(8):pp.3921-3932.
    [51]李哲,卢兰光,欧阳明高.提高安时积分法估算电池SOC精度的方法比较[J].清 华大学学报(自然科学版),2010(08):pp.1293-1296+1301.
    [52]林成涛,陈全世,王军平,黄文华,et al.用改进的安时计量法估计电动汽车动力电池SOC[J].清华大学学报(自然科学版),2006(02):pp.247-251.
    [53]Kim. J.H., S.J. Lee, J.M. Lee, B.H. Cho. A new direct current internal resistance and state of charge relationship for the li-ion battery pulse power estimation [C]. in Power Electronics,2007. ICPE'07.7th Internatonal Conference on.2007:IEEE. pp.1173-1178.
    [54]Wu, G., R. Lu, C. Zhu, CC Chan. An improved Ampere-hour method for battery state of charge estimation based on temperature, coulomb efficiency model and capacity loss model [C]. in Vehicle Power and Propulsion Conference (VPPC),2010 IEEE.2010: IEEE. pp.1-4.
    [55]Cai, CH, D. Du, ZY Liu. Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS) [C]. in Fuzzy Systems,2003. FUZZ'03. The 12th IEEE International Conference on.2003:IEEE. pp.1068-1073.
    [56]Zenati, A., P. Desprez, H. Razik. Estimation of the SOC and the SOH of Li-ion Batteries, by combining Impedance Measurements with the Fuzzy Logic Inference [C]. in IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society.2010:IEEE. pp. 1773-1778.
    [57]Cai, C.H., Z.Y. Liu, H. Zhang. Artificial neural network in estimation of battery state of-charge (SOC) with nonconventional input variables selected by correlation analysis [C]. in Machine Learning and Cybernetics,2002. Proceedings.2002 International Conference on.2002:IEEE. pp.1619-1625.
    [58]Charkhgard, M., M. Farrokhi. State-of-charge estimation for lithium-ion batteries using neural networks and EKF [J]. Industrial Electronics, IEEE Transactions on,2010.57(12): pp.4178-4187.
    [59]Yanwei, L., Z. Kegang, H. Xiangdong, P. Feng. A new method based on RBFNN in SOC estimation of HEV battery [C]. in Control Conference (CCC),2010 29th Chinese.2010: IEEE. pp.4923-4927.
    [60]Lee, SJ, JH Kim, JM Lee, B.H. Cho. The state and parameter estimation of an Li-ion battery using a new OCV-SOC concept [C]. in Power Electronics Specialists Conference, 2007. PESC 2007. IEEE.2007:IEEE. pp.2799-2803.
    [61]Cuadras, A., O. Kanoun. SoC Li-ion battery monitoring with impedance spectroscopy [C]. in Systems, Signals and Devices,2009. SSD'09.6th International Multi-Conference on.2009:IEEE. pp.1-5.
    [62]Choudhury, JR, TP Banerjee, H. Gurung, A.K. Bhattacharjee, et al. Real time state of charge prediction using Kalman Filter [C]. in Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on.2009:IEEE. pp.1190-1194.
    [63]Haifeng, D., W. Xuezhe, S. Zechang. State and parameter estimation of a HEV li-ion battery pack using adaptive kalman filter with a new SOC-OCV concept [C]. in Measuring Technology and Mechatronics Automation,2009. ICMTMA'09. International Conference on.2009:IEEE. pp.375-380.
    [64]He, H., R. Xiong, X. Zhang, F. Sun, et al. State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model [J]. Vehicular Technology, IEEE Transactions on,2011.60(4):pp.1461-1469.
    [65]Kim, J., S. Lee, BH Cho. Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction [J]. Power Electronics, IEEE Transactions on,2012.27(1):pp.436-451.
    [66]Wang, L., C. Liao, J. Liu. Sigma-point Kalman filter application on estimating battery SOC [C]. in Vehicle Power and Propulsion Conference,2009. VPPC'09. IEEE.2009: IEEE. pp.1592-1595.
    [67]Windarko, N.A., J. Choi, G.B. Chung. SOC estimation of LiPB batteries using Extended Kalman Filter based on high accuracy electrical model [C]. in Power Electronics and ECCE Asia (ICPE & ECCE),2011 IEEE 8th International Conference on.2011:IEEE. pp.2015-2022.
    [68]Zhang, F., G. Liu, L. Fang. Battery state estimation using unscented Kalman filter [C]. in Robotics and Automation,2009. ICRA'09. IEEE International Conference on.2009: IEEE. pp.1863-1868.
    [69]Einhorn, M., W. Roessler, J. Fleig. Improved performance of serially connected Li-ion batteries with active cell balancing in electric vehicles [J]. Vehicular Technology, IEEE Transactions on,2011.60(6):pp.2448-2457.
    [70]Lin, C.H., H.W. Liu, C.M. Wang. Design and implementation of a bi-directional power converter for electric bike with charging feature [C]. in Industrial Electronics and Applications (ICIEA),2010 the 5th IEEE Conference on.2010:IEEE. pp.538-543.
    [71]Chaoui, H., P. Sicard. Accurate state of charge (SOC) estimation for batteries using a reduced-order observer [C]. in Industrial Technology (ICIT),2011 IEEE International Conference on.2011:IEEE. pp.39-43.
    [72]Chenglin, L., T. Zining, W. Lifang. SOC Estimation of LiFeO4 Battery Energy Storage System [C]. in Power and Energy Engineering Conference (APPEEC),2010 Asia-Pacific.2010:IEEE. pp.1-4.
    [73]Einhorn, M., F.V. Conte, C. Kral, J. Fleig. A method for online capacity estimation of lithium ion battery cells using the state of charge and the transferred charge [J]. Industry Applications, IEEE Transactions on,2012.48(2):pp.736-741.
    [74]Hu, Y., S. Yurkovich. Battery state of charge estimation in automotive applications using LPV techniques [C]. in American Control Conference (ACC).2010.2010:IEEE. pp. 5043-5049.
    [75]Kim, I.S. Nonlinear state of charge estimator for hybrid electric vehicle battery [J]. Power Electronics, IEEE Transactions on,2008.23(4):pp.2027-2034.
    [76]Kim, J., J. Shin, C. Jeon, B. Cho. High accuracy state-of-charge estimation of Li-Ion battery pack based on screening process [C]. in Applied Power Electronics Conference and Exposition (APEC),2011 Twenty-Sixth Annual IEEE.2011:IEEE. pp.1984-1991.
    [77]McIntyre, M., T. Burg, D. Dawson, B. Xian. Adaptive state of charge (SOC) estimator for a battery [C]. in American Control Conference,2006.2006:IEEE. pp.5 pp.
    [78]NianChun, W., Q. Yan. Research on State of Charge Estimation of Batteries Used in Electric Vehicle [C]. in Power and Energy Engineering Conference (APPEEC),2011 Asia-Pacific.2011:IEEE. pp.1-4.
    [79]Oliveira, MM, JPM Galdames, KT Vivaldini, DV Magalhaes, et al. Battery state estimation for applications in intelligent warehouses [C]. in Robotics and Automation (ICRA),2011 IEEE International Conference on.2011:IEEE. pp.5511-5516.
    [80]Yan, J., G. Xu, Y. Xu, B. Xie. Battery state-of-charge estimation based on Hoo filter for hybrid electric vehicle [C]. in Control, Automation, Robotics and Vision,2008. ICARCV 2008.10th International Conference on.2008:IEEE. pp.464-469.
    [81]胡信国动力电池技术与应用.2009:化学工业出版社.
    [82]张芯悦.锂离了电池功能化电解液的研究[D].2012.上海交通大学.
    [83]于京诺,王强,陈炜.电动汽车磷酸铁锂动力电池技术的发展[J].汽车电器,2011(10):pp.11-13.
    [84]李相哲,苏芳,林道勇电动汽车动力电源系统.2011:化学工业出版社.
    [85]Albertus, P., J. Newman. I:A simplified model for determining capacity usage and battery size for hybrid and plug-in hybrid electric vehicles [J]. Journal of Power Sources, 2008.183(1):pp.376-380.
    [86]Kumaresan, K., G. Sikha, R.E. White. Thermal model for a Li-ion cell [J]. Journal of the Electrochemical Society,2008.155(2):pp. A164-A171.
    [87]Doyle, M., J. Newman, A.S. Gozdz, C.N. Schmutz, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells [J]. Journal of the Electrochemical Society,1996.143(6):pp.1890-1903.
    [88]工松蕊,卢立丽,刘兴江.锂离子电池放电过程的模拟研究[J].电源技术,2011(06):pp.648-651.
    [89]Johnson, VH. Battery performance models in ADVISOR [J]. Journal of Power Sources, 2002.110(2):pp.321-329.
    [90]Salameh, Z.M., M.A. Casacca, W.A. Lynch. A mathematical model for lead-acid batteries [J]. Energy Conversion, IEEE Transactions on,1992.7(1):pp.93-98.
    [91]Manual, P.B.T. Revision 3.2001, DOE/ID-10597, February.
    [92]林成涛,仇斌,陈全世.电动汽车电池功率输入等效电路模型的比较研究[J].汽车工程,2006(03):pp.229-234.
    [93]Shepherd, C.M. Design of primary and secondary cells ii. an equation describing battery discharge [J]. Journal of the Electrochemical Society,1965.112(7):pp.657-664.
    [94]Plett, G. LiPB dynamic cell models for Kalman-filter SOC estimation [C]. in The 19th International Battery, Hybrid and Fuel Electric Vehicle Symposium and Exhibition.2002. pp.1-12.
    [95]杭州电子科技大学.一种基于采样点卡尔曼滤波的电池剩余电量估计方法[P].CN101598769.2009-12-09.
    [96]Whittle, P., N.Z. Mathematician, G. Britain Prediction and regulation by linear least-square methods.1963:English Universities Press London.
    [97]杭州电子科技大学.一种电池剩余电量的混合快速估计方法[P].CN101625397.2010-01-13.
    [98]Van Der Merwe, R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models [D].2004. University of Stellenbosch.
    [99]Kandepu, R., B. Foss, L. Imsland. Applying the unscented Kalman filter for nonlinear state estimation [J]. Journal of Process Control,2008.18(7):pp.753-768.
    [100]Fournier, T., J. Freymueller, P. Cervelli. Tracking magma volume recovery at Okmok volcano using GPS and an unscented Kalman filter [J]. Journal of Geophysical Research, 2009.114(B2):pp.B02405.
    [101]Ahn, K.W., K.S. Chan. Approximate Conditional Least Squares Estimation of a Nonlinear State-Space Model via Unscented Kalman Filter [J].2011.
    [102]Jafarzadeh, S., C. Lascu, M.S. Fadali. State Estimation of Induction Motor Drives Using the Unscented Kalman Filter [J]. Industrial Electronics, IEEE Transactions on, 2012.59(11):pp.4207-4216.
    [103]Maskell, S., N. Gordon. A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking [C]. in Target Tracking:Algorithms and Applications (Ref. No. 2001/174), IEE.2001:IET. pp.2/1-2/15 vol.2.
    [104]高明煜,何志伟,徐杰.基于采样点卡尔曼滤波的动力电池SOC估计[J].电工技 术学报,2011(11):pp.161-167.
    [105]徐杰.基于卡尔曼滤波的动力电池组SOC精确估计[D].2009.杭州电子科技大学.
    [106]梁军.粒子滤波算法及其应用研究[D].2009.哈尔滨工业大学.
    [107]ST. STM32F103VB datasheet.2011.
    [108]李革臣,古艳磊.电化学阻抗谱法预测锂电池荷电状态[J].电源技术,2008(09):pp.599-602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700