用户名: 密码: 验证码:
NOV基因真核表达载体的构建及其在大鼠真皮多能干细胞成神经分化中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统(central nervous system,CNS)的损伤修复一直是困扰神经科学工作者的大难题。传统观念认为中枢神经系统一旦损伤便不能恢复。近20年来随着神经科学的发展,尤其是干细胞的出现使人们观念发生改变,逐渐认识到成年CNS再生是由神经元的固有特性(intrinsic properties)和其所处的环境(environmental cues)共同决定的。因此增加受损神经元的再生潜能,改善轴突再生的微环境成为CNS损伤修复的基点。
     神经损伤后修复的难点之一是神经元再生困难,近年来随着干细胞研究的迅猛发展,组织和细胞移植治疗成为大家最为关注的方法之一。选择合适的种子细胞是细胞移植最核心的问题。目前用于移植的细胞供体主要是胚胎干细胞、神经干细胞(neural stem cells,NSC)、来源于神经系统的具有促神经再生作用的细胞(如神经膜细胞、少突胶质细胞、嗅鞘细胞等),以及其他具有成神经分化潜能的成体干细胞。尽管这些细胞在CNS损伤修复移植治疗中均显示出不同程度的积极作用,但由于细胞来源局限、取材不易、免疫排斥以及伦理道德等诸多方面的问题,临床应用受到很大限制。因此,寻找新的种子细胞来源成为当务之急。皮肤是人体最大的器官,包括来源于三个胚层的多种不同的组织细胞,自我更新和再生修复速度快,是成体干细胞分离和研究的良好对象。真皮多能干细胞(Dermal multipotent stem cells,DMSCs)是一种新近分离成功的具有高度增殖能力和多向分化潜能的间充质干细胞,具有分化为脂肪细胞、肌细胞及神经细胞的能力。相对于其他移植供体细胞而言,DMSCs具有来源丰富、容易获得、可自体移植、具有更少的“谱系倾向性”等优点。避免了胚胎伦理学、来源不足、异体排斥等弊端。更有研究表明,DMSCs移植治疗脊髓损伤时,不仅能外在补充缺失神经元,同时可通过分化产生Schwann cells促进轴突再生及髓鞘化。显示了DMSCs在CNS损伤修复中的良好应用前景,有望成为细胞移植及组织工程的新宠。
     在神经损伤修复中,除细胞移植外在补充缺失神经元外,利用基因工程方法改善损伤局部微环境是治疗的另一个侧重点。肾母细胞瘤过度表达基因(Nephroblastoma Overexpression gene,NOV)是1991年发现的一种原癌基因,其所编码产物(NOV蛋白)是一种胰岛素样生长因子(Insulin-like Growth Factor, IGF)相关蛋白(IGF-relation proteins, IGF-rPs ),属于IGF超家族的成员。NOV基因是神经系统发育的一个调控因子,与动物CNS的损伤和修复之间存在一定的关系。NOV基因可通过IGF依赖或者非依赖的方式发挥作用,参与CNS损伤后的再生和修复过程。NOV基因的真核表达载体可以表达和释放NOV蛋白,促进内源和外源性NSC向神经元的分化,为CNS再生修复提供合适的微环境。NOV基因及其蛋白对DMSCs是否具有类似作用尚未见相关报道。
     拟将DMSCs作为种子细胞携载NOV基因进入体内,不但能外在补充CNS损伤中缺失的神经元,同时在体发挥改善损伤局部微环境的生物学效应,结合NOV基因治疗及DMSCs细胞移植治疗双重优势用于CNS的损伤修复,是本实验的基本设计思路。为此本文进行了如下研究:(1)含NOV基因的全长序列的真核表达载体的构建和表达;(2)大鼠真皮来源多能干细胞的分离培养和鉴定;(3)观察NOV基因及其分泌蛋白对DMSCs增殖和成神经分化的影响。通过该项研究为结合NOV基因工程及DMSCs细胞移植用于CNS的损伤修复治疗提供初步离体实验资料。
     研究的主要结果及结论概述如下:
     1、利用RT-PCR的产物,采用定向克隆的方法,通过中间载体pMD-19T,成功地将NOV cDNA全长序列克隆到pEGFP-N1真核表达质粒上,构建了pEGFP-N1/NOV融合表达载体,用抗性菌落筛选、质粒酶切鉴定、插入片段序列分析等方法,证明获得的重组质粒完全符合设计要求,为进一步的NOV基因功能研究提供分子平台。
     2、利用早期贴壁传代培养方法,从新生大鼠真皮中分离培养多能干细胞,该细胞经流式细胞仪检测细胞周期、MTT法测定生长曲线具有良好的自我增殖能力;在一定诱导条件下分化为神经细胞、脂肪细胞及成骨细胞,具有向外胚层及中胚层细胞分化的多能性。由此证实了大鼠真皮组织中存在着间充质干细胞,为干细胞移植治疗提供了又一新的种子细胞来源。
     3、在构建了NOV基因真核表达载体的基础上,用脂质体转染法首次将该重组质粒转染入DMSCs中,流式细胞仪检测转染效率约30%。经G418筛选阳性克隆、多次传代纯化后用RT-PCR法检测到NOV重组质粒在DMSCs中稳定表达。表明DMSCs可作为NOV基因的细胞载体。
     4、通过细胞形态学观察、流式细胞仪及MTT法研究NOV基因转染对DMSCs增殖性的影响,发现转染了NOV基因的DMSCs较对照组细胞G0/G1期细胞比例下降,细胞倍增时间提前,增殖能力提高一倍。提示NOV基因能刺激DMSCs的增殖。
     5、收集培养NOV/DMSCs细胞的条件培养液(NOV-CM),结合细胞形态学变化及免疫细胞化学法,研究NOV基因及其分泌蛋白对DMSCs分化的影响,结果显示NOV-CM可以促进DMSCs向神经元方向分化,分化细胞中神经元比例增高,且细胞突起较对照组明显延长。NOV基因转染亦具有同样的作用。
     综上所述,我们准确的构建了含NOV基因全长序列的真核表达载体,成功分离、培养并鉴定了新生大鼠真皮多能干细胞。在此基础上,采用脂质体法首次将该重组质粒转染至DMSCs中,并且NOV基因在其中稳定表达。进一步的研究表明NOV基因及其分泌蛋白可以显著提高DMSCs增殖性、促进DMSCs向神经元方向分化并有助于突起形成。该实验结果提示DMSCs不仅可作为一种新的种子细胞来源,且携载了NOV基因的DMSCs具有细胞移植及基因工程双重优势,不但外在补充缺失神经元,同时可改善损伤局部微环境,有望在神经系统损伤修复中发挥作用。
The recovery of central nervous system (CNS) after injury is all along a difficult problem that puzzles the neuroscientists. In the past, it was widely accepted that once CNS was injured, nothing could be done. Since recent two decades, numerous studies have been carried out by neuroscientists and it is concluded that CNS after injury can be recovered.The course of recovery based on two factors: intrinsic properties and environmental cues. So, it is aimed to promote the regeneration of neurons and provide a possible agreeable microenvironment for regeneration and recovery of CNS injury.
     In regenerative medicine, some encourage results have been obtained. It is well known that cell replacement therapies show particular promise in the nervous system, and transplanted embryonic stem cells (ESCs) or neural stem cells (NSCs) have been shown to promote functional recovery in animal models, for example, spinal cord injury (SCI). Many stem cells (such as ESCs and NSCs) can be used to treat a lot of neurological diseases. Although the therapeutic potential of such transplants is clear, a number of problems, such as insufficient cell number, ethical issues, immunosuppression, and so on, limit their application in clinic. In this background, a new type of stem cells called dermal multipotent stem cells (DMSCs) was discovered in adult mammalian skin. They can differentiate into cells of both neuroectodermal and mesodermal lineage, including (perhaps not limited to) neurons, glia, osteogenic cells and adipocytes. Compared with the above cells, DMSCs, which own multi-oriented differentiative potential and self-renewal capability, have an accessible, potentially autologous tissue source and can expand in vitro cell culture.So they have important therapeutic implications.
     Deliveries of therapeutic genes are also new and promising strategies to simulate regeneration and recovery of CNS injury. Nephroblastoma Overexpression gene ,abbreviated as NOV, is a proto-oncogene, which was discovered in 1991. NOV protein, which is encoded by NOV gene, is a kind of insulin-like growth factor (IGF) binding protein (IGFBP), and one of the superfamily of IGF. NOV gene is a factor that regulates development of the nervous system. Recent data indicated that NOV gene can provide a possible agreeable microenvironment in regenerative process by IGF-depedent or IGF-indepedent ways. NOV gene may participate in the processes of regeneration and repair after of CNS injury.
     DMSCs engineered by NOV gene combines with the therapeutic values of DMSCs transplantation and gene delivery. In order to identify the properties of DMSCs and determinate the effect of NOV gene on the proliferation and differentiation of DMSCs, a series of studies were carried out as follows: (1) Construct pEGFP-N1 vector containing NOV gene complete sequence, and examine its expression; (2) Isolate and identify DMSCs from neonatal rat; (3) Study NOV effects on proliferation and differentiation of DMSCs. We hope that the transplantation material—DMSCs modified by NOV gene may express NOV protein eternally, and provide a possible agreeable microenvironment for regeneration and recovery of CNS injury.
     The main results and conclusions are summarized as follows:
     1. The NOV gene complete sequence was amplified from the total RNA of normal rat brain tissue by RT-PCR and cloned into pMD-19T vector (NOV-T), then the NOV fragment ligated into HamH I and Hind III sites of eukaryotic expression vector pEGFP-N1 (NOV-N1). The cloned insert in both NOV-T and NOV-N1 were identified by double digestion of the recombinant plasmid with restriction enzymes Hind III and BamH I and by nucleotide sequences. The results suggested that eukaryotic expression vector containing coding region of NOV gene was successfully constructed. The eukaryotic expression vector containing coding region of NOV gene can provide a strong molecular tool for the study of the effect of NOV gene.
     2. Dermis of neonatal rat were digested with 0.25% trypsin and cultured for 6h in vitro, then the adherent cells were harvested and subcultured. After the fourth subculture, the cells were used for experiments. Cell cycle was analyzed by measuring DNA content with FAC-Scan flow cytometer and cell proliferation activity was tested by MTT method. Differentiated cells were identified by immunocytochemical ABC technique and specific staining. More than 86% of DMSCs were in the G0/G1 phases and these cells display multi-lineage differentiation potential, producing both neural and mesodermal progeny. The results showed Mesenchymal stem cells with multi-lineage differentiation potential exist in neonatal rat dermis and dermis may be another important source of mesenchymal stem cells.
     3. The recombinant plasmid of NOV gene was transfected into DMSCs at first time with liposome. The expression of NOV gene was observed under Fluorescent microscope and detected by RT-PCR. The ratio of transfected cells was about 30%. DMSCs modified by NOV gene (NOV-DMSCs) offer a chance to study the function of NOV in vivo and DMSCs could be a novel carrier of the NOV gene.
     4. In order to compare the proliferative capability with NOV-DMSCs and DMSCs, cell cycle was detected by FCM and cell proliferation activity was tested by MTT method.The results indicated NOV-DMSCs in G0/G1 phase decreased while in G2/M and S phase increased than DMSCs did. Meanwhile NOV- DMSCs had shorter doubing time and faster growth velocity. Statistical analysis demonstrated that NOV-DMSCs had higher proliferative capability than DMSCs did.
     5. Conditioned medium (CM) from cultured NOV-DMSCs (NOV-CM) was collected, and it markedly promoted proliferation of DMSCs. When DMSCs differentiated, NOV-CM helped the differentiation of DMSCs to neurons, and the percent of neurons increased. While DMSCs modified by NOV gene differentiated, the percent of neurons also increased. This result suggested that both NOV gene and protein can improve the neural-oriented differentiation of dermal multipotent stem cells in rats.
     In summary, dermis mesenchymal stem cells (DMSCs) were isolated from the neonatal rat skin, cultured and identified by their multilineage differentiation capacity. Eukaryotic expression vector containing coding region of NOV gene was successfully constructed and transfected into DMSCs at first time with liposome. Further sdudies showed that both NOV gene and protein could promote the proliferative capability of DMSCs and help their neural-oriented differentiation. The results suggested that not only DMSCs could be a novel carrier of the NOV gene but also DMSCs engineered by NOV gene could combine the therapeutic values of cell transplantation and gene delivery. The results of this study provided some fundmental information for the clinical application of regeneration and recovery of CNS injury.
引文
1. Martin-Rendon E, Watt S.M. Exploitation of stem cell plasticity. Transfus Med,2003, 13(6):325-349.
    2. Shi CM, Cheng TM, Su YP. Exploring the developmental potential of adult mammalian somatic cells. Chin Sci Bull, 2001;46(1):4-5.
    3. Keller, R. Stem cells: on the way to restorative medicine. Immunology Letters,2002, 83(1):1-12.
    4. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol,2000, 28(8):875-884.
    5. Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276: 71-74.
    6. Perbal B. Communication is the key[J].Cell Commun Signal,2003,1(1):3-9.
    7.李成仁,李巍,蔡文琴,等. NOV对大鼠神经干细胞增殖和分化的影响[J].第三军医大学学报,2003,5(1): 15-18.
    8. Biernaskie J, Sparling JS, Liu J,et al. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury[J]. J Neurosci,2007,27(36):9545-59.
    9. Joliot V, Martinerie C, Dambrine G, et al. Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol Cell Biol, 1992,12(1):10-21.
    10. Perbal B. Contribution of MAV-1-induced nephroblastoma to the study of genes involved in human Wilm's tumor development. Crit Rev Oncog, 1994, 5(6):589-613.
    11. Kim HS, Nagalla SR, Oh Y, et al. Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc Natl Acad Sci USA, 1997,94(24): 12981-87.
    12. Hansson HA. Evidence indicating trophic importance of IGF-I in regenerating peripheral nerves. Acta Physiol Scand, 1986,126: 609-617.
    13. Nakao Y, Otani H, Yamamura T, et al. Insulin-like growth factor 1 prevents neuronal cell death and paraplegia in the rabbit model of spinal cord ischemia. J ThoracCardiovasc Surg, 2001,122(1):136.
    14. Hung KS, Tsai SH, Lee TC, et al.Gene transfer of insulin-like growth factor-I providing neuroprotection after spinal cord injury in rats[J].J Neurosurg Spine,2007,6(1):35-46.
    15.李成仁,李巍,蔡文琴,等。NOV基因修饰神经干细胞移植对损伤大鼠脊髓功能恢复的影响[J].第三军医大学学报, 2003, 25(1): 33-36.
    16. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol,2001,54(2):57-79.
    17. Su BY, Cai WQ, Zhang CG, et al. The expressin of ccn3 (nov) RNA and protein in the rat central nervous system is developmentally regulated. Mol Pathol,2001, 54(3):184-191.
    18. Scholz G,Martinerie C,Perbal B,et al. Transcriptional down regulation of the nov proto-oncogene in fibroblasts transformed by p60v-src [J].Mol Cell Biol,1996,16 (2): 481-6.
    19. Martinerie C, Huff V,Joubert I, et al. Structural analysis of the human nov proto-oncogene and expression in Wilms tumor[J].Oncogene, 1994, 9(9):2729-32.
    20. Joliot V,Martinerie C,Dambrine G,.et al: Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas[J].Mol Cell Biol,1992,12(1):10-21.
    21. Kyurkchiev S,Yeger H, Bleau AM, et al. Potential cellular conformations of the CCN3(NOV) protein[J].Cell Commun Signal,2004,2(1):9-21.
    22. Perbal B, Takigawa M. CCN Proteins: a new family of cell growth and differentiation regulators.Imperial College Press,2005.
    23. J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译.分子克隆实验指南.科学技术出版社,2002.
    24. Fischer I, Liu Y. Gene Therapy strategies in CNS axon regeneration. In: Ingoglia N, Murray M, eds. Regeneration in Vertebrate CNS. Marcel Dekker, NY 2000.
    25. Liu Y, Himes BT, Moul J,.et al. Application of recombinant adenovirus for in vivo gene delivery to spinal cord[J].Brain Res,1997,768:19-29.
    26. Dalle B, Rubin J E, Alkan O, et al. EGFP reporter genes silence LCRβglobin transgene expression via CpG dinucleotides [J]. Mol Ther,2005,11(4):591-599.
    27. Towner J S, Paragas J, Dover J E, et al. Generation of EGFP exp ressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high throughput antiviral drug screening [J].Virology,2005,332(1):20-27.
    28. Chalfie M, YU T, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression[J].Science,1994,263(5148):802-805.
    29.贲长恩,李叔庚主编.组织化学.人民卫生出版社, 2001.
    30. Nurse, C. A., Macintyre, L. & Diamond, J. Reinnervation of the rat touch dome restores the Merkel cell population reduced after denervation. Neuroscience,1984, 13, 563–571.
    31.刘雁平,李露斯,王涛,等。真皮来源间充质干细胞的分离培养及成神经分化的研究[J].西南国防医药,2008,18(1):1-3.
    32. Reynolds, A. J. & Jahoda, C. A. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development ,1992, 115, 587–593.
    33. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science,1992, 255, 1707–1710.
    34. Reynolds, B. A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes[J].Neurosci,1992,12: 4565–4574.
    35. Toma, J. G., McKenzie, I. A., Bagli, D. & Miller, F. D. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells,2005,23:727–737.
    36. Fernandes, K. J. A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol,2004, 6:1082–1093.
    37. Cotter, D.C., Sekiya, L, and Prockop, D.J. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc. Natt. Acad. Sci. USA,2001, 98:7841-7845.
    38. Kruger, G. M., Mosher, J. T., Bixby, S., et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential and factor responsiveness. Neuron,2002, 35:657–669.
    39. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science,2000, 289:1754–1757.
    40. Jiang, Y. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418:41–49.
    41. Jiang, Y., Vaessen, B., Lenvik, T., et al. Multipotent pro-genitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol,2002,30: 896–904.
    42. Eggan, K., Baldwin, K., Tackett, M., et al. Mice cloned from olfactory sensory neurons. Nature,2004, 428:44–49.
    43. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature,2004, 428:393–399.
    44. Stemple, D. L. & Anderson, D. J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell,1992, 71:973–985.
    45. Shah, N. M., Groves, A. K. & Anderson, D. J. Alternative neural crest cell fates are instructively promoted by TGF beta superfamily members. Cell,1996, 85:331–343.
    46. Morrison, S. J., White, P. M., Zock, C.&Anderson,D. J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 1999, 96, 737–749.
    47. Toma, J. G., McKenzie, I. A., Bagli, D. & Miller, F. D. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells,2005,23:727–737.
    48. Jahoda, C. A. & Reynolds, A. J. Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet ,2001, 358:1445–1448.
    49. Gharzi, A., Reynolds, A. J. & Jahoda, C. A. Plasticity of hair follicle dermal cells in wound healing and induction. Exp. Dermatol,2003, 12:126–136.
    50. Jahoda, C. A., Whitehouse, J., Reynolds, A. J. & Hole, N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp.Dermatol,2003,12:849–859.
    51. Lako, M., Armstrong, L., Cairns, P. M., et al. Hair follicle dermal cells repopulate the mouse haematopoietic system[J].Cell Sci,2002, 115:3967–3974.
    52. Jahoda, C. A. & Oliver, R. F. Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro[J].Embryol.Exp.Morphol,1984, 79:211–224.
    53. Botchkarev, V. A., Botchkarev, N. V., Albers, K. M., et al. Neurotrophin-3 involvement in the regulation of hair follicle morphogenesis[J].Invest.Dermatol, 1998,111: 279–285.
    54. Botchkareva, N. V., Botchkarev, V. A., Chen, L. H., et al. A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev. Biol,1999,216:135–153.
    55. Luo, R., Gao, J., Wehrle-Haller, B. & Henion, P. D. Molecular identification of distinct neurogenic and melanogenic neural crest sublineages.Development,2003,130:321– 330.
    56. Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec, 2001,64(1):51-62.
    57. Toma J.G., Akhavan M, Fernandes K.J., et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 2001,3(9):778-784.
    1. Galli, R .Skeletal myogenic potential of human and mouse neural stem cells. Nat. Neurosci. 2000, 3, 986–991.
    2. Tsai, R. Y. & McKay, R. D. Cell contact regulates fate choice by cortical stem cells. J. Neurosci. 2000, 20, 3725–3735.
    3. Bani-Yaghoub, M., Kendall, S. E., Moore, D. P., et al. Insulin acts as a myogenic differentiation signal for neural stem cells with multilineage differentiation potential. Development 2004,131, 4287–4298.
    4. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999,283, 534–537.
    5. Wurmser, A. E., Nakashima, K., Summers, R. G., et al. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 2004, 430, 350–356.
    6. Clarke, D. L., Johansson, C. B., Wilbertz, J., et al. Generalized potential of adult neural stem cells. Science 2000,288, 1660–1663.
    7. Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. Bone marrow as a potential source of hepatic oval cells. Science 1999, 284, 1168–1170.
    8. Theise, N. D., Badve, S., Saxena, R., et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 2000, 31, 235–240.
    9. Grompe, M. The role of bone marrow stem cells in liver regeneration. Semin. Liver Dis. 2003, 23, 363–372.
    10. LaBarge, M. A. & Blau, H. M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 2002, 111, 589–601.
    11. Brazelton, T. R., Nystrom, M. & Blau, H. M. Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells. Dev. Biol. 2003,262, 64–74.
    12. Corbel, S. Y., Lee, A., Yi, L., et al. Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. 2003, 9, 1528–1532.
    13. Doyonnas, R., LaBarge, M. A., Sacco, A., et al. Hematopoietic contribution to skeletalmuscle regeneration by myelomonocytic precursors. Proc. Natl Acad. Sci. USA 2004, 101, 13 507–13 512.
    14. Palermo, A. T., Labarge, M. A., Doyonnas, R., et al. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev. Biol. 2005, 279, 336–344.
    15. Brazelton, T. R., Rossi, F. M., Keshet, G. I. & Blau, H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000,290, 1775–1779.
    16. Mezey, E., Chandross, K. J., Harta, G., et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000, 290, 1779–1782.
    17. Mezey, E., Key, S., Vogelsang, G., et al. Transplanted bone marrow generates new neurons in human brains. Proc. Natl Acad. Sci. USA 2003, 100, 1364–1369.
    18. Priller, J., Persons, D. A., Klett, F. F., et al. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J. Cell Biol. 2001, 155, 733–738.
    19. Cogle, C. R., Yachnis, A. T., Laywell, E. D., et al. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 2004, 363, 1432–1437.
    20. Jiang, Y. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002, 418, 41–49.
    21. Nurse, C. A., Macintyre, L. & Diamond, J. Reinnervation of the rat touch dome restores the Merkel cell population reduced after denervation. Neuroscience 1984, 13, 563–571.
    22. Reynolds, A. J. & Jahoda, C. A. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development 1992, 115, 587–593.
    23. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992, 255, 1707–1710.
    24. Reynolds, B. A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 1992, 12, 4565–4574.
    25. Toma, J. G., Akhavan, M., Fernandes, K. J., et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 2001, 3, 778–784..
    26. Fernandes, K. J. A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol. 2004, 6, 1082–1093.
    27. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., et al. Fusion of bonemarrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003,425, 968–973.
    28. Vassilopoulos, G., Wang, P. R. & Russell, D. W. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003, 422, 901–904.
    29. Wang, X. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003, 422, 897–901.
    30. Nygren, J. M., Jovinge, S., Breitbach, M., et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 2004, 10, 494–501.
    31. Morshead, C. M., Benveniste, P., Iscove, N. N. & van der Kooy, D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med. 2002, 8, 268–273.
    32. Vallieres, L. & Sawchenko, P. E. Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J. Neurosci. 2003, 23, 5197–5207.
    33. Wehner, T. Bone marrow-derived cells expressing green fluorescent protein under the control of the glial fibrillary acidic protein promoter do not differentiate into astrocytes in vitro and in vivo. J. Neurosci. 2003, 23, 5004–5011.
    34. Lu, P., Blesch, A. & Tuszynski, M. H. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 2004, 77, 174–191.
    35. Neuhuber, B., Gallo, G., Howard, L., et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res. 2004, 77, 192–204.
    36. Halata, Z., Grim, M. & Christ, B. Origin of spinal cord meninges, sheaths of peripheral nerves, and cutaneous receptors including Merkel cells. An experimental and ultrastructural study with avian chimeras. Anat. Embryol. (Berl) 1990, 182, 529–537.
    37. Couly, G. F., Coltey, P. M. & Le Douarin, N. M. The developmental fate of the cephalic mesoderm in quailchick chimeras. Development 1992,114, 1–15.
    38. Le Douarin, N. M. & Kalcheim, C. The neural crest, 2nd edn. Cambridge, UK: Cambridge University Press. 1999.
    39. Etchevers, H. C., Vincent, C., Le Douarin, N. M. & Couly, G. F. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 2001, 128, 1059–1068.
    40. Jiang, X., Iseki, S., Maxson, R. E., et al. Tissue origins and interactions in the mammalian skull vault. Dev. Biol. 2002, 241, 106–116.
    41. Le Douarin, N. M. & Dupin, E. Multipotentiality of the neural crest. Curr. Opin. Genet. Dev. 2003, 13, 529–536.
    42. Le Lievre, C. S. & Le Douarin, N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 1975,34, 125–154.
    43. Joseph, N. M. Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 2004, 131, 5599–5612.
    44. Fukiishi, Y. & Morriss-Kay, G. M. Migration of cranial neural crest cells to the pharyngeal arches and heart in rat embryos. Cell Tissue Res. 1992, 268, 1–8.
    45. Serbedzija, G. N. & McMahon, A. P. Analysis of neural crest cell migration in Splotch mice using a neural crestspecific LacZ reporter. Dev. Biol. 1997, 185, 139–147.
    46. Jiang, X., Rowitch, D. H., Soriano, P., et al. Fate of the mammalian cardiac neural crest. Development 2000, 127, 1607–1616.
    47. Chan,W. Y., Cheung, C. S., Yung, K.M. & Copp, A. J. Cardiac neural crest of the mouse embryo: axial level of origin, migratory pathway and cell autonomy of the splotch (Sp2H) mutant effect. Development 2004,131,3367–3379.
    48. Kruger, G. M., Mosher, J. T., Bixby, S., et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential and factor responsiveness. Neuron 2002, 35, 657–669.
    49. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 2000, 289, 1754–1757.
    50. Jiang, Y., Vaessen, B., Lenvik, T., et al. Multipotent pro-genitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 2002, 30, 896–904.
    51. Eggan, K., Baldwin, K., Tackett, M., et al. Mice cloned from olfactory sensory neurons.Nature 2004, 428, 44–49.
    52. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 2004, 428, 393–399.
    53. Stemple, D. L. & Anderson, D. J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 1992, 71, 973–985.
    54. Shah, N. M., Groves, A. K. & Anderson, D. J. Alternative neural crest cell fates are instructively promoted by TGF beta superfamily members. Cell 1996, 85, 331–343.
    55. Morrison, S. J., White, P. M., Zock, C.&Anderson,D. J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 1999, 96, 737–749.
    56. Toma, J. G., McKenzie, I. A., Bagli, D. & Miller, F. D. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 2005, 23, 727–737.
    57. Jahoda, C. A. & Reynolds, A. J. Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet 2001, 358, 1445–1448.
    58. Gharzi, A., Reynolds, A. J. & Jahoda, C. A. Plasticity of hair follicle dermal cells in wound healing and induction. Exp. Dermatol. 2003, 12, 126–136.
    59. Jahoda, C. A., Whitehouse, J., Reynolds, A. J. & Hole, N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp. Dermatol. 2003, 12, 849–859.
    60. Lako, M., Armstrong, L., Cairns, P. M., et al. Hair follicle dermal cells repopulate the mouse haematopoietic system. J. Cell Sci. 2002, 115, 3967–3974.
    61. Jahoda, C. A. & Oliver, R. F. Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J. Embryol. Exp. Morphol. 1984, 79, 211–224.
    62. Botchkarev, V. A., Botchkarev, N. V., Albers, K. M., et al. Neurotrophin-3 involvement in the regulation of hair follicle morphogenesis. J. Invest. Dermatol. 1998,111, 279–285.
    63. Botchkareva, N. V., Botchkarev, V. A., Chen, L. H., et al. A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev. Biol. 1999,216, 135–153.
    64. Luo, R., Gao, J., Wehrle-Haller, B. & Henion, P. D. Molecular identification of distinct neurogenic and melanogenic neural crest sublineages. Development 2003, 130, 321–330.
    65. Belicchi, M. Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J. Neurosci. Res. 2004,77,475–486.
    66. Joannides, A., Gaughwin, P., Schwiening, C., et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 2004, 364, 172–178.
    67. Song, H., Stevens, C. F. & Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002, 417, 39–44.
    68. Uchida, N., Buck, D.W., He, D., et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA 2000, 97, 14 720–14 725.
    69. Richardson, P. M., McGuinness, U. M. & Aguayo, A. J. Axons from CNS neurons regenerate into PNS grafts. Nature 1980, 284, 264–265.
    70. Richardson, P. M., Issa, V. M. & Aguayo, A. J. Regeneration of long spinal axons in the rat. J. Neurocytol. 1984, 13, 165–182.
    71. David, S. & Aguayo, A. J. Axonal elongation into peripheral nervous system“bridges”after central nervous system injury in adult rats. Science 1981, 214, 931–933.
    72. Xu, X. M., Guenard, V., Kleitman, N. & Bunge, M. B. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J. Comp. Neurol. 1995, 351, 145–160.
    73. Xu, X. M., Chen, A., Guenard, V., et al. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 1997, 26, 1–16.
    74. Xu, X. M., Zhang, S. X., Li, H., et al. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur. J. Neurosci. 1999, 11, 1723–1740.
    75. Pearse, D. D., Pereira, F. C., Marcillo, A. E., et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 2004, 10, 610–616.
    76. McKenzie, I. A., Biernaskie, J., Toma, J. G., et al. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J. Neurosci. 2006, 26, 6651–6660.
    77. Rosenbluth, J. Central myelin in the mouse mutant shiverer. J. Comp. Neurol. 1980, 194, 639–648.
    78. Rosenbluth, J. Peripheral myelin in the mouse mutant Shiverer. J. Comp. Neurol. 1980, 193, 729–739.
    79. Fernandes, K. J., Kobayashi, N. R., Gallagher, C. J., et al. Analysis of the neurogenic potential of multipotent skinderived precursors. Exp. Neurol. 2006, 201, 32–48.
    80. Paino, C. L., Fernandez-Valle, C., Bates, M. L. & Bunge, M. B. Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells. J. Neurocytol. 1994, 23, 433–452.
    81. Xu, X. M., Guenard, V., Kleitman, N., et al. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp. Neurol. 1995, 134, 261–272.
    82. Guest, J. D., Rao, A., Olson, L., et al. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp. Neurol. 1997, 148, 502–522.
    83. Menei, P., Montero-Menei, C., Whittemore, S. R., et al. Schwann cell genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur. J. Neurosci. 1998, 10, 607–621.
    84. Oudega, M., Gautier, S. E., Chapon, P., et al. Axonal regeneration into Schwann cell grafts within resorbable poly (a-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials 2001, 22, 1125–1136.
    85. Bunge, M. B. & Pearse,D.D. Transplantation strategies to promote repair of the injured spinal cord. J. Rehabil. Res. Dev. 2003,40, 55–62.
    86. Fouad, K., Schnell, L., Bunge, M. B., et al. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci. 2005, 25, 1169–1178.
    87. Crowe, M. J., Bresnahan, J. C., Shuman, S. L., et al. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 1997, 3, 73–76.
    88. Shuman, S. L., Bresnahan, J. C. & Beattie, M. S. Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J. Neurosci. Res. 1997, 50, 798–808.
    89. Li, G. L., Farooque, M., Holtz, A. & Olsson, Y. Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord. Acta Neuropathol. (Berl) 1999. 98, 473–480.
    90. Casha, S., Yu, W. R. & Fehlings, M. G. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury. Neuroscience 2001,103, 203–218.
    91. Warden, P., Bamber, N. I., Li, H., et al. Delayed glial cell death following wallerian degeneration in white matter tracts after spinal cord dorsal column cordotomy in adult rats. Exp. Neurol. 2001, 168, 213–224.
    92. Beattie, M. S., Hermann, G. E., Rogers, R. C. & Bresnahan, J. C. Cell death in models of spinal cord injury. Prog. Brain Res. 2002,137, 37–47.
    93. Brierley, C. M., Crang, A. J., Iwashita, Y., et al. Remyelination of demyelinated CNS axons by transplanted human Schwann cell: the deleterious effect of contaminating fibroblasts. Cell Transplant. 2001,10, 305–315.
    94. Halfpenny, C., Benn, T. & Scolding, N. Cell transplantation, myelin repair, and multiple sclerosis. Lancet Neurol. 2002, 1, 31–40.
    95. Bachelin, C. Efficient myelin repair of the macaque spinal cord by autologous grafting of Schwann cell. Brain 2005,128, 540–549.
    96. Iwashita, T., Kruger, G. M., Pardal, R., et al. Hirschsprung disease is linked to defects in neural crest stem cell function. Science 2003, 301, 972–976.
    97. Singh, S. K., Clarke, I. D., Terasaki, M., et al. Identification of a cancer stem cell in human brain tumours. Cancer Res. 2003, 63, 5821–5828.
    98. Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumours. Oncogene 2004, 23, 7267–7273.
    99. Singh, S. K., Hawkins, C., Clarke, I.D., et al. Identification of human brain tumour initiating cells. Nature 2004, 432, 396–401.
    100. Kushner, B. H. Neuroblastoma: a disease requiring a multitude of imaging studies. J. Nucl. Med. 2004, 45, 1172–1188.
    101. Henry, M. C., Tashjian, D. B. & Breuer, C. K.. Neuroblastoma update. Curr. Opin. Oncol. 2005, 17, 19–23.
    102. Lakkis, M. M. & Tennekoon, G. I. Neurofibromatosis Type 1. General overview. J.Neurosci. Res. 2000, 62, 755–763.
    103. De Schepper, S., Boucneau, J., Lambert, J., et al. Pigment cell-related manifestations in neurofibromatosis type 1: an overview. Pigment Cell Res. 2005, 18, 13–24.
    104. Rizvi, T. A., Huang, Y., Sidani, A., et al. A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J. Neurosci. 2002, 22, 9831–9840.
    105. Dupin, E., Real, C., Glavieux-Pardanaud, C., et al. Reversal of developmental restrictions in neural crest lineages: transition from Schwann cell to glial-melanocytic precursors in vitro. Proc. Natl Acad. Sci. USA 2003, 100, 5229–5233.
    106. Real, C., Glavieux-Pardanaud, C., Vaigot, P., et al . The instability of the neural crest phenotypes: Schwann cell can differentiate into myofibroblasts. Int. J. Dev. Biol. 2005, 49, 151–159.
    107. Zembowicz, A. & Mihm, M. C. Dermal dendritic melanocytic proliferations: an update. Histopathology 2004, 45,433–451.
    108. Tobin, D. J., Gunin, A., Magerl, M., et al. Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: implications for hair growth control. J. Invest. Dermatol. 2003, 120, 895–904.
    109. Tobin, D. J., Gunin, A., Magerl, M. & Paus, R. Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle: implications for growth control and hair follicle transformations. J. Invest. Dermatol. Symp. Proc. 2003, 8, 80–86.
    110. Lavker, R. M. Hair follicle stem cells. J. Investig. Dermatol. Symp. Proc. 2003, 8, 28–38.
    111. Pearton,D. J., Yang, Y. & Dhouailly,D. Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc. Natl Acad. Sci. USA 2005, 102, 3714–3719.
    112. Nakamura, H. Mesenchymal derivatives from the neural crest. Arch. Histol. Jpn 1982, 45, 127–138.
    113. Szeder, V., Grim, M., Halata, Z. & Sieber-Blum, M. Neural crest origin of mammalian Merkel cells. Dev. Biol. 2003, 253, 258–263.
    114. Young, H. E., Mancini, M. L., Wright, R. P., et al. Mesenchymal stem cells reside within the connective tissues of many organs. Dev. Dyn. 1995, 202, 137–144.
    115. Nishimura, E. K. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 2002, 416, 854–860.
    116. Sieber-Blum, M., Grim, M., Hu, Y. F. & Szeder, V. Pluripotent neural crest stem cells in the adult hair follicle. Dev. Dyn. 2004, 231, 258–269.
    117. Narisawa, Y., Hashimoto, K. & Kohda, H. Merkel cells of the terminal hair follicle of the adult human scalp. J. Invest. Dermatol. 1994, 102, 506–510.
    118. Christiano, A. M. Epithelial stem cells: stepping out of their niche. Cell 2004,118, 530–532.
    119. Taylor, G., Lehrer, M. S., Jensen, P. J., et al. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000, 102, 451–461.
    120. Blanpain, C., Lowry, W. E., Geoghegan, A., et al. Self-renewal, multipotency and the existence of two cell populations within an epithelial stem cell niche. Cell 2004,118, 635–648.
    121. Tumbar, T., Guasch, G., Greco, V., et al. Defining the epithelial stem cell niche in skin. Science 2004, 303, 359–363.
    122. Li, L., Mignone, J., Yang, M., et al. Nestin expression in hair follicle sheath progenitor cells. Proc. Natl Acad. Sci. USA 2003, 100, 9958–9961.
    123. Amoh, Y., Li, L., Yang, M., et al. Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells. Proc. Natl Acad. Sci. USA 2004,101, 13 291–13 295.
    124. Amoh, Y., Li, L., Campillo, R., et al. Implanted hair follicle stem cells form Schwann cell that support repair of severed peripheral nerves. Proc. Natl Acad. Sci. USA 2005,102,17 734–17 738.
    125. Amoh, Y., Li, L., Katsuoka, K., et al. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc. Natl Acad. Sci. USA 2005,102, 5530–5534.
    126. Amoh, Y., Li, L., Yang, M., et al. Hair folliclederived blood vessels vascularize tumors in skin and are inhibited by Doxorubicin. Cancer Res. 2005,65, 2337–2343.
    127. Serbedzija, G. N., Fraser, S. E. & Bronner-Fraser, M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labeling. Development 1990, 108, 605–612.
    128. Serbedzija, G. N., Bronner-Fraser, M. & Fraser, S. E. Developmental potential of trunk neural crest cells in the mouse. Development 1994, 120, 1709–1718.
    129. Wilson, Y. M., Richards, K. L., Ford-Perriss, M. L., et al . Neural crest cell lineage segregation in the mouse neural tube. Development 2004, 131, 6153–6162.
    130. Peters, E. M., Botchkarev, V. A., Muller-Rover, S., et al. Developmental timing of hair follicle and dorsal skin innervation in mice. J. Comp. Neurol. 2002, 448, 28–52.
    131. Wakamatsu, Y., Mochii, M., Vogel, K. S. & Weston, J. A. Avian neural crest-derived neurogenic precursors undergo apoptosis on the lateral migration pathway. Development 1998, 125, 4205–4213.
    132. Golding, J. P. & Cohen, J. Border controls at the mammalian spinal cord: late-surviving neural crest boundary cap cells at dorsal root entry sites may regulate sensory afferent ingrowth and entry zone morphogenesis. Mol. Cell Neurosci. 1997, 9, 381–396.
    133. Vermeren, M., Maro, G. S., Bron, R., et al. Integrity of developing spinal motor columns is regulated by neural crest derivatives at motor exit points. Neuron 2003, 37, 403–415.
    134. Maro, G. S., Vermeren, M., Voiculescu, O, et al. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat. Neurosci. 2004, 7, 930–938.
    135. Hjerling-Leffler, J., Marmigere, F., Heglind, M., et al. The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 2005, 132, 2623–2632.
    136. Sharma, K., Korade, Z. & Frank, E. Late-migrating neuroepithelial cells from the spinal cord differentiate into sensory ganglion cells and melanocytes. Neuron 1995, 14, 143–152.
    137. Ali, A. A., Ali, M. M., Dai, D. & Sohal, G. S. Ventrally emigrating neural tube cells differentiate into vascular smooth muscle cells. Gen. Pharmacol. 1999,33,401–405.
    138. Ali, M. M., Farooqui, F. A. & Sohal, G. S. Ventrally emigrating neural tube cells contribute to the normal development of heart and great vessels. Vascul. Pharmacol. 2003,40, 133–140.
    139. Ali, M. M., Jayabalan, S., Machnicki, M. & Sohal, G. S. Ventrally emigrating neuraltube cells migrate into the developing vestibulocochlear nerve and otic vesicle.Int. J. Dev. Neurosci. 2003,21,199–208.
    140. Sohal, G. S., Ali,M.M., Ali, A. A. & Dai, D. Ventrally emigrating neural tube cells contribute to the formation of Meckel’s and quadrate cartilage. Dev. Dyn. 1999, 216, 37–44.
    141. Sohal, G. S., Ali, M. M., Ali, A. A. & Dai, D. Ventrally emigrating neural tube cells differentiate into heart muscle. Biochem. Biophys. Res. Commun. 1999, 254, 601–604.
    142. Sohal, G. S., Ali, M. M. & Farooqui, F. A. A second source of precursor cells for the developing enteric nervous system and interstitial cells of Cajal. Int. J. Dev. Neurosci. 2002, 20, 619–626.
    143. Rendl, M., Lewis, L. & Fuchs, E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005, 3, 1910–1924.
    144. Graham, A. & Begbie, J. Neurogenic placodes: a common front. Trends Neurosci. 2000, 23, 313–316.
    145. Zhang, X., Klueber, K. M., Guo, Z., et al. J. Adult human olfactory neural progenitors cultured in defined medium. Exp. Neurol. 2004, 186, 112–123.
    146. Murrell, W. Multipotent stem cells from adult olfactory mucosa. Dev. Dyn. 2005, 233, 496–515.
    147. Miura, M., Gronthos, S., Zhao, M., et al. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl Acad. Sci. USA 2003, 100, 5807–5812.
    1. Daughaday WH, Rotwein P. Insulin like growth factors I and II peptide, messenger ribonucleic acid and gene structures, serum and tissue concentrations [J] Endocr Rev, 1989,10(1): 68-91.
    2. Baxter RC. Insulin like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities[J].Am J Physiol EndocrinolMetab,2000,278(6):E967-E976.
    3. Pearsall AE, Kahn RC. Differential roles of the insulin and insulin like growth factor I (IGF-I) receptors in response to insulin and IGF-I[J]. J Biol Chem, 2004,279 (36):38016 - 38024.
    4. Chen W, Salojin KV, Mi QS, et al. Insulin-like growth factor (IGF)-I/IGF-binding protein-3 complex therapeutic efficacy and mechanism of protection against type1 diabetes[J]. Endocrinology,2004,145 (2):627-638.
    5. Scott CD, Weiss J. Soluble insulin-like growth factor II/mannose 6-phosphate receptor inhibits DNA synthesis in insulin-like growth factor II sensitive cells[J]. J Cell Physiol, 2000,182(1):62-68.
    6. NitertMD, Chisalita SI, Olsson K, et al. IGF-I/insulin hybrid receptors in human endothelial cells[J].Mol Cell Endocrinol,2005,229 (1-2):31-37.
    7. Connell TO, ClemmonsDR. IGF-I/IGF-binding protein-3 combination improves insulin resistance by GH-dependent and independent mechanisms[J].J Clin Endocrinol Metab, 2002,87(9):4356-4360.
    8. Yandell CA,Francis GL,Wheldrake JF,et al. Kangaroo IGF-II is structurally and functionally similar to the human[Ser29]-IGF-II variant[J].J Endocrinol,1999,161(3): 445-453.
    9. Wang J, Zhou J, Powell-Braxton L, et al. Effects of IGF-l gene deletion on postnatal growth patterns[J].J Endocrinol,1999,140(7): 3391-3394.
    10. Castillo J, Codina M, Martinez ML. Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout [J].Am J Physiol Regul Integr Comp Physiol,2004,286 (5): R9353/R941.
    11. Rhodes CJ. IGF-I and GH post-receptor signaling mechanisms for pancreaticβ-cell replication[J].J Mol Endocrinol,2000,24(3):303-311.
    12. Harper J, Burns JL, Foulstone EJ, et al. Soluble IGF-2 receptor rescues ApcMin/ + intestinal adenoma progression induced by IGF-2 loss of imprinting[J].Cancer Res,2006,66(4):1940-1948.
    13. Simpson HL,Jackson NC,Moradie FS, et al. Insulin-like growth factor has a direct effect on glucose and protein metabolism,but no effect on lipid metabolism in type 1 diabetes[J].J Clin Endocrinol Metab,2004,89 (1):425-432.
    14. Yan XL,ForbesBE,McNeil KA,et al. Role of N- and C-terminal residues of insulin-like growth factor(IGF)-binding protein-3 in regulating IGF complex formation and receptor activation[J].J Biol Chem,2004,279 (51):53232-53240.
    15. Firth SU,Baxter RC. Cellular actions of the insulin like growth factor binding proteins [J].Endocr Rev,2002,23 (6):824-854.
    16. Watson CS,Bialek P,AnzoM,et al. Elevated circulating insulin-like growth factor binding protein-1 is sufficient to cause fetal growth restriction[J].Endocrinology, 2006, 147(3):1175-1186.
    17. Zhou R,Diehl D,Hoeflich A,et al. IGF-binding protein-4:biochemical characteristics and functional consequences[J].J Endocrinol,2003,178(2):177-193.
    18. Boisclair YR,Rhoads RP,Ueki I,et al. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system[J].J Endocrinol,2001,170(1):63-70.
    19. Kiepe D,Ciarmatori S,Hoeflich A,et al. Insulin-like growth factor(IGF)-I stimulates cell proliferation and induces IGF-binding protein (IGFBP)-3 and IGFBP-5 gene expression in cultured growth plate chondrocytes via distinct signaling pathways[J].J Endocrinol,2005,146(7):3096-3104.
    20. KalusW,ZweckstetterM,Renner C.Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5(IGFBP5):implications for IGF and IGF-I receptor interactions[J].EMBO J,1998,17(22):6558-6572.
    21. Yao SG, Headey SJ,Keizer DW,et al. C-terminal domain of insulin-like growth factor (IGF)-binding protein-6:conformational exchange and its correlation with IGF-II binding[J].Biochemistry,2004,43(35):11187-11195.
    22. Desbois Mouthon,Wendum D,Cadoret X,et al. Hepatocyte proliferation during liver regeneration is impaired in mice with liver specific IGF-1R knockout[J].FASEBJ,2006,20(6):773-775.
    23. Hung KS, Tsai SH, Lee TC,et al.Gene transfer of insulin-like growth factor-I providing neuroprotection after spinal cord injury in rats[J].J Neurosurg Spine.2007, 6(1) :35-46.
    24. Lowman HB,Chen YM,Skelton NJ,et al. Molecular mimics of insulin-like growth factor 1 for inhibiting IGF-1:IGF-binding protein interactions[J].Biochemistry,1998, 37(25):8870-8878.
    25. Skelton NJ,Chen YM,Dubree N,et al. Structure function analysis of a phage display derived peptide that binds to insulin-like growth factor binding protein-1[J]. Biochemistry, 2001,40(29):8487-8498.
    26. Sakai K,Lowman HB,Clemmons DR. Increases in free,unbound insulin-like growth factor I enhance insulin responsiveness in human hepatoma G2 cells in culture[J].J Biol Chem,2002,277(16):3620-13627.
    27. Schaffer ML,Deshayes K,Nakamura G,et al.Complex with a phage display-derived peptide provides insight into the function of insulin-like growth factor I[J]. Biochemistry, 2003,42 (16):9324-9334.
    28. Menu E, Jernberg-W iklund H,Stromberg T,et al. Inhibiting the IGF- I receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5 T3 3MM mouse model[J].Blood,2006,107(2):655-660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700