用户名: 密码: 验证码:
西酞普兰对全脑缺血VD大鼠神经发生的影响及5-HT_(1A)受体机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管性痴呆(VD)是仅次于阿尔采默病(AD)引起老年期痴呆的常见病因,严重危害老年人生存质量,但迄今还没有治疗VD的有效方法。VD大多由于脑血流量明显减低导致的脑灌注不足所致,对缺血缺氧非常敏感的海马在VD的认知功能障碍的发生发展中起重要作用。由于大量研究证实成年脑内存在具有增殖与分化潜能的神经干细胞(NSCs),比如海马齿回(DG)和室下区(SVZ)等,尤其是海马NSCs的增殖、分化、迁移和整合因与学习记忆过程密切相关,给治疗VD带来了新的希望。近来研究发现,脑缺血可以激活脑内NSCs增殖、迁移和分化,但是脑缺血后增强的神经发生并不能代偿因缺血而造成的神经元丢失和海马的学习记忆功障碍,所以目前创造合适的微环境,进一步激活自身的NSCs和内源性修复已成为一个重要的研究方向。在这一方面,5-HT和选择性中枢5-HT再摄取抑制剂(SSRIs)类药物倍受关注。此外研究发现,5-HT1A受体不仅在海马含量丰富,而且是5-HT介导神经发生的主要受体。尽管如此,目前仍缺乏有关SSRIs对脑缺血神经发生及认知障碍作用及作用机制的研究。
     基于上述理由,我们假设:SSRIs类药物西酞普兰(CIT)可促进VD大鼠脑内NSCs增殖及分化,并进而改善大鼠认知功能,而且此过程受到5-HT1A受体功能的调控。本研究可为脑缺血海马神经发生的调控提供重要的实验依据,也可为临床干预脑缺血性认知功能障碍提供新的思路。
     研究目标:
     1.阐明VD大鼠脑内神经干细胞增殖的时空关系;
     2.明确CIT对脑内不同部位NSCs增殖和分化的作用及其对大鼠认知功能的影响;
     3.初步阐明CIT促脑缺血神经发生及影响认知功能的机制:5-HT及5-HT1A受体的作用探讨。
     研究方法:
     1.动物分组及处置:Wistar大鼠(n=336)随机分为正常正常对照组(NC)、假手术对照组(SC)、血管性痴呆组(VD)、西酞普兰干预的血管性痴呆组(VD-C)以及西酞普兰和WAY100635联合干预组(VD-CW),后四组按手术后时相点每组分术后1、3、7、14、21、42d组。CIT 20mg/kg、WAY100635 0.3mg/kg腹腔注射,1次/d,21天后造模,造模后持续给药至相应时相点。BrdU 50mg/kg腹腔注射,每天1次,第7次注射后12h处死动物用于NSCs增殖的研究;对各实验组术后14d亚组,每天1次,第7次注射后28d处死大鼠用于NSCs分化的研究。采用改良的Pulsinelli’s四血管阻断法制作VD动物模型
     2.动物认知功能检测:Morris水迷宫定位航行实验和空间搜索实验检测平均逃逸潜伏期(EL)、平台象限游泳距离百分比(DP)和穿越平台次数反映大鼠空间学习和记忆功能;大鼠电生理检测类P3波潜伏期(类P3L)。
     3. NSCs增殖的观察:采用免疫组织化学方法, 35μm新鲜冰冻切片0.3%TritonX-100和2N HCl处理后,SABC法Cy3免疫荧光或DAB显色后,显微镜下观察拍照。
     4. NSCs分化的观察:采用BrdU免疫荧光双标记的方法,BrdU免疫荧光标记后,分别加GFAP或Tuj-1或Calbindin-D28k抗体,各自标记星形胶质细胞、幼稚和成熟神经元及成熟神经元,另一荧光显色系统显色后,倒置荧光显微镜或激光共聚焦显微镜下观察拍照。
     5.尼氏染色检测海马CA1神经元存活情况。
     6. 5-HT1A受体表达测定:采用实时荧光定量PCR(RT-PCR)法,上游引物5'–GCCCCCCAAGAAGAGCCTGA–3',下游引物5'–GCCATCTTGCGCTTTGCTTC– 3'。内参照物GAPDH上游引物:5'–ACCACAGTCCATGCCATCAC–3',下游引物5'–TCCACCACCCTGTTGCTGTA–3'。先后进行总RNA提取,逆转录反应及实时荧光定量PCR扩增。以相对表达丰度反映5-HT1A受体mRNA表达。
     7.高效液相色谱(HPLC)检测海马和皮层神经递质的含量。
     8.细胞计数及统计学处理:形态学研究组织切片均在同一放大倍数下分析(免疫组织和免疫荧光化学200×,组织化学400×),应用IPP 6.0图像分析软件进行分析。所有数据资料均以均数±标准差(ˉx±s)表示,采用SPSS 11.0统计软件进行分析。
     实验结果
     1.各实验组大鼠脑内NSCs增殖的时空分布: NC组大鼠脑内海马DG和SVZ区BrdU阳性细胞分布最显著,在皮层也有少量表达。大鼠海马DG细胞增殖从全脑缺血后3d开始明显增加,术后14d达高峰(BrdU阳性细胞数约为缺血前的3倍)。VD-C组各时相点海马DG细胞增殖数量从术后3d开始约为VD组的2倍。但VD-CW组DG细胞增殖受到显著抑制,且较VD组和VD-C组细胞增殖明显减少,其差别有统计学意义。
     NC及SC组大鼠CA1区、CA2和CA3区均未见BrdU阳性细胞,脑缺血后海马CA1和CA2区增殖细胞出现时间较晚,缺血后7d才有BrdU阳性表达,且数量较少。加用CIT后可使CA1区细胞增殖增加约1倍,CA2区细胞增殖提前到缺血3d开始出现且较高表达持续到术后21d。但联合应用WAY 100635后逆转了CIT增强的CA1和CA2区的细胞增殖。
     VD组术后3d SVZ神经发生开始显著增强,加用CIT后神经发生的明显增强提前到术后1d。术后7d BrdU阳性表达至峰值(与术后3d组比较P<0.01),此后迅速下降(术后14d与7d比较差异显著,P<0.01),14d后下降趋势减缓。VD-C组各时相点BrdU表达情况与VD组比较无显著差异,而VD-CW组各时相点神经发生与VD-C组比较无显著差异。缺血后各实验组PCg和Str18区BrdU阳性表达增加。VD组术后1~3d皮层Ⅱ~Ⅵ层大脑皮质BrdU阳性表达开始增加,术后7d BrdU阳性表达较缺血3d明显增加(P<0.01),缺血14d增加更为显著(P<0.01),缺血21d BrdU阳性表达显著减少。VD-C组术后各时相点的皮层BrdU阳性表达较VD组明显增加(P<0.01),术后14d尤其显著。VD-CW组缺血各时相点BrdU阳性细胞数较VD组明显增加,但与VD-C组比较无显著差异。
     2.各实验组大鼠脑内NSCs存活分化的情况:
     脑缺血再灌注各实验组均可见双标记阳性细胞。①在海马DG,VD组新生细胞存活率较SC组显著下降,但双标记阳性细胞比率较SC组显著增高(P<0.05),其BrdU阳性细胞主要分化为Tuj-1阳性的不成熟神经元;CA1区BrdU阳性细胞主要表达Tuj-1和Calbindin-D28k标志物;BrdU/GFAP双标记阳性细胞散在分布于齿回GCL和海马门区。VD-C组新生细胞存活率成神经分化的比例增加,其海马DG和CA1区分化为Calbindin-D28k阳性成熟神经元的比例较VD组增加,但BrdU/GFAP双标记阳性率无明显改变。在VD-CW组则发现新生细胞存活和分化的比例显著降低,少见BrdU/Calbindin-D28k双标记阳性细胞。②皮层BrdU阳性细胞出现在PCg区、Str18区、PAC区等部位,以PCg区BrdU阳性表达最稳定。VD组BrdU阳性细胞存活率较SC组降低,但无统计学差异;VD-C组新生细胞存活率较VD组明显增高(P<0.05)。NS和SC组未发现双标记阳性细胞,VD组可见少量BrdU/Tuj-1和BrdU/Calbindin-D28k双阳性表达,较多BrdU阳性细胞表达GFAP。VD-C组BrdU/Tuj-1双阳性率与VD组比较无显著差异,但BrdU/Calbindin-D28k双阳性表达百分率较VD组显著升高(P<0.01),且细胞突起较长。虽然VD-CW组各项指标均较VD-C组降低,但差异无显著性。
     3.海马5-HT1AR mRNA RT-PCR测定结果:
     术后1d,各组5-HT1AR mRNA表达显著下调(P<0.01),术后3d开始回升,VD组海马5-HT1A受体mRNA表达在术后14d达到其峰值。和VD组比较,VD-C组除术后1d组外其余各组大鼠海马5-HT1A受体mRNA表达到丰度均显著升高(P <0.01),其表达峰值提前至术后7天,且一直到术后21d仍维持在相对较高水平。在CIT联合应用WAY100635的VD-CW组,5-HT1A受体mRNA的表达丰度从术后3d开始仍较VD组高,其中术后3d和7d亚组与VD组有显著差异;但VD-CW组术后各时相点5-HT1A受体mRNA的表达丰度均较VD-C组显著降低。
     4.皮层和海马单胺类神经递质5-HT、DA和NE的HPLC检测结果
     在海马:大鼠全脑缺血再灌注后7d 5-HT、DA和NE水平均降低,但其中NE水平的下降无统计学意义。VD组到术后21d海马单胺类神经递质水平接近正常。VD-C组大鼠海马5-HT水平升高近1倍(P <0.01),DA和NE水平无明显变化。VD-CW组5-HT水平虽较VD-C组有升高但无显著差异,DA和NE水平亦无显著变化。在皮层:大鼠全脑缺血再灌注后7d 5-HT水平下降,但DA和NE水平无明显变化,术后21d时均接近正常水平。VD-C组5-HT和NE水平与VD组比较无显著变化,但DA水平则较VD组明显升高(P <0.05)。VD-CW组皮层5-HT水平上升明显(约为SC的3倍),皮层DA水平较VD-C组明显下降(P <0.01),而NE水平无明显变化。
     5.海马CA1区神经元存活情况:
     各实验组大鼠海马CA1区神经元均较SC组显著减少,且均在术后7d程度最严重,此后海马CA1区神经元数量开始逐渐恢复。其中,VD-C组恢复的趋势较VD组明显,而VD-CW组的恢复趋势最为缓慢。各实验组海马CA1区神经元减少的程度不同:和VD组比较,VD-C组术后各时相点CA1区神经元均较多,且差异显著(P <0.01);而VD-CW组的CA1区神经元数量却较少,除了7d和14d组差异显著性在P <0.05外,其余各时相点的差异均非常显著(P <0.01)。
     6.大鼠Moris水迷宫行为学检测结果:
     VD、VD-C和VD-CW组大鼠定位航行实验平均逃逸潜伏期(EL)在造模后均较NC及SC组显著延长(P<0.01),其后随时间推移逐渐缩短;但VD-C组EL延长程度较VD组减轻,且组术后14d、21d和42d的EL延长较VD组显著减少(P<0.05);相反,VD-CW组EL较VD组各14d、21d、42d亚组EL均显著延长。
     VD、VD-C和VD-CW组大鼠空间搜索实验平台象限游泳距离百分比(DP)造模后均显著降低,但随时间推移逐渐上升;VD-C组DP均较VD组高(P <0.05),到术后42d已经与SC组物显著差异;相反,VD-CW组造模后各时相点DP均较VD组相应时相点明显减低(7d组P<0.05,14d、21d、42d亚组P<0.01)。大鼠穿越目标区的次数与DP的变化具有相同的趋势。
     7.事件相关电位类P3检测结果:
     各实验组除VD-C组术后42d亚组外,各时相点类P3L均较SC组显著延长。各实验组大鼠术后3d与术后1d亚组比较类P3L显著延长,术后7d类P3L进一步延长,其延长的程度在VD组和VD-C组无统计学意义,但在VD-CW组则显著延长。此后类P3L延长的程度随时间延长逐渐减轻,但减轻的程度不同:VD组和VD-CW组到术后42d类P3L才显著缩短;而在VD-C组,术后21d即较14d明显改善,术后42d的P3L较21d显著缩短且与SC组比较已经无显著差异。
     研究结论:
     1.全脑缺血再灌注可诱导成年大鼠脑内神经发生增强,以海马DG和SVZ区新生神经细胞的增殖最明显,海马CA1、CA2区和PCg皮层也发现脑缺血后神经发生增强的现象。海马和皮层增强的神经发生在术后14d达高峰,21d开始下降,一直可持续到术后42d;而SVZ神经发生的高峰出现在术后7d。大鼠脑缺血再灌注后水迷宫和类P3认知功能的改变,与海马及皮层BrdU阳性细胞的增殖没有相关性。
     2. CIT可显著促进VD大鼠海马DG、CA1、CA2区和皮层的BrdU阳性细胞增殖,对SVZ区的新生神经细胞增殖无明显影响。同时,CIT可显著促进海马DG、CA1区和皮层新生神经细胞的成神经元分化,并且该作用与CIT改善VD大鼠认知障碍的效应关系密切。CIT的上述作用可被联合应用WAY100635所逆转。
     3. CIT促进VD大鼠脑内神经发生的机制,可能与其提高中枢突触间隙5-HT水平、增加海马5-HT1A受体mRNA表达有关;而其改善动物认知障碍的作用,在术后21d内可能与其调节海马及皮层单胺类神经递质水平、保护海马CA1区神经元有关,在术后42d则可能是通过促进海马和皮层新生神经细胞的成神经元分化及神经保护作用实现的。
Vascular dementia (VD) is the second most common form of dementia after Alzheimer's dementia (AD) which seriously interfere the life of aged people. And till now, a restorative treatment has not been reached yet. VD is characterized by loss of neuronal cells especially in hippocampus, a region in the brain that has the ischemic injury vulnerability, and loss of executive function with milder memory loss. There is a growing body of evidence that neural stem cells(NSCs) reside in the adult central nervous system where neurogenesis occurs throughout lifespan. Neurogenesis concerns mainly two areas in the brain: the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Since the proliferation, differentiation, migration and integration of NSCs in hippocampus have close relationship with cognitive function, it provides a possible therapeutic strategy for ischemic injury repair. Although there have been consistent reports that cerebral ischemia increases the number of newly generated neurons that migrate from the SGZ into the granular cell layer(GCL) of DG and incorporate into functional synaptic circuitry in adult rats, but this still could not compensate the loss of neurons and the cognitive impairment. So it is becoming more and more important to find out a suitable microenvironment for further improve the neurogenesis triggered by ischemic injury. Fortunately, animal studies have shown strong neurogenetic function of serotonin and selective serotonin reuptake inhibitors (SSRIs) and the serotonin 1A receptor, which is abundant in hippocampus, has major effect during neurogenesis. However, it is yet not known whether SSRIs impact the proliferation and maturation of newborn neurons and the cognitive function of VD rats.
     Here in this study, we test our hypothesis that citalopram(CIT), one of SSRIs, could promote neurogenesis and improve cognitive functions in vascular dementia model of rats and it’s action regulated by the function of serotonin 1A receptor. Our research could provide some experimental evidence for the mechanism of ischemic neurogenesis and choice for vascular dementia therapy.
     Objective:
     1. To interpret the characteristics of NSCs proliferation in vascular dementia model of adult rats.
     2. To identify the influence of CIT on NSCs proliferation and differentiation in different region of the brain and on cognitive function of VD rats.
     3. To elucidate the role of serotonin 1A receptor in ischemic neurogenesis and CIT effects in our vascular dementia model.
     Methods:
     1. Animals, drugs and establishment of rat model: Male Wistar rats (n=336) were randomly divided into five groups: normal control group(NC), sham operation control group(SC), transient cerebral ischemic group(VD), citalopram treated transient cerebral ischemic group(VD-C) and VD-CW group which treated with both citalopram and WAY100635. The later four groups were further divided into 1-, 3-, 7-, 14-, 21- and 42-days-post-operation subgroups. And in every subgroup 6 animals were involved. Citalopram(20mg/kg) and WAY 100635(0.3mg/kg) were injected intraperitoneally for 21 days before operation and the treatment proceeded until sacrifaction. BrdU(50mg/kg) was given for 7 days before sacrifaction for cell proliferation study. As for cell differentiation study, BrdU(50mg/kg) was given to 14-day-post-operation in VD, VD-C and VD-CW group, and rats were sacrificed 28 days after. The improved Pulsinelli’s 4-vessle occlusion was used to establish ischemia in rats.
     2. Measurement for cognitive function: The water maze task was undertaken. Place navigation test and spatial probe test was to observe rats’spatial learning and memory abilities respectively. The escape latency (EL), distance percentage (DP) and times of passing through the platform were analyzed. And P3-like potential was observed too.
     3. Observation for NSCs proliferation: Immunohistochemical-staining was preceded with freezing coronal brain slides of 35μm thick each. After sections were incubated in 0.3%TritonX-100 and 2mol/L HCl and results were shown by SABC-Cy3 or DAB. Sections were examined with an inverted microscope.
     4. Observation for NSCs survival and differentiation: Double-label immunofluorescence staining was proceeded. After BrdU immunofluorescence staining, sections were incubated with Tuj1, Calbindin-D28k and GFAP respectively, to label immature, mature neurons and astrocytes, use different fluorescence coloration. And the resulting immunofluorescent signal was viewed under fluorescence microscope and confocal microscopy.
     5. Nissl stain was proceeded to analyze the survival of CA1 neurons.
     6. The expression of serotonin 1A receptor in hippocampus: After Isolation of total RNA and reverse transcription–PCR , Real-time PCR was preceded. Serotonin 1A receptor primers were 5'-GCCCCCCAAGAAGAGCCTGA-3' and 5'-GCCATCTTGCGCTTTGCTTC-3'. GAPDH was used as reference, and the primers were 5'-ACCACAGTCCATGCCATCAC-3' and 5'-TCCACCACCCTGTTGCTGTA-3'。
     7. high-performance liquid chromatography(HPLC) was used to detect monoamine neurotransmitters in hippocampus.
     8. Cell counting and statistical analysis: Cells were counted under high power (20×or 40×objective) on Olympus microscope with magnifying digital camera. Data analyzed by IPP 6.0 software. All the data are presented as the means±S.E.M. of the individual values for each rat in all groups. Statistical analysis of the data was performed using one-way ANOVA for multiple comparisons.
     Results
     1. The characteristics of NSCs proliferation in vascular dementia model of adult rats.
     BrdU positive cells were observed mainly in dentate gyrus and SVZ and less expressed in cortex in normal rats.
     In DG, BrdU-positive cells were gradually increased from 3 days after operation and reached its peak 14 days after operation with the cell number triple as much as that before ischemia. And the number of newly proliferated cells in VD-C group was twice as much as that in VD group from 3 days after ischemia. And in VD-CW group, the proliferation of NSCs was significantly decreased.
     There was no BrdU-positive cells in CA1, CA2 and CA3 in normal rats. And NSCs cells were found in CA1 and CA2 7 days after operation, cell proliferated later and less than that in DG. By use of CIT, CA1 cell proliferation increased twice as that in VD group and CA2 cell proliferation was found 3 days after ischemia and continued 21 days after operation. But the cell proliferation was significantly down-regulated in VD-CW group compared with VD-C group.
     In SVZ region, cell proliferation obviously up-graded from 3-day-after operation, and it was significantly further enhanced by use of CIT. In every experimental groups, number of BrdU-positive cells 7 days post-ischemia groups was significantly higher than that in 3 days post-ischemia groups(P<0.01). But after that, cell proliferation down-regulated rapidly with significant difference between 14 days to 7days post-ischemia(P<0.01). There was no obvious difference of BrdU-positive cell numbers between VD-C group and VD or VD-CW group.
     Number of BrdU-positive cells began to rise in cortex PCg and Str18 area in all experimental groups after ischemia. In VD group, BrdU-positive cells emerged inⅡ~Ⅵlayer of cortex began to rise from 1~3 days post operation and obviously higher 7 days and 14 days after ischemia(P<0.01). Then the number significantly went down 21 days after operation. Number of BrdU-positive cells in VD-C group was much higher compared with VD group(P<0.01) and difference was most obvious 14 days after operation. In VD-CW group, BrdU-positive cells were higher than VD group but had no significant difference with VD-c group.
     2. The survival and differentiation of newly generated cells:
     Double labeled cells could be found in every experimental group after operation.①In DG, NSCs survival rate of VD group was lower than that in SC group but the percentage of double-labeled cell significantly higher(P<0.05). In group of VD, the BrdU-positive cells mainly differentiated into Tuj1-positive immature neurons in DG and into both immature and mature neurons with positive stain of Calbindin-D28k in CA1. And the BrdU-and-GFAP- positive cells scattered in GCL of DG and hilus. In VD-C group, newly generated cells in DG and CA1 differentiated into mature neurons obviously more than that in VD group and also had higher survival rate. And in VD-CW group, double positive of BrdU/Tuj1 and BrdU/Calbindin-D28k cell percentages were significantly decrease.②In the cortex, the BrdU-positive cells expressed relatively stable in PCg than in Str18 and PAC. NSCs’survival rate of VD group was lower than that in SC group with no significant difference. Survival rate of BrdU-positive cells in VD-C group was much higher than in VD group(P<0.05). Double-positive cell was not found in NS and SC groups but could be found in VD group of which had low percentage of BrdU/Tuj1 and BrdU/Calbindin-D28k staining and relatively high percentage of BrdU/GFAP staining. Compared with VD group, BrdU/Tuj1 double-staining percentage was similar but BrdU/Calbindin-D28k double-staining was much higher(P<0.01) in VD-C group. Although cell differentiation rate was lower in VD-CW group, there was no significant difference.
     3. result of RT-PCR examination of serotonin 1A receptor mRNA
     One day after transient cerebral ischemia, the relative expression level of serotonin 1A receptor mRNA dropped down obviously in VD, VD-C and VD-CW groups(p<0.01). It began to rise up from 3 days after ischemia. In VD group, the expression level reached its peak 14 days after operation. In, VD-C group, the relative expression levels of serotonin 1A receptor mRNA were much higher (P<0.01) except 1-day-post-ischemia and reached its peak 7 days earlier and continued keep its ascendancy to 21 days after ischemia compared with VD group. In VD-CW group, serotonin 1A receptor mRNA expression was higher than that in VD group from 3 days after operation with significant difference in 3- and 7-day post ischemia, but lower than that in VD-C group.
     4. Level of monoamine neurotransmitters in hippocampus detected by HPLC
     ①In hippocampus: The level of serotonin(5-HT) dopamine(DA) and norepinephrine (NE) were dropped 7 days after cerebral ischemia with significant difference except NE. And the monoamine neurotransmitter returned normal 21 days post-ischemia in VD group. In VD-C group, the level of 5-HT rose twice as much as that in VD group(P<0.01) but the level of 5-HT in VD-CW group rose with no significant difference vs. VD-C group. The level of DA and NE didn’t change either in VD-C or VD-CW group.
     ②In cortex: The level of 5-HT dropped 7 days after cerebral ischemia with no change of NE and DA and returned normal 21 days post-ischemia. In VD-C group, the level of 5-HT and NE had no statistical difference but the DA level was significantly higher compared with that in VD group(P<0.05). In VD-CW group, the 5-HT level largely rose up, almost triple as much as that in SC group, the level of DA decrease obviously vs. VD-C group(P<0.01), and NE level didn’t change much.
     5. Cell survival in CA1
     The comparisons indicated that this effect was due to significantly lower cell densities in the ischemic animals as compared to sham-operated (p < 0.001). As compared to sham-operated animals, almost 90% of CA1 pyramidal cells showed signs of neuronal damage 7 days after operation and only regained nearly 65% of CA1 cell number 42 day post-ischemia. In contrast, CIT treated rats had 25% more CA1 neurons than non-treated ischemic rats. But this protective effect was blocked by co-administration of WAY 100635, a specific 5-HT1A receptor antagonist. These results provide evidence that CIT can induce a long lasting (i.e., 6 weeks) hippocampal protection against global cerebral ischemia. And this effect of CIT might be regulated by the function of 5-HT1A receptor.
     6. cognitive function examined by Morris water maze test
     Results from data analysis indicated that the average escape latency(EL) of all rats in every group was gradually decreased by the increase of trials in the place navigation tests. The EL in the three groups of VD,VD-C and VD-CW were significantly longer than that of the NC and SC groups(P<0.01). The group of VD-C existed longer escape latency(P<0.05), while the EL in this group of 14 days and 21 days after operation were significantly decreased compared with the VD group(P<0.05).In the contrast, after the administration of the WAY100635,he specific inhibitor of 5-HT1AR, the VD-CW rats showed significant longer escape latency.
     To test the spatial memory ability, the spatial probe test was performed after the removal of the platform. The data showed that the DP spent in target quadrants had no difference between the NC and SC rats, and the DP of the VD,VD+C and VD+W were respectively decreased significantly. Furthermore, the administration of Citalopram made a better performance in memory compared with other groups(P<0.05) and almost returned to normal 42 days after ischemia. In contrast, the DP decreased sharply compared with VD-7d group(P<0.05) and VD-14, 21, 42d group(P<0.01). There was similar result of times of passing through the platform according to DP.
     7. Observation of P3-like latency(P3L)
     Except VD-C-42d group, the P3L prolonged significantly in all ischemic groups vs. SC group. The P3L extended largely 3 days than 1day and 7 days than 3 days after ischemia. These extensions had no statistic significance in VD and VD-C groups but really sharply prolonged in VD-CW group. After 7 days of ischemia, the degree of P3L extension extenuated as time goes on with differences in distinct groups. The significant decurtation of P3L did not emerge until 42 days after ischemia in both VD and VD-CW groups. But in VD-C group, the P3L ameliorated from 21 days post-operation and keep on improving to almost normal level 42 days post-operation.
     Conclusions
     1. Adult brain neurogenesis could be triggered by transient global ischemia. Three days after cerebral ischemia and reperfusion (CIR), enhanced neurogenesis emerged in hippocampus, cortex and SVZ with the most obviously enhancements in DG and SVZ. We found that neurogenesis in CA1, CA2 and PCg could be triggered by ischemia that had seldom been reported. The neurogenesis reached its peak 14 days after operation and decreased from 21-day-post-ischemia till 42 days after ischemia in hippocampus and cortex. And in SVZ, neurogenesis reached its peak 7 days after operation. There was no correlation between changes of cognitive function evaluated by Morris water maze test and P3-like detection and proliferation of BrdU-positive cells in hippocampus and cortex.
     2. Chronic administration of CIT (20mg/kg) could obviously enhance BrdU-positive cell proliferation in different brain region of VD rats, areas including DG, CA1, CA2 and cortex, but barely affected the proliferation of newly generated cells in SVZ. Meanwhile, newly generated cells in DG, CA1 and cortex differentiated more into neurons by treatment of CIT and it had close relationship with the curative facts of CIT on cognitive impairments of VD rats. The effects of CIT mentioned above could be reversed by co administration with WAY 100635.
     3. The mechanism of neurogenetic effect of CIT in VD rats might be concerned with its function of elevating the 5-HT level in synaptic space in the central nervous system (CNS) and/or of promoting the expression of 5-HT1A receptor mRNA. CIT could ameliorate the cognitive impairment via modulate the CNS levels of monoamine neurotransmitters within 21 days after operation and via neuroprotective effect or promote hippocampus and cortex newly generated cells differentiate into neurons 42 days after ischemia.
引文
1. Leys D, Pasquier F, Parnetti L. Epidemiology of vascular dementia. Haemostasis. 1998; 28(3-4): 134-50.
    2.李宏建.血管性痴呆的神经保护.国际脑血管病杂志. 2006, 14(9): 672.
    3. UrakamiK. Alzheimer's disease should be treated as a vascular disease. Nippon Ronen Igakkai Zasshi, 2006, 43(4): 453~454.
    4.张艳玲,李露斯,可金星等.血管性痴呆大鼠的记忆行为改变与突触结构参数的关系第三军医大学学报, 2002; 24(12): 1388-1390.
    5. Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol, 2003 , 13(1): 127-32.
    6. Karin Van der B,Peter M, Paul GM L, et al. Effects of active shock avoidance learning on hippocampal neurogenesis and plasma levels of corticosterone.Behavioural. Brain Research , 2005,157(1): 23-30.
    7. P. Taupin, Adult neurogenesis in the mammalian central nervous system: functionality and potential clinical interest, Med. Sci. Monit. 2005,11: RA247–RA252.
    8. Myriam C, Jordane M, Sophie Scotto-Lomassese, Colette S and Alain S.The common properties of neurogenesis in the adult brain: from invertebrates to vertebrates. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology ,2002; 132(1): 1-15.
    9. Li Y, Chen J , Chopp M. Cell proliferation and differentiation from ependymal subependymal and choroids plexus cells in response to stroke in rat s. J Neurol Sci , 2002 ,193 (2) :137 - 146.
    10. Yagita Y, Kitagawa K, Oht suki T ,et al . Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. St roke, 2001, 32(8): 1890-1896.
    11. Boonstra R, Galea L, Matthews S, Wojtowicz JM. Adult neurogenesis in natural populations. Can J Physiol Pharmacol, 2001, 79(4): 297-302.
    12. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med,2002 ,8(9):963-70.
    13. Holger R, Anita B, Carmen W, et al. Partial serotonergic denervation decreases progenitor cell proliferation in the adult rat hippocampus, but has no effect on rat behavior in the forced swimming test. Pharmacology Biochemistry and Behavior, 2005, 80(4): 549-556.
    14. Santarelli L., Saxe M., Gross C., et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003; 301(5634): 805-809.
    15. Ronald S., Shin Nakagawa, Jessica Malberg. Regulation of Adult Neurogenesis by Antidepressant Treatment. Neuropsychopharmacology, 2001, 25(6): 836-844.
    16. Longo F.M., Yang T., Xie Y., et al. Small molecule approaches for promoting neurogenesis. Curr. Alzheimer Res. 2006, 3(1): 5-10.
    17. Patel TD., Zhou FC. Ontogeny of 5-HT1A receptor expression in the developing hippocampus. Developmental Brain Research, 2005, 157(1): 42-57.
    18. Jason JR, Barry LJ. Pilocarpine-induced status epilepticus increases cell proliferation in the dentate gyrus of adult rats via a 5-HT1A receptor-dependent mechanism. Brain Research, 2003, 966(1): 1-12.
    19. Huang GJ, Herbert Joe. Stimulation of Neurogenesis in the Hippocampus of the Adult Rat by Fluoxetine Requires Rhythmic Change in Corticosterone. Biological Psychiatry, 2006, 59(7): 619-624.
    20. Mnie-Filali O, Bisgaard C, Manta S, et al. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron. 2007; 55(5):712-725.
    21. Holick KA, Lee DC, Hen R, et al. Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology. 2008;33(2):406-17.
    22. Stephan Hjorth and Sidney B. Auerbach. Autoreceptors remain functional after prolonged treatment with a serotonin reuptake inhibitor. Brain Research, 1999, 835(2): 224-228.
    23. C. Gundlah, S. Hjorth and S. B. Auerbach. Autoreceptor Antagonists Enhance the Effect of the Reuptake Inhibitor Citalopram on Extracellular 5-HT: this Effect Persists After Repeated Citalopram Treatment. Neuropharmacology, 1997, 36(4-5): 475-482.
    24. Schmidt-Kastner R, Paschen W, Ophoff BG, et al. A modified four-vessel occlusion model for inducing in complete forebrain ischemia in rats. Stroke, 1989, 20:936.
    25. Franklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates.San Diego: Academic Press. 1997.
    26. Janus C, D’Amelio S,Amitay O , et a l . Spat ial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiol Aging, 2000,21:541-549.
    27. Groo tendo rst J, de Kloet ER, Dalm S, et a l . Reversal of cognitive deficit of apolipoprotein E knockout mice after repeated exposure to a common environmentalexperience. Neuroscience, 2001,108(2):237-247.
    28. Wu X,Wang WW. Latency of P3 in semantic categorization of Chinese characters: preliminary report. Clin Electroencephalogy.1993, 24(1): 31-36.
    29.杨文俊.大脑高级神经功能的神经电生理.北京中国科学技术出版社. 1998.
    30. Shuaib A , Ijaz MS , Miyashita H ,et al. GABA and glutamate levels in the substantia nigra reticular following repetitive cerebral ischemia in gerbils. Exp Neurol, 1997, 147(2) :311.
    31. Naritomi H. Experimental basis of multi2infarct dementia: memory impairment in rodent models of ischemia . Alzheimer Dis Assoc Disord, 1991, 5(2) :103.
    32. Davis HP , Tribuna J , Pulsinelli WA , et al. Reference and working memory of rats following hippocampal damage induced by transient forebrain ischemia. Physiol Behav, 1986, 37(3) :387.
    33. Ni J , Ohta H , Matsumoto K, et al. Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Res ,1994 ,653(1-2) :231.
    34. S. Ramon y Cajal, Hafner: Degeneration and Regeneration of the Nervous System, New York, 1928.
    35. J. Altman, Are new neurons formed in the brains of adult mammals? Science, 1962;135: 1127–1128.
    36. M.S. Kaplan and J.W. Hinds, Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs, Science, 1977;197:1092–1094.
    37. S.A. Bayer, J.W. Yackel and P.S. Puri, Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life, Science, 1982;216:890–892.
    38. H.A. Cameron, C.S. Woolley, B.S. McEwen and E. Gould, Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat, Neuroscience, 1993; 56: 337–344.
    39. C. Lois and A. Alvarez-Buylla, Long-distance neuronal migration in the adult mammalian brain, Science, 1994; 264: 1145–1148.
    40. H. Van Praag, A.F. Schinder, B.R. Christie, N. Toni, T.D. Palmer and F.H. Gage, Functional neurogenesis in the adult hippocampus, Nature, 2002; 415: 1030-1034.
    41. E. Gould, P. Tanapat, B.S. McEwen, G. Flugge and E. Fuchs, Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress, Proc. Natl Acad. Sci. USA , 1998; 95: 3168–3171.
    42. P.S. Eriksson, E. Perfilieva, T. Bjork-Eriksson, A.M. Alborn, C. Nordborg, D.A. Peterson and F.H. Gage, Neurogenesis in the adult human hippocampus, Nat. Med. 1998; 4: 1313–1317.
    43. D.R. Kornack and P. Rakic, The generation, migration, and differentiation of olfactory neurons in the adult primate brain, Proc. Natl Acad. Sci. USA , 2001; 98: 4752–4757.
    44. [M.W. Miller and R.S. Nowakowski, Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system, Brain Res. 1988; 457:44–52.
    45. J.A. del Rio and E. Soriano, Immunocytochemical detection of 5′-bromodeoxyuridine incorporation in the central nervous system of the mouse, Brain Res. Dev. Brain Res. 1989; 49:311-317.
    46. H. Gage, P.W. Coates, T.D. Palmer, H.G. Kuhn, L.J. Fisher, J.O. Suhonen, D.A. Peterson, S.T. Suhr and J. Ray, Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain, Proc. Natl Acad. Sci. USA 1995; 92:11879-11883.
    47. Shioda N, Morioka M, Fukunaga K. Vanadium compounds enhance adult neurogenesis after brain ischemia. Yakugaku Zasshi. 2008;128(3):413-417.
    48. Schmidt W, Reymann KG. Proliferating cells differentiate into neurons in the hippocampal CA1 region of gerbils after global cerebral ischemia. Neurosci Lett. 2002; 334(3):153-156.
    49. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110:429–441.
    50. Rietze R, Poulin P, Weiss S. Mitotically active cells that generate neurons and astrocytes are present in multiple regions of the adult mouse hippocampus. J. Comp. Neurol. 2000; 424(3): 397–408.
    51. Tonchev AB, Yamashima T. Differential neurogenic potential of progenitor cells in dentate gyrus and CA1 sector of the postischemic adult monkey hippocampus. Exp Neurol. 2006;198(1):101-13.
    52. Suh SW, Fan Y, Hong SM, et al. Hypoglycemia induces transient neurogenesis and subsequent progenitor cell loss in the rat hippocampus. Diabetes. 2005; 54(2): 500-509.
    53. Palmer T.D, Markakis E.A, Willhoite A.R, Safar F, Gage F.H. Fibroblast growthfactor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 1999;19:8487–8497.
    54.周华威;赵宝东. NGF对大鼠局灶性脑缺血后脑内神经干细胞的影响.锦州医学院学报, 2006; 27(5): 10~13.
    55.陈虎,蔡定芳,梁辉等.脑缺血大鼠大脑皮层和室管膜下区细胞增殖及巢蛋白表达.中国病理生理杂志, 2003,19(7):917-919.
    56. Zhang RL, Zhang ZG, Zhang L, et al. Proliferation and differentiation of progenitor cells in the cortex and thesubventricular zone in the adult rat after focal cerebral ischemia. Neuroscience, 2001, 105(1): 33.
    57. Kondo T,Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotent CNS stem cell. Science, 2000, 289:1754-1757.
    58.庄明华;骆健明;刘明发等.针刺任脉、督脉及膀胱经促进新生儿缺血缺氧性脑病鼠模型脑内神经干细胞增殖.中华神经医学杂志, 2006,5(7): 686-688.
    59. Yamashita T, Ninomiya M, Hernandez Acosta P, et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci, 2006; 26:6627–6636.
    60. Ohab JJ, Fleming S, Blesch A, et al. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006 Dec 13;26(50):13007-13016.
    61. M. Sairanen, G. Lucas, P. Ernfors, et al. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus, J Neurosci, 2005, 25:1089–1094.
    62. Liu J, Solway K, Messing RO, et al. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neu rosci, 1998, 18, 7768-7778.
    63. Sharp FR, Liu J, Bernabeu R. Neurogenesis following brain ischemia[J]. Brain Res Dev Brain Res, 2002, 134(1-2): 23-30.
    64. Kee NJ, Preston E, Wojtowicz JM. Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res, 2001, 136:313-320.
    65. Ronald S., Shin Nakagawa, Jessica Malberg. Regulation of Adult Neurogenesis by Antidepressant Treatment. Neuropsychopharmacology, 2001, 25(6): 836-844.
    66. Longo F.M., Yang T., Xie Y., et al. Small molecule approaches for promoting neurogenesis. Curr. Alzheimer Res. 2006, 3(1): 5-10.
    67. Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology. 2001;25(6):836–844.
    68. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. The Journal of Neuroscience. 2000;20(24):9104–9110.
    69. Santarelli L, Saxe M, Gross C, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003; 301(5634): 805–809.
    70. Malberg JE. Implications of adult hippocampal neurogenesis in antidepressant action. Journal of Psychiatry and Neuroscience. 2004;29(3):196–205.
    71. Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology. 2003;28(9):1562–1571.
    72. Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(21):8233–8238.
    73. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301: 805–809, 2003.
    74. Hitoshi S, Maruta N, Higashi M, Kumar A, Kato N, Ikenaka K.Antidepressant drugs reverse the loss of adult neural stem cells following chronic stress.J Neurosci Res. 2007;85(16):3574-85.
    75. LinksWang JW, David DJ, Monckton JE, Battaglia F, Hen R.Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells.J Neurosci. 2008;28(6):1374-84.
    76. Marcussen AB, Flagstad P, Kristjansen PE, Johansen FF, Englund U.Increase in neurogenesis and behavioural benefit after chronic fluoxetine treatment in Wistar rats.Acta Neurol Scand. 2008;117(2):94-100.
    77. Choi YS, Cho KO, Kim SY. Fluoxetine does not affect the ischemia-induced increase of neurogenesis in the adult rat dentate gyrus.Arch Pharm Res. 2007;30(5):641-645.
    78. Raj Kalaria. Similarities between Alzheimer's disease and vascular dementia. Journal of the Neurological Sciences. 2002;203~204(15): 29~34.
    79. Bin Yan, Dao-yi Wang, Dong-ming Xing, et al. The antidepressant effect of ethanol extract of radix puerariae in mice exposed to cerebral ischemia reperfusion. Pharmacology Biochemistry and Behavior, 2004; 78(2): 319-325.
    80. I. Hindmarch, Beyond the monoamine hypothesis: mechanisms, molecules andmethods, Eur. Psychiatr. 2002;17 (Suppl 3):294–299.
    81. Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nature Reviews Neuroscience. 2003; 4(12): 1002–1012.
    82. Brezun JM, Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neurosci, 1999, 89(4): 999-1002.
    83. Ueda S., Sakakibara S., Yoshimoto K. Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning. Neuroscience, 2005, 135(2): 395-402.
    84. Holger R, Anita B, Carmen W, et al. Partial serotonergic denervation decreases progenitor cell proliferation in the adult rat hippocampus, but has no effect on rat behavior in the forced swimming test. Pharmacology Biochemistry and Behavior, 2005, 80(4): 549-556.
    85. Michael J. Owens, David L. Knight and Charles B. Nemeroff. Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biological Psychiatry, 2001; 50(5): 345-350.
    86. O. Mnie-Filali, M. El Mansari, H. Scarna, et al. L’escitalopram : un inhibiteur sélectif et un modulateur allostérique du transporteur de la sérotonine. L'Encéphale, 2007; 33(6): 965-972.
    87. S.W. Kim, S.Y. Park and O. Hwang, Up-regulation of tryptophan hydroxylase expression and serotonin synthesis by sertraline, Mol. Pharmacol. 2002; 61: 778–785.
    88. S.Y. Baik, K.H. Jung, M.R. Choi, et al. FLUOXETINE-induced up-regulation of
    14-3-3zeta and tryptophan hydroxylase levels in RBL-2H3 cells, Neurosci. 2005; Lett. 374: 53–57.
    89. K. Bezchlibnyk-Butler, I. Aleksic and S.H. Kennedy, Citalopram: a review of pharmacological and clinical effects, J. Psychiatry Neurosci. 2000; 25: 241–254.
    90. Antonio Di Lieto, Damiana Leo, Floriana Volpicelli, et al. FLUOXETINE modifies the expression of serotonergic markers in a differentiation-dependent fashion in the mesencephalic neural cell line A1 mes c-myc. Brain Research, 2007; 1143(27):1-10.
    91.江开达主编.精神药理学.人民卫生出版社. 2007年5月第一版.
    92. Christoffer Bundgaard, Frank Larsen, Martin J?rgensen, et al. Mechanistic model of acute autoinhibitory feedback action after administration of SSRIs in rats: Application to escitalopram-induced effects on brain serotonin levels. European Journal of Pharmaceutical Sciences, 2006; 29(5): 394-404.
    93. Gregers Wegener, Kristian Linnet, Raben Rosenberg, et al. The effect of acute citalopram on extracellular 5-HT levels is not augmented by lithium: an in vivo microdialysis study. Brain Research, 2000; 871(2): 338-342.
    94. Dawson LA, Nguyen HQ, Smith DL, Schechter LE. Effect of chronic fluoxetine and WAY-100635 treatment on serotonergic neurotransmission in the frontal cortex. J Psychopharmacol 2002.16: 145–152.
    95. Kreiss DS, Lucki I. Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. J Pharmacol Exp 1995.Ther 274: 866–876.
    96. Takashi Yoshitake, Ilkka Reenil?, Sven Ove ?gren, et al. Galanin attenuates basal and antidepressant drug-induced increase of extracellular serotonin and noradrenaline levels in the rat hippocampus. Neuroscience Letters, 2003; 339(3):239-242.
    97. Tanel M?llo, Kadri K?iv, Indrek Koppel, et al. Regulation of extracellular serotonin levels and brain-derived neurotrophic factor in rats with high and low exploratory activity. Brain Research, 2008; 1194:110-117.
    98. H. Manev, T. Uz, N.R. Smalheiser and R. Manev , Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur. J. Pharmacol. 2001; 411: 67–70.
    99. Nashat Abumaria, Rafal Rygula, Christoph Hiemke, et al. Effect of chronic citalopram on serotonin-related and stress-regulated genes in the dorsal raphe nucleus of the rat. European Neuropsychopharmacology, 2007; 17(6-7): 417-429.
    100. Faber, K.M. and Haring, J.H., Synaptogenesis in the postnatal rat fascia dentata is influenced by 5-HT1a receptor activation. Brain Res Dev Brain Res 1999.114: 245–252.
    101. Wilson, C.C., Faber, K.M. and Haring, J.H.. Serotonin regulates synaptic connections in the dentate molecular layer of adult rats via 5-HT1a receptors: evidence for a glial mechanism. Brain Res, 1998; 78:235–239.
    102. Azmitia, E.C., Rubinstein, V.J., Strafaci, J.A., et al. 5-HT1A agonist and dexamethasone reversal of para-chloroamphetamine induced loss of MAP-2 and synaptophysin immunoreactivity in adult rat brain. Brain Res, 1995. 677:181–192.
    103. P. Dahlqvist, A. R?nnb?ck, A. Risedal, et al. Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats. Neuroscience, 2003; 119(3, 4): 643-652.
    104. López JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547–73.
    105. Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S, Chen JJ, Mann JJ. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 2001;25(6):892–903.
    106. Wayne C. Drevets, Michael E. Thase, Eydie L. Moses-Kolko, et al. Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nuclear Medicine and Biology, 2007; 34(7): 865-877.
    107. B.S. McEwen, Stressful experience, brain, and emotions: developmental, genetic and hormonal influences. In: M.S. Gazzaniga, Editor, The cognitive neurosciences, MIT Press, Cambridge (Mass) (1995), pp. 1117–1136 [chapter 74].
    108. Fletcher, E.A. Forster, D.J. Bill, et al. Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist, Behav. Brain Res. 1996, 73: 337–353.
    109. Palacios, A. Pazos and D. Hoyer, Characterisation and mapping of 5-HT1A receptors in animals and in man. In: C. Dourish, S. Ahlenius and P. Hutson, Editors, Brain 5-HT1A receptors-behavioural and neurochemical pharmacology, Ellis Horwood, Chichester (1987) [chapter 6]
    110. Laaris, E. Le Poul, A. M. Laporte, et al. Differential effects of stress on presynaptic and postsynaptic 5-hydroxytryptamine-1A receptors in the rat brain: an in vitro electrophysiological study. Neuroscience, 1999; 91(3): 947-958.
    111. Gould E. Serotonin and hippocampal neurogenesis. Neuropsychopharmacology. 1999; 21(2 Suppl): 46S-51S.
    112. A. Frazer and J.G. Hensler, 5-HT1A receptors and 5-HT1A-mediated responses: effect on treatments that modify serotonergic neurotransmission. In: P.M. Whitaker-Azmitia and S.J. Peroutka, Editors, The neuropharmacology of serotonin, The New York Academy of Sciences, New York (1990), pp. 460–475.
    113. Lopez, J.F., Chalmers, D.T., Little, K.Y. , et al. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry , 1998; 43: 547–573.
    114. P.M. Fisher et al., Capacity for 5-HT1A-mediated autoregulation predicts amygdalareactivity, Nat Neurosci, 2006; 9(11): 1362–1363.
    115. P.M. Whitaker-Azmitia, C. Clarke and E.C. Azmitia. Localization of 5-HT1A receptors to astroglial cells in adult rats: implications for neuronal–glial interactions and psychoactive drug mechanism of action. Synapse, 1993; 14 (3): 201–205.
    116. E.C. Azmitia, Serotonin neurons, neuroplasticity, and homeostasis of neural tissue, Neuropsychopharmacology, 1999; 21 (Suppl 2): 33S–45S.
    117. Jacobs BL, van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Molecular Psychiatry. 2000;5(3):262–269.
    118. Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. The Journal of Neuroscience. 1996;16(7):2365–2372.
    119. Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology. 2004;29(3):450–460.
    120. Jacobs BL, Tanapat P, Reeves AJ, et al. Serotonin stimulates the production of new hippocampal granule neurons via the 5-HT1A receptor in the adult rat. Soc Neurosci Abstr,1998, 24(6): 1992.
    121. Radley JJ, Jacobs BL. Serotonin-1A receptor antagonist administration decreases cellproliferation in the dentategyus. BrainRes, 2002, 955(1-2): 264-267.
    122. Jason JR, Barry LJ. Pilocarpine-induced status epilepticus increases cell proliferation in the dentate gyrus of adult rats via a 5-HT1A receptor-dependent mechanism. Brain Research, 2003, 966(1): 1-12.
    123. Patel TD., Zhou FC. Ontogeny of 5-HT1A receptor expression in the developing hippocampus. Developmental Brain Research, 2005, 157(1): 42-57.
    124. Huang GJ, Herbert Joe. Stimulation of Neurogenesis in the Hippocampus of the Adult Rat by Fluoxetine Requires Rhythmic Change in Corticosterone. Biological Psychiatry, 2006, 59(7): 619-624.
    125. Jacobs BL, Tanapat P, Reeves AJ, Gould E (1998): Serotonin stimulates the production of new hippocampal granule neurons via the 5HT1A receptor in the adult rat. Soc Neurosci Abstr 24:1992.
    126. Jason JR, Barry LJ. 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res, 2002, 955(1-2): 264-267.
    127. M.L. Wong and J. Licinio. Research and treatment approaches to depression. Nat. Rev., Neurosci. 2001; 2: 343–351.
    128. M.J. Attenburrow, P.R. Mitter, R. Whale, et al. Low-dose citalopram as a 5-HT neuroendocrine probe. Psychopharmacology. 2001; 155: 323–326.
    129. Z. Bhagwagar, S. Hafizi and P.J. Cowen. Acute citalopram administration produces correlated increases in plasma and salivary cortisol. Psychopharmacology . 2002; 163: 118–120.
    130. Dania V. Rossi, Teresa F. Burke and Julie G. Hensler. Differential regulation of serotonin-1A receptor-stimulated [35S]GTPγS binding in the dorsal raphe nucleus by citalopram and escitalopram European Journal of Pharmacology, 2008; 583(1): 103-107.
    131. J. Maj, M. Dziedzicka-Wasylewska, V. Klimek, et al. Effects of selective serotonin reuptake inhibitors given repeatedly on 5-HT receptor subpopulations in the rat brain. European Neuropsychopharmacology, 1996; 6( Supplement 4): S4.
    132. Sargent PA, Kjaer KH, Bench CJ, et al. Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 2000;57(2):174–80.
    133. Moses-Kolko EL, Price JC, Thase ME, et al. Measurement of 5-HT(1A) receptor binding in depressed adults before and after antidepressant drug treatment using positron emission tomography and [11C]WAY-100635. Synapse 2007;61(7):523–30.
    134. Chaput Y, de Montigny C, Blier P. Presynaptic and postsynaptic modifications of the serotonin system by long-term administration of antidepressant treatments. An in vivo electrophysiologic study in the rat. Neuropsychopharmacology 1991;5(4):219–29.
    135. M. Carli, S. Afkhami-Dastjerdian and T.A. Reader, [3H]8-OH-DPAT binding and serotonin content in rat cerebral cortex after acute fluoxetine, desipramine, or pargyline, J Psychiatry Neurosci , 21(2) (1996), pp. 114–122.
    136. T.I. Cremers, E.N. Spoelstra, P. de Boer, et al. Desensitisation of 5-HT autoreceptors upon pharmacokinetically monitored chronic treatment with citalopram, Eur. J. Pharmacol. 2000;397:351–357.
    137. S. Hjorth and S.B. Auerbach, Autoreceptors remain functional after prolonged treatment with a serotonin reuptake inhibitor, Brain Res. 835 (1999), pp. 224–228.
    138. N.J. Langman, C.G.S. Smith and K.J. Whitehead. Selective serotonin re-uptake inhibition attenuates evoked glutamate release in the dorsal horn of the anaesthetisedrat in vivo. Pharmacological Research, 2006; 53(2): 149-155.
    139. H.A.Cameron, B.S.McEwen, E.Gould, et al. Regulation of adultneurogenesis by excitatory input and NMDA receptor activation in the dentategyrus. J Neurosci, 1995, 15(5): 4687-4692.
    140. Cameron HA, Gould E (1996): The control of neuronal birth and survival. In Shaw CA (ed), Receptor Dynamics in Neural Development. CRC Press, New York.
    141. Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry, 2000; 47: 351–354.
    142. Keilhoff G, Bernstein HG, Becker A, et al. Increased neurogenesis in a rat ketamine model of schizophrenia. Biol Psychiatr,y,2004; 56: 317–322.
    143. Juan Nacher, Gregori. APSA-NCAM expression in the piriform cortex of the adult rat modulation by NMDA receptor antagonist administration. Brain Research, 2002, 927(8):111-121.
    144. P. Skolnick. Adaptive changes in radioligand binding to N-Methyl-D-Aspartate (NMDA) receptors following chronic antidepressant (AD) treatments. Biological Psychiatry, 1997; 42(1): Supplement 1: 292S.
    145. Polich J, HerbstK L. P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysio, 2000, 38(1):3-19.
    146. Pitsikas N ,Tsitsirigou S, Zisopoulou S. The 5-HT1A receptor and recognition memory. Possible modulation of its behavioral effects by the nitrergic system. Behav-Brain-Res. 2005 , 159(2): 287-293.
    147. Evers EA ,Tillie DE ,van-der-Veen FM,et al. Effects of a novel method of acute tryptophan depletion on plasma tryptophan and cognitive performance in healthy volunteers. Psychopharmacology (Berl), 2005, 178(1): 92-99.
    148. Raj Kalaria. Similarities between Alzheimer's disease and vascular dementia. Journal of the Neurological Sciences, 2002, 203-204: 29-34.
    149. Timo Erkinjuntti. Treatment options: The latest evidence with galantamine (Reminyl?). Journal of the Neurological Sciences, 2002, 203-204(15): 125-130.
    150. Joseph Martin Alisky. Neurotransmitter depletion may be a cause of dementia pathology rather than an effect. Med Hypotheses. 2006; 67(3): 556-560.
    151. Ueda S, Sakakibara S, Yoshimoto K. Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning. Neuroscience. 2005;135(2):395-402.
    152. H. Uchino, R. Minamikawa-Tachino, T. Kristian, et al. Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol. Dis. 2002; 10: 219–233.
    153. Bendel O, Bueters T, von Euler M, et al. Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J Cereb Blood Flow Metab. 2005; 25(12): 1586-1595.
    154. O. Lindvall, Z. Kokaia, J. Bengzon, et al. Neurotrophins and brain insults, Trends Neurosci, 1994, 17:490–496.
    155. T. Saarelainen, P. Hendolin, G. Lucas, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects, J Neurosci, 2003,23: 349–357.
    156. J. Alfonso, L.R. Frick, D.M. Silberman, et al.. Frasch, Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments, Biol Psychiatry, 2006, 59: 244–251.
    157. M. Sairanen, O.F. O'Leary, J.E. Knuuttila et al. Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat, Neuroscience, 2007, 144:368–374.
    158. P.T. Pang, H.K. Teng, E. Zaitsev, et al., Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity, Science, 2006, 306:487–491.
    159. P. Bekinschtein, M. Cammarota, L.M. Igaz, et al. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- Dependent Phase in the Hippocampus. Neuron, 2007, 53: 261–277.
    160. W.J. Tyler and L.D. Pozzo-Miller. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci, 2001, 21: 4249–4258.
    161. S.X. Bamji, B. Rico, N. Kimes et al. BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-beta-catenin interactions, J Cell Biol, 2006, 174: 289–299.
    162. Related Articles.Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology. 2008; 33(1): 73-83.
    163. Ouissame Mnie-Filali, Mostafa El Mansari, Agnès Espana, et al. Allosteric modulation of the effects of the 5-HT reuptake inhibitor escitalopram on the rat hippocampalsynaptic plasticity. Neuroscience Letters, 2006, 395(1): 23-27.
    164. B. Ahlemeyer, A. Glaser, C. Schaper, et al. The 5-HT1A receptor agonist, Bay x 3702, inhibited apoptosis induced by serum deprivation in cultured neurons, Eur. J. Pharmacol. 1999; 370 : 211–216..
    165. J.H.M. Prehn, M. Welsch, C. Backhau?, et al. Effects of serotonergic drugs in experimental brain ischemia: evidence for a protective role of serotonin in cerebral ischemia, Brain Res. 1993; 630: 110–120.
    166. P.M. Whitaker-Azmitia, R. Murphy, E.C. Azmitia, S-100 protein is released from astroglial cells by stimulation of 5-HT1A receptors, Brain Res. 1990; 528: 155–158.
    167. Naoki Nakata, Hiroshi Suda, Junkichi Izumi, et al. Role of hippocampal serotonergic neurons in ischemic neuronal death. Behavioural Brain Research, 1997; 83(1-2): 217-220.
    168. Irina Semkova, Philipp Wolz and Josef Krieglstein. Neuroprotective effect of 5-HT1A receptor agonist, Bay×3702, demonstrated in vitro and in vivo. European Journal of Pharmacology, 1998; 359(2-3): 251-260.
    169. Pablo Salazar-Colocho, Joaquín Del Río and Diana Frechilla. Neuroprotective effects of serotonin 5-HT1A receptor activation against ischemic cell damage in gerbil hippocampus: Involvement of NMDA receptor NR1 subunit and BDNF. Brain Research, 2008; 1199: 159-166.
    170. Murray F, Hutson PH. Hippocampal Bcl-2 expression is selectively increased following chronic but not acute treatment with antidepressants, 5-HT(1A) or 5-HT(2C/2B) receptor antagonists. Eur J Pharmacol. 2007;569(1-2):41-47.
    171. Jacobs BL, Tanapat P, Reeves A, Gould E, et al. Serotonin stimlates the production of new hippocampal granule neurons via the 5-HT1A receptor in the adult rat. Soc Neurosci Abstr, 1998,24(3):1989-1992.
    172. B.J. Oosterink, S.M. Korte, C. Nyakas, et al. Neuroprotection against N-methyl-d-aspartate-induced excitotoxicity in rat magnocellular nucleus basalis by the 5-HT1A receptor agonist 8-OH-DPAT, Eur. J. Pharmacol. 1998; 358: 147–152.
    173. E.Y. Yuen, Q. Jiang, P. Chen, Z. Gu, et al. Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism, J. Neurosci. 2005; 25: 5488–5501.
    174. L. Madhavan, W.J. Freed, V. Anantharam and A.G. Kanthasamy. 5-hydroxytryptamine 1A receptor activation protects against N-methyl-d-aspartate-induced apoptotic celldeath in striatal and mesencephalic cultures, J. Pharmacol. Exp. Ther. 2003; 304: 913–923.
    175. Salazar-Colocho P, Del Río J, Frechilla D. Serotonin 5-hT1A receptor activation prevents phosphorylation of NMDA receptor NR1 subunit in cerebral ischemia. J Physiol Biochem. 2007; 63(3):203-211.
    176. Kamei K, Maeda N, Katsuragi-Ogino R, et al. New piperidinyl- and 1,2,3,6- tetrahydropyridinyl-pyrimidine derivatives as selective 5-HT1A receptor agonists with highly potent anti-ischemic effects. Bioorg Med Chem Lett. 2005; 15(12):2990-2993.
    177. Kamei K, Maeda N, Nomura K, et al. Synthesis, SAR studies, and evaluation of 1,4-benzoxazepine derivatives as selective 5-HT1A receptor agonists with neuroprotective effect: Discovery of Piclozotan. Bioorg Med Chem. 2006; 14(6): 1978-1992.
    178. L. Torup, A. Moller, T.N. Sager and N.H. Diemer. Neuroprotective effect of 8-OH-DPAT in global cerebral ischemia assessed by stereological cell counting, Eur. J. Pharmacol. 2000; 395: 137–141.
    179. Beyer CE, Boikess S, Luo B, Dawson LA. Comparison of the effects of antidepressants on norepinephrine and serotonin concentrations in the rat frontal cortex: an in-vivo microdialysis study. J Psychopharmacol, 2002; 16: 297–304..
    180. Thomas I. F. H. Cremers, Peter de Boer, Yi Liao, et al. Augmentation with a 5-HT1A, but not a 5-HT1B receptor antagonist critically depends on the dose of citalopram. European Journal of Pharmacology, 2000; 397(1): 63-74.
    181. Ildefonso Hervás and Francesc Artigas. Effect of fluoxetine on extracellular 5-hydroxytryptamine in rat brain. Role of 5-HT autoreceptors. European Journal of Pharmacology, 1998; 358(1): 9-18.
    182. R. Invernizzi, C. Velasco, M. Bramante, et al. Effect of 5-HT1A Receptor Antagonists on Citalopram-induced Increase in Extracellular Serotonin in the Frontal Cortex, Striatum and Dorsal Hippocampus. Neuropharmacology, 1997; 36( 4-5): 467-473.
    183. R.J. Nelson, G.E. Demas, P.L. Huang, et al. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature, 1995; 378: 383–386.
    184. Gregers Wegener, Vallo Volke, Brian H., et al. Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Research, 2003; 959(1): 128-134.
    185. Rygula, N. Abumaria, G. Flügge, C. Hiemke, E. Fuchs, E. Rüther and U. Havemann-Reinecke, Citalopram counteracts depressive-like symptoms evoked by chronic social stress in rats, Behav. Pharmacol. 2006;17: 19–29.
    186. T. Yamaguchi, M. Suzuki and M. Yamamoto, Facilitation of acetylcholine release in rat frontal cortex by indeloxazine hydrochloride: involvement of endogenous serotonin and 5-HT4 receptors, Naunyn-Schmiedeberg's Arch Pharmacol, 1997; 356: 712–720.
    187. Nobuaki Egashira, Yoshiaki Matsumoto, Kenichi Mishima, et al. Low dose citalopram reverses memory impairment and electroconvulsive shock-induced immobilization. Pharmacology Biochemistry and Behavior, 2006; 83(1): 161-167.
    188. K. Inui, N. Egashira, K. Mishima, et al., The serotonin1A receptor agonist 8-OH-DPAT reversesΔ9-tetrahydrocannabinol-induced impairment of spatial memory and reduction of acetylcholine release in the dorsal hippocampus in rats. Neurotox Res 2004;6: 153–158.
    189. A.W. Zobel, S. Schulze-Rauschenbach, O.C. von Widdern, et al., Improvement of working but not declarative memory is correlated with HPA normalization during antidepressant treatment. J Psychiatr Res, 2004; 38: 377–383.
    190. B.G. Pollock, B.H. Mulsant, J. Rosen, et al., Comparison of citalopram, perphenazine, and placebo for the acute treatment of psychosis and behavioral disturbances in hospitalized, demented patients. Am J Psychiatry, 2002; 159: 460–465.
    191. C.J. Harmer, Z. Bhagwagar, P.J. Cowen et al. Acute administration of citalopram facilitates memory consolidation in healthy volunteers, Psychopharmacology (Berl), 2002; 163: 106–110.
    192. Wingen M, Kuypers KP, Ramaekers JG.. Selective verbal and spatial memory impairment after 5-HT1A and 5-HT2A receptor blockade in healthy volunteers pre-treated with an SSRI. J Psychopharmacol. 2007;21(5):477-485.
    193. L. Madhavan, W.J. Freed, V. Anantharam et al.5-hydroxytryptamine 1A receptor activation protects against N-methyl-d-aspartate-induced apoptotic cell death in striatal and mesencephalic cultures, J. Pharmacol. Exp. Ther. 2003; 304: 913–923.
    194. Mishima K, Hayakawa K, Abe K, et al. Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke. 2005; 36(5): 1077-1082.
    195. Ramos AJ, Rubio MD, Defagot C, et al. The 5HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces astroglial reaction after ischemic damage caused by cortical devascularization. Brain Res. 2004;1030(2):201-220.
    196. Cyndy Davis Sanberg, Floretta L. Jones, Viet H. Do, et al. 5-HT1a receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments. Learning & Memory, 2006;13:52-62.
    197. Nakai K, Fujii T, Fujimoto K, et al. Effect of WAY-100135 on the hippocampal acetylcholine release potentiated by 8-OH-DPAT, a serotonin1A receptor agonist, in normal and p-chlorophenylalanine-treated rats as measured by in vivo microdialysis. Neurosci Res. 1998;31(1):23-9.
    198. Wilkinson LO, Middlemiss DN, Hutson PH. 5-HT1A receptor activation increases hippocampal acetylcholine efflux and motor activity in the guinea pig: agonist efficacy influences functional activity in vivo. J Pharmacol Exp Ther. 1994;270(2):656-64.
    199. M. Carli, S. Silva, C. Balducci, et al. WAY 100635, a 5-HT1A receptor antagonist, prevents the impairment of spatial learning caused by blockade of hippocampal NMDA receptors. Neuropharmacology, 1999; 38(8): 1165-1173.
    200. Zahrt J, Taylor JR, Mahew RG, et al. Supranormal stimulatio of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci, 1997, 17: 8528-8535.
    201. Kozlov AP, Druzin MY, Kurzins NP. The role of D1-dependent dopaminergic mechaniams of the frontal cortex in delayed responding in rats. Neurosci Behav Physio, 2001, 31(4): 405-411.
    202. Smith JW, Fetsko LA, Xu R, et al. Dopamine D2L receptor knockout mice display deficits in positive and negative reinforcing properties of morphine and in avoidance learning. Neuroscience, 2002, 113(4): 755-765.
    203. Amsten AF, Cai JX, Goldman PS, et al. Dopamine D1-receptors mechanisms in the congitive performance of young adult and aged monkey. Psychopharmacology, 1994, 116:143-151.
    204. M. Di Mascio, G. Di Giovanni, V. Di Matteo, S. Prisco and E. Esposito, Selective serotonin reuptake inhibitors reduce the spontaneous activity of dopaminergic neurons in the ventral tegmental area, Brain Res. Bull. 1998; 46: 547–554.
    205. V. Valentini, F. Cacciapaglia, R. Frau et al. Selective serotonin reuptake blockade increases extracellular dopamine in noradrenaline-rich isocortical but not prefrontal areas: dependence on serotonin-1A receptors and independence from noradrenergic innervation, J. Neurochem. 2005; 93: 371–382.
    206. Ceglia I, Acconcia S, Fracasso C, et al. Effects of chronic treatment with escitalopramor citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. Br J Pharmacol. 2004;142(3):469-478.
    207. M.J. Millan, F. Lejeune and A. Gobert. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents, J. Psychopharmacol. 2000; 14: 114–138.
    208. A. Adell and F. Artigas, The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems, Neurosci. Biobehav. Rev. 2004; 28: 415–431.
    209. L.P. Lacroix, L.A. Dawson, J.J. Hagan et al. 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex, Synapse, 2004; 51: 158–164.
    210. L. Diaz-Mataix, M.C. Scorza, A. Bortolozzi, et al. Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action, J. Neurosci. 2005; 25: 10831–10843.
    211. M. Sakaue, P. Somboonthum, B. Nishihara, et al. Postsynaptic 5-hydroxytryptamine 1A receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br. J. Pharmacol. 2000; 129: 1028–1034.
    212. Drapeau E, Mayo W, Aurousseau C, et al. Spatial memory performances of aged rats n the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A. 2003;100(24):14385-14390.
    213. Merrill DA, Karim R, Darraq M, et al. Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. J Comp Neurol. 2003; 459(2): 201-207.
    214. Becker S. A computational principle for hippocampal learning and neurogenesis. Hippocampus. 2005;15(6):722-38.
    215. van Praag H, Schinder AF, Christie BR, et al. Functional neurogenesis in the adult hippocampus. Nature, 2002, 415: 1030-1034.
    216. CarlenM, CassidyRM, BrismarH, et a.l Functional integration of adult-born neurons. Curr Biol, 2002, 12: 606-608.
    217. Wang S, Kee N, Preston E, et al. Electrophysiological correlates of neural plasticity compensating for ischemia-induced damage in the hippocampus. Exp-Brain-Res. 2005 Aug; 165(2): 250-260.
    218. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neuronsafter ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 2002, 110: 429-441.
    219. Gottfries CG. Scandinavian experience with citalopram in the elderly. Int Clin Psychopharmacol. 1996;11(Suppl1):41-44.
    220. Gottfries CG, Nyth AL. Effect of citalopram, a selective 5-HT reuptake blocker, in emotionally disturbed patients with dementia. Ann N Y Acad Sci. 1991;640:276-9.
    221. Tohgi H, Abe T, Takahashi S,et al. Indoleamine concentrations in cerebrospinal fluid from patients with Alzheimer type and Binswanger type dementias before and after administration of citalopram, a synthetic serotonin uptake inhibitor. J Neural Transm Park Dis Dement Sect. 1995;9(2-3):121-131.
    222. Gottfries CG. Recognition and management of depression in the elderly. Int Clin Psychopharmacol. 1997;12(Suppl7): S31-36.
    1. B.A. Reynolds and S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science 255 (1992), pp. 1707–1710.
    2. GageFH. Mammalian neural stem cell. Science, 2000, 287(5457): 1433-1438.
    3. Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol, 2003 , 13(1): 127-132.
    4. Karin Van der B,Peter M,Paul GM L,et al.Effects of active shock avoidance learning on hippocampal neurogenesis and plasma levels of corticosterone.Behavioural. Brain Research , 2005,157(1): 23-30.
    5. Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA, 2001, 98(8): 4710-4175.
    6. Choi YS, Lee MY, Sung KW, et al. Regional differences in enhanced neurogenesis in the dentate gyrus of adult rats after transient forebrain ischemia. Mol Cells, 2003, 16(2): 232-238.
    7. Sharp FR, Liu J, Bernabeu R. Neurogenesis following brain ischemia[J]. Brain Res Dev Brain Res, 2002, 134(1-2): 23-30.
    8. Liu J, Solway K, Messing RO, et al. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neu rosci, 1998, 18, 7768-7778.
    9. Kee NJ, Preston E, Wojtowicz JM. Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res, 2001, 136:313-320.
    10. Takagi Y, Nozaki K, Takahashi J, et al. Proliferation of neuronal precursor cells in dentate gyros is accelerated after transient forebrain ischemia in mice. Brain Res, 1999, 831: 283-287.
    11. Schmidt W, Reymann KG. Proliferating cells differentiate into neurons in the hippocampal CA1 region of gerbils after global cerebral ischemia. Neurosci Lett, 2002, 334(3): 153-156.
    12. Tanaka R, Yamashiro K, Mochizuki H, et al. Neurogenesis after transient global ischemia in the adult hippocampus visualized by improved etroviral vector[J]. Stroke, 2004, 35(6): 1154-1459.
    13. Yamashima T, Tonchev AB, Vachkov IH, et al. Vascula adventitia generates neuronal progenitors in the monky hippocampus after ischemia. Hippocampus, 2004; 14: 861-875.
    14. Koketsu D, Furuichi Y, Maeda M, et al. Increased number of new neurons in the olfactory bulb and hippocampus of adult non-human primates after focal ischemia. Exp Neurol, 2006, 199(1): 92-102.
    15. Tonchev AB, Yamashima T. Differential neurogenic potential of progenitor cells in dentate gyrus and CA1 sector of the postischemic adult monkey hippocampus. Exp Neurol, 2006, 198(1): 101-113.
    16. Tonchev AB, Yamashima T, Chaldakov GN. Distribution and phenotype of proliferating cells in the forebrain of adult macaque monkeys after transient global cerebral ischemia. Adv Anat Embryol Cell Biol. 2007, 191: 1-106.
    17. Takasawa K, Kitagawa K, Yagita Y, et al. Increased proliferation of neural progenitor cells but reduced survival of new born cells in the contralateral hippocampus after focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 2002, 22(3): 299-307.
    18. Kluska MM, Witte OW, Bolz J, et al. Neurogenesis in the adult dentate gyrus after cortical infarcts: effects of infarct location, N-methyl-D-aspartate receptor blockade and anti-inflammatory treatment. Neuroscience, 2005, 135(3): 723-735.
    19. Iwai M, Sato K, Omori N, et al. Three steps of neural stem cells development in gerbil dentate gyros after transient ischemia. J Cereb Blood Flow Metab, 2002, 22: 411-419.
    20. Iwai M, Sato K, Kamada H, et al. Temporal profile of stem cell division, migration and differentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils. J Cereb Blood Flow Metab, 2003; 23: 331-341.
    21.周建平,顾振,马瑞等.大鼠短暂性局灶性脑缺血后侧脑室室下带神经细胞再生的观察.南京医科大学学报(自然科学版), 2003, 23(4): 335-338.
    22. Parent JM, Vexler ZS, Gong C, et al. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke[J]. Ann Neurol, 2002, 52(6): 802-813.
    23. Li Y, Chen J, Chopp M. Cell proliferation and differentiation from ependymal subependy mal and choroids plexus cells in response to stroke in rats[J]. J Neurol Sci, 2002, 193(2): 137-146.
    24. Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 2002, 8: 963-970.
    25. Zhang RL, Zhang ZG, Zhang L, et al. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia[J]. Neuroscience, 2001, 105(1):33-41.
    26. Daval JL, Pourie G, Grojean S, et al. Neonatal hypoxia triggers transient apoptosis followed by neurogenesis in the rat CA1 hippocampus. Pediatr Res, 2004, 55(4): 561-567.
    27. Plane JM, Liu R, Wang TW, et al. Neonatal hypoxic-ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis, 2004, 16(3): 585-595.
    28. Ong J, Plane JM, Parent JM, et al. Hypoxic-ischemic injury stimulates subventricular zone proliferation and neurogenesis in the neonatal rat. Pediatr Res, 2005, 58(3): 600-606.
    29. Iwai M, Sato K, Kamada H, et al. Temporal profile of stem cell division, migration, and differentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils. J Cereb Blood Flow Metab, 2003, 23(3): 331-341.
    30. Jin K, Sun Y, Xie L, et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Molecular and Cellular Neuroscience, 2003; 24(1); 171-189.
    31. Zhang RL, LeTourneau Y, Gregg SR, et al. Neuroblast division during migration toward the ischemic striatum: a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone. J Neurosci, 2007, 27(12): 3157-3162.
    32. Spiegler M, Villapol S, Biran V, et al. Bilateral changes after neonatal ischemia in the P7 rat brain. J Neuropathol Exp Neurol. 2007, 66(6): 481-490.
    33. Gu W, Brannstrom T, Wester P. Cortical neurogenesis in adilt rats after reversiblephotothrombotic stroke[J]. J Cereb Blood Flow Metab, 2000, 20(8): 1166-1173.
    34. Jiang W, Gu W, Brannstrom T, et al. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke, 2001, 32(5): 1201-1207.
    35. Tonchev AB, Yamashima T, Sawamoto K, et al. Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia. J Neurosci Res. 2005, 81(6): 776-788.
    36. Love S. Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neurosci Lett, 2003, 353(1):29-32.
    37. Osuga H, Osuga S, Wang F, et al. Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci USA, 2000, 97(18): 10254-10259.
    38. Becker EB, Bonni A. Beyond proliferation-cellcycle control of neuronal survival and differentiation in the developing mammalian brain. Semin Cell Dev Biol, 2005, 16(3): 439-448.
    39. Zhu X, McShea A, Harris PL, et al. Elevated expression of aregulator of the G2/M phase of the cellcycle, neuronal CIP-1-associated regulator of cyclinB, in Alzhemer's disease. J Neurosci Res, 2004, 75(5): 698-703.
    40.王萍,王伟,谢敏杰,等.大鼠脑缺血再灌注后神经细胞的细胞周期特征的比较研究.卒中与神经疾病, 2006, 13(3): 159-162.
    41. Bambrick L, Kristian T, Fiskum G. Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem Res, 2004, 29(3): 601-608.
    42. Lukaszevicz AC, Sampaio N, Guegan C, et al. High sensitivity of protoplasmic cortical astroglia to focal ischemia. J Cereb Blood Flow Metab, 2002, 22(3): 289-298.
    43. van Praag H, Schinder AF, Christie BR, et al. Functional neurogenesis in the adult hippocampus. Nature, 2002, 415: 1030-1034.
    44. CarlenM, CassidyRM, BrismarH, et a.l Functional integration of adult-born neurons. Curr Biol, 2002, 12: 606-608.
    45. Wang S, Kee N, Preston E, et al. Electrophysiological correlates of neural plasticity compensating for ischemia-induced damage in the hippocampus. Exp-Brain-Res. 2005 Aug; 165(2): 250-260.
    46. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 2002, 110: 429-441.
    47. Raber J, Fan Y, Matsumori Y, et al. Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol, 2004, 55(3): 381-389.
    48. Brown J, Cooper-Kuhn CM, Kempermann G, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci, 2003, 17(10): 2042-2046.
    49. Rochefort C, Gheusi G, Vincent JD, et al. Enriched odor exposure increases the number of new born neurons in the adult olfactory bulb and improves odor memory. J Neurosci, 2002, 22(7): 2679-2689.
    50. Fabel K, Fabel K, Tam B, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci, 2003, 18(10): 2803-2812.
    51. Johansson BB. Functional outcome in rats transferred to an enriched environment 15 days after focal brain ischemia [J]. Stroke; 1996, 27(2): 324-326.
    52. Nudo RJ, Wise BM, Sifuentes F, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct[J]. Science; 1996, 272(5269): 1791-1794.
    53. Gould E, Beylin A, Tanapat P, et al. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci, 1999, 2(3): 260-265.
    54. Lemaire V, Koehl M, Le M, et al. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA, 2000, 97(21) : 11032-11037.
    55. Ambrogini P, Cuppini R, Cuppini C, et al. Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett, 2000, 286(1): 21-24.
    56.王卫东,王洪典,王津存等.康复训练对成年大鼠脑梗死后海马齿状回神经前体细胞增殖的影响.中华物理医学与康复杂志, 2003, 25(7): 386-389.
    57. Farmer J, Zhao X, vanPraag H, et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience, 2004, 124: 71-79.
    58. Komitova M, Mattsson B, Johansson BB, et al. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke, 2005, 36(6): 1278-1282.
    59. Matsumori Y, Hong SM, Fan Y, et al. Enriched environment and spatial learning enhance hippocampal neurogenesis and salvages ischemic penumbra after focal cerebral ischemia. Neurobiol Dis, 2006, 22(1): 187-198.
    60. Cuello AC. Experimental neurotrophic factor therapy leads to cortical synaptic remodeling and compensates for behavioral deficits. J Psychiatry Neurosci, 1997, 22: 46-55.
    61. Hill-Felberg SJ, McIntosh TK, Oliver DL. Concurrent loss and proliferation of astrocytes following lateral fluid percussion brain injury in the adult rat. J Neurosci Res, 1999, 57: 271-279.
    62. Nygren J, Wieloch T, Pesic J, et al. Enriched environment attenuates cell genesis in subventricular zone after focal ischemia in mice and decreases migration of newborn cells to the striatum. Stroke, 2006, 37(11): 2824-2829.
    63. Briones TL, Suh E, Hattar H, et al. Dentate gyrus neurogenesis after cerebral ischemia and behavioral training. Biol Res Nurs, 2005, 6(3): 167-179.
    64. Komitova M, Zhao LR, Gido G, et al. Postischemic exercise attenuates whereas enriched environment has certain enhancing effects on lesion-induced subventricular zone activation in the adult rat. Eur J Neurosci, 2005, 21(9): 2397-2405.
    65. Rao MS, Hattiangady B, Abdel-Rahman A, et al. Newly born cells in the ageing dentate gyrus display normal migration, survival and neuronal fate choice but endure retarded early maturation. Eur J Neurosci, 2005, 21(2): 464-476.
    66. Enwere E, Shingo T, Gregg C, et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci, 2004, 24(38): 8354-8365.
    67. Badan I, Platt D, Kessler C, et al. Temporal dynamics of degenerative and regenerative events associated with cerebral ischemia in aged rats. Gerontology, 2003, 49(6): 356-365.
    68. Yagita Y, Kitagawa K, Ohtsuki T, et al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus [J]. Stroke; 2001, 32(8): 1890-1896.
    69. Sato K, Hayashi T, Sasaki C, et al. Temporal and spatial differences of PSA-NCAM expression between young adult and aged rats in normal and ischemic brains[J]. Brain Res; 2001, 922(1): 135-139.
    70.刘俊华,晋光荣,向红兵等.成年和老年大鼠局灶性脑缺血后室管膜下区细胞增殖的比较研究.东南大学学报(医学版), 2004, Jul; 23(4): 221-224.
    71. Daisalia V, Helldmann U, Lindvall O, et al. stroke-induced neurogenesis in aged brain. Stoke, 2005, 36(8):1790-1795.
    72. Jan K, Manama M, Xie L, et al. Ischemia-induced neurogenesis is preserved butreduced in the aged rodent basin. Aging Cell, 2004; 3(6): 373-377.
    73. Qiu L, Zhu C, Wang X, et al. Less neurogenesis and inflammation in the immature than in the juvenile brain after cerebral hypoxia-ischemia. J Cereb Blood Flow Metab, 2007, 27(4): 785-794.
    74. Teramoto T, Qiu JH. EGF amplifies there placement of parvalbumin expressing striatal interneurons after ischemia[J]. J Clin Invest; 2003, 111(8): 1125-1132.
    75. Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice[J]. J Neurochem; 2002, 80(3): 539-547.
    76. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors[J].Cell; 2002, 110(4): 429-441.
    77. Tropepe V, Craig CG, Morshead CM, et al. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol, 1999, 208: l66-188.
    78. Richards L.J. Kilpatrick T.J. BartIett PF. De noovo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA; 1992, 89: 8591-8595.
    79. Takami K, Iwane M, Kiyota Y, et al. Increase of basic fibroblast growth factor immunoreactivity and its mRNA level in rat brain following transient forebrain ischemia. Exp Brain Res; 1992,90:1-10.
    80. Endoh M, Pulsinelli WA, Wagner JA. Transient global ischemia induces dynamic changes in the expression of bFGF and the FGF receptor. Brain Res Mol Brain Res; 1994, 22: 76-88.
    81. Lin T, Te J, Lee M, et al. Induction of basic fibroblast growth factor(bFGF) expression following focal cerebral ischemia. Mol Rrain Res; 1997, 49: 255-265.
    82. Lin TN, Te J, Lee M, et al. Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia[J]. Brain Res; 1997, 49(1-2): 255-265.
    83. Ganat Y, Soni S, Chacon M, et al. Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience, 2002, 112(4): 977-991.
    84. Yoshimu ra S, Takagi Y, Harada J, et al. FGF-2 genesis of regulation of neurogenesis in adult hippocampus after brain injury.Proc Natl Acad Sci USA; 2001, 98:5874-5879.
    85.司银楚,成龙,朱培纯.去大脑皮质血管后对成年大鼠海马齿状回神经干细胞的影响.中国临床康复, 2004, 8(31): 7016-7019.
    86. Jin K, Mao XO,Sun Y, et al. Stem cell factor stimulates neurogenesis in vitro and in vino. J Clin Invest; 2002, 110:311-319.
    87. Matsuoka N, Nozaki K, Takagi Y, et al. Adenovirus-mediated gene transfer of fibroblast growth factor-2 increases BrdU-positive cells after forebrain ischemia in gerbils. Stroke; 2003, 34: 1519-1525.
    88. Yoshimura S, Sakai N. Therapeutic neurogenesis for CNS disorders. Nippon Ronen Igakkai Zasshi, 2004, 41(1): 58-60.
    89. Jin K, Mao XO, Sun Y, et al. Stem cell factor stimulate neurogenesis in vitro and in vivo. J Clin Invest; 2002, 110(3): 311-319.
    90. Pencea V, Binganan KD, Wiegand SJ, et al. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchym of the striatun, septun, thalamus and hypothalamus. J Neurosci; 2001; 21: 6706-6717.
    91. Benraiss A, Chmielnicki E, Lerner K, et al. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci; 2001; 21: 6718-6731.
    92. Lindvall O, Emfors P, Benbzon J, et al. Differential regulation of mRNAs for nerve growth factor, brain derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci USA; 1992; 89: 648-652.
    93. Kokaia Z, Zhao Q, Kokaia M, et al. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol; 1995, 136: 73-88.
    94. Gustafsson E, Andsberg G, Darsalia V, et al. Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adenoassociated virus increases neuronal death but promotes neurogenic response following stroke. Eur J Neurosci, 2003, 17(12): 2667-2678.
    95. Schabitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke, 2007, 38(7): 2165-2172.
    96. Larsson E, Mandel RJ, Klein RL, et al. Suppression of insult-induced neurogenesis an adult rat brain by brain-derived neurotrophic factor. ExpNeurol, 2002; 177: 1-8.
    97. Namiecinska M, Marciniak K, Nowak JZ, et al. VEGF as an angiogenic, neurotrophic,and neuroprotective factor. Postepy Hig Med Dosw (Online), 2005; 59: 573-583.
    98. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol, 2000; 425: 479-494.
    99. Louissaint A Jr, Rao S, Leventhal C, et al. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron, 2002; 34: 945-960.
    100. Jin K, Zhu Y, Sun Y, et al. Vascular endothelial growth factor(VEGF) stimulates neurogenesis in vitro and in vivo. Proc Nat Acad Sci USA, 2002; 99:11946-11950.
    101. Maurer MH, Tripps WK, Feldmann RE Jr, et al. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett, 2003; 344: 165-168.
    102. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest, 2003; 111: 1843-1851.
    103. Schanzer A, Wachs FP, Wilhelm D, et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor[J]. Brain Pathol, 2004, 14(3): 237-248.
    104. During MJ, Cao L. VEGF, a mediator of the effect of experience on hippocampal neurogenesis[J]. Curr Alzheimer Res, 2006, 3(1): 29-33.
    105. Wang Y, Jin K, Mao XO, et al. VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res, 2007, 85(4): 740-747.
    106. Mabuchi T, Lucero J, Feng A, et al. Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab, 2005, 25(2): 257-266.
    107. Yamashima T, Tonchev AB, Vachkov IH, et al. Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia. Hippocampus, 2004, 14(7): 861-875.
    108. Kawai T, Takagi N, Mochizuki N, et al. Inhibitor of vascular endothelial growth factor receptor tyrosine kinase attenuates cellular proliferation and differentiation to mature neurons in the hippocampal dentate gyrus after transient forebrain ischemia in the adult rat[J]. Neurosci, 2006, 141(3): 1209-1216.
    109. Cao L, Jiao X, Zuzga DS, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet, 2004, 36(8): 827-835.
    110. Fabel K, Fabel K, TamB, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis[J]. Eur J Neurosci, 2003, 18(10): 2803-2812.
    111. Chen J, Zhang C, Jiang H, et al. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice[J]. J Cereb Blood Flow Metab, 2005, 25(2): 281-290.
    112. Katoh-Semba R, Tsuzuki M, Miyazaki N, et al. Distribution and immunohistochemical localization of GDNF protein in selected neural and non-neural tissues of rats during development and changes in unilateral 6-hydroxydopamine lesions. Neurosci Res, 2007, 59(3): 277-287.
    113. Wei G, Wu G, Cao X. Dynamic expression of glial cell line-derived neurotrophic factor after cerebral ischemica. Neuroreport; 2000, 11(6): 1177-1183.
    114. .Miyazaki H, Nagashima K, Okuma Y, et al. Expression of Ret receptor tyrosine kinase after transient forebrain ischemia is modulated by glial cell line-derived neurotrophic factor in rat hippocampus. Neurosci Lett , 2002, 318(1): 1-4.
    115. Arsenijevic Y, Weiss S. IGF-l is a differentiation factor for post mitotic CNS stem cell-derived neuronal precursors: distinct actions from those of BDNF. Neurosci, 1998, 18(6): 2118-2128.
    116. Chen H, Tung YC, Li B, et al. Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis. Neurobiol Aging, 2007, 28(8): 1148-1162.
    117. Zhang J, Li Y, Chen J, et al. Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res, 2004, 1030(1): 19-27.
    118. He J, Crews FT. Neurogenesis decreases during brain maturation from adolescence to adulthood. Pharmacol Biochem Behav, 2007, 86(2): 327-333.
    119. Bernabeur, Shayp FR. NMDA and AMPA/kainite glutamate receoters modulate dentate neurogenesis and CA3 synapsin-1 in normal and ischemic hippocampus[J]. J Cereb Blood Flow Metab; 2000, 20(12): 1669-1680.
    120. Arvidsson A, Kokaia Z, Lindvall O. N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke[J]. Eur J Neurosci; 2001, 14(1): 10-18.
    121.张志军,万琪等.离子性谷氨酸受体抗剂对大鼠脑缺血再灌注后海马齿状回5-溴脱氧尿核苷表达的影响.[J].中华老年心血管病杂志, 2003, 5(4): 271-273.
    122. Nacher J, Rosell DR, Alonso-Losa G, et al. NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM immunorcative granule, Neurons and radialglia in the adult rat dentate gyrus. Eur J Neurosci, 2001, 13(3): 512-520.
    123.王细林,曾庆杏,陈迎春. N-Methyl-D-Aspartate受体拮抗剂对脑缺血后成年大鼠神经干细胞内源性激活的实验研究.中风与神经疾病杂志, 2005, 22(2):121-124.
    124. Richard L, Pitt S, Andrew L, et al. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem, 2004, 91(1): 238-251.
    125. Johe K, Hazel TG, Muller T, et al. Single factor direct the differentiation of stem cells from the fetaland adult central nervous system. Genes Dev, 1999, 10: 3129-3140.
    126. Chebib M, Johnston GA. The“ABC”of GABA receptors: a brief review. Clin Exp Pharmacol Physiol, 1999, 26(4): 937-940.
    127. Platel JC, Lacar B, Bordey A. GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J Mol Histol, 2007, 38(4): 303-11.
    128. Brezum JM, Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neurosci; 1999, 89(4): 999-1002.
    129. Seo S, Richardson GA, Krollk I. The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development, 2005, 132(1): 105-115.
    130. Ito H, Nakajima A, Nomoto H, et al. Neurotrophins facilitate neuronal differentiation of cultured neural stem cells via induction of mRNA expression of basic helix-loop-helix transcription factors Mash1and Math1. J Neurosci Res, 2003, 71(5): 648-658.
    131. Morrison SJ, Perez SZ, Qian Z, et al. Transient Notch cativation initiates on irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell, 2000, 101(5): 499-510.
    132. Artavanis TS, Rand MD, Kehl J, et al. Notch signaling: cell fate control and signal integration in development. Science, 1999, 284: 770-776.
    133. Buffo A, Vosko MR, Erturk D, et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc Natl Acad Sci USA, 2005, 102(50): 18183-18188.
    134. Yamashima T, Popivanova BK, Guo J, et al. Implication of "Down syndrome cell adhesion molecule" in the hippocampal neurogenesis of ischemic monkeys. Hippocampus, 2006, 16(11): 924-935.
    135. Shingo T, Sorokan ST, Shimazaki T, et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci, 2001; 21: 9733-9743.
    136. Wang L, Zhang ZG, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stoke, 2004;35: 1732-1737.
    137. Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest, 2004, 114(3): 330-338.
    138. Shyu WC, Lin SZ, Yang HI, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation, 2004, 110(13): 1847-1854.
    139. Schneider A, Kruger C, Steigleder T, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest, 2005, 115(8): 2083-9208.
    140. Sehara Y, Hayashi T, Deguchi K, et al. Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats. Brain Res, 2007, 1151: 142-149.
    141. Schneider A, Wysocki R, Pitzer C, et al. An extended window of opportunity for G-CSF treatment in cerebral ischemia. BMC Biol, 2006, 4: 36.
    142. Kawada H, Takizawa S, Takanashi T, et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation, 2006, 113(5): 701-710.
    143. Taguchi A, Wen Z, Myojin K, et al. Granulocyte colony-stimulating factor has a negative effect on stroke outcome in a murine model. Eur J Neurosci. 2007, 26(1): 126-133.
    144. Ronn LC, Berezin V, Bock E. The neural cell adhesionmolecule in synaptic plasticity and ageing. Dev enrosci, 2000, 18(1): 193-199.
    145. Seki T. Hippocampal adult neurogenesis occur in a microenvironment provided by PSA-NCAM-expressing immature neuron. J Neurosci Res, 2002, 69(6):772-783.
    146. Hayashi T, Seki T, Sato K, et al. Expression of polysialylated neural cell adhesion molecule in rat brain after transient middle cerebral artery occlusion[J]. BrainRes;2001, 907(1-2): 130-133.
    147.张波,王任直,李桂林等.脑梗死后神经干细胞的原位增殖及其可塑性.国医学科学院学报, 2004, 26(19): 8-11.
    148. Frotscher M, Haas CA, Forster E. Reelin controls granule cell migration in the dentate gyrus by acting on the radialglial scaffold[J]. Cereb Cortex, 2003, 13(6): 634-640.
    149. Won SJ, Kim SH, Xie L, et al. Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol, 2006, 198(1): 250-259.
    150. McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP.Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev, 1998,12(10): 1438-52.
    151. Daniel AL, Anthony D, Tramontin JM, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 2000, 28(3): 713-726.
    152. Makoto Y, Takumi T, Wataru O. Fate alteration of neuroepithelial cells from neurogenesis to astrocytogenesis by bone morphogenetic proteins.Neurosci Res,2001, 41:391-396.
    153. Zhu G, Mehler MF, Mabie PC, Kessler JA. Developmental changes in progenitor cell responsiveness to cytokines. J Neurosci Res, 1999 , 56(2): 131-45 .
    154. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM and Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron ,2000,28, 713–726.
    155. Park SW, Yan YP, Satriotomo I, et al. Substance P is a promoter of adult neural progenitor cell proliferation under normal and ischemic conditions. J Neurosurg. 2007, 107(3): 593-599.
    156. Chao J, Chao L. Experimental therapy with tissue kallikrein against cerebral ischemia. Front Biosci, 2006, 11: 1323-1327.
    157. Xia CF, Yin H, Yao YY, et al. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther, 2006, 17(2): 206-219.
    158. Moreno-Lopez B, Noval JA, Gonzalez-Bonet LG, et al. Morphological bases for a role of nitric oxide in adult neurogenesis. Brain Res, 2000, 869(1-2): 244-250.
    159. Mize RR, Wu HH, Cork RJ, et al. The role of nitric oxide in development of the path-cluster system and retinocollicular pathways in the rodent superior colliculus. Prog Brain Res, 1998; 118:133-152.
    160. Zhu DY, Deng Q, Yao HH, et al. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice. Life Sci, 2002; 71:1985~1996.
    161. Zhang R, Zhang L, Zhang Z, et al. A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann Neurol, 2001; 50: 602-611.
    162. Keynes RG, Garthwaite J. Nitric oxide and its role in ischaemic brain injury. Curr-Mol-Med. 2004 Mar; 4(2): 179-191.
    163. Zhu DY, Deng Q, Yao HH, et al. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice. Life Sci,2002, 71(17): 1985-1996.
    164. Zhu DY, Liu SH, Sun HS, et al. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J Neurosci, 2003; 23: 223-229.
    165. Luo CX, Zhu XJ, Zhang AX, et al. Blockade of L-type voltage-gated Ca channel inhibits ischemia-induced neurogenesis by down-regulating iNOS expression in adult mouse. J Neurochem, 2005, 94(4): 1077-1086.
    166. Sehara Y, Hayashi T, Deguchi K, et al. Distribution of inducible nitric oxide synthase and cell proliferation in rat brain after transient middle cerebral artery occlusion. Brain Res, 2006, 1093(1): 190-197.
    167. Zhang P, Liu Y, Li J, et al. Cell proliferation in ependymal/subventricular zone and nNOS expression following focal cerebral ischemia in adult rats. Neurol Res, 2006, 28(1): 91-96.
    168. Sun Y, Jin K, Childs JT, et al. Neuronal nitric oxide synthase and ischemia-induced neurogenesis. J Cereb Blood Flow Metab, 2005, 25(4): 485-492.
    169. Zhu DY, Lau L, Liu SH, et al. Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 2004, 101(25): 9453-9457.
    170. Kurushima H, Ohno M, Miura T, et al. Selective induction of DeltaFosB in the brain after transient forebrain ischemia accompanied by an increased expression of galectin-1, and the implication of DeltaFosB and galectin-1 in neuroprotection and neurogenesis. Cell Death Differ, 2005, 12(8): 1078-1096.
    171. Lim DA, Alvarez-Buylla A. Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci USA, 1999; 6: 7526-7531.
    172. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002; 417: 39-44.
    173. Panickar KS, Norenberg MD. Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia, 2005, 50(4): 287-298.
    174. Garcia AD, Doan NB, Imura T, et al. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci, 2004, 7(11): 1233-1241.
    175. Nedergaard M, Dirnagl U. Role of glial cells in cerebral ischemia. Glia, 2005, 50(4): 281-286.
    176. Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res, 2003, 73(6): 778-786.
    177. Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest, 2004; 114: 330-338.
    178. Nakajima K, Hida H, Shimano Y, et al. GDNF is a major component of trophic activity in DA-depleted striatum for survival and neurite extension of DAergic neurons. Brain Research, 2001, 916(1-2): 76-84.
    179. Nishino H, Hida H, Takei N, et al. Mesencephalic neural stem(progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp Neurol, 2000, 164(1): 209-214.
    180. Ni B, Wu X, Su Y, et al. Transient global forebrain ischemia induces a prolonged expression of the caspase-3 mRNA in rat hippocampal CA1 pyramidal neurons. J Cereb Blood Flow Metab, 1998, 18(3): 248-256.
    181. Kumihashi K, Uchida K, Miyazaki H, et al. Acetylsalicylic acid reduce s ischemia induced proliferation of dentate cells in gerbils. Neuroreport, 2001, 12(5): 915-917.
    182. Ekdahl CT, Mohapel P, Miyazaki H, et al. Caspase inhibitors increase short-term survival of progenitor-cell progeny in adult rat dentate gyrus following status epilepticus[J]. Eur J Neurosci, 2001, 14(6): 937-945.
    183. Bjrklund A, Lindvall O. Self-repair in the brain. Nature, 2000, 405: 892-895.
    184. NakatomiH, KuriuT, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 2002, 110: 429-441.
    185. Liu BP, Fournier A, GrandPre T, et al. Myelin-associated glycoprotein as a functional ligand for theNogo-66 receptor. Science, 2002, 297: 1190-1193.
    186. Nakashima K, Takizawa T, Ochiai W, et al. BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA, 2001, 98: 5868-5873.
    187. Sun Y, Nadal-Vicens M, Misono S, et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell, 2001, 104: 365-376.
    188. Lindvall O. Parkinson disease. Stem cell transplantation. Lacent, 2001, 358 [Suppl]: S48
    189. Tai YT, Svendsen CN. Stem cells as a potential treatment of neurological disorders, Curr. Opin. Pharmacol. 2004,4:98–104.
    190. Boonstra R, Galea L, Matthews S, Wojtowicz JM. Adult neurogenesis in natural populations. Can J Physiol Pharmacol, 2001, 79(4): 297-302.
    191. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med,2002 ,8(9):963-970.
    192. Rossi F, Cattaneo E. Neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci, 2002, 3: 401-409.
    193. Kuhn HG, Winkier J, Kempemann G, et al. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci; 1997, 17: 5820-5829.
    194. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of h ippocampal pyramidal neurons after ischemic brain injury by recruiment of endogenous neural progenitors. Cell; 2002, 110: 429-441.
    195. Teramoto T, Qiu J, Plumier JC, et al. ECF amplifies the replacement of parvabumin-expressing striatal interneurons after ischemia. J Clin Invest; 2003, 111:1125-1132.
    196. Craig CG, Tropepe V, Morshead CM, et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell population in the adult mouse brain[J]. J Neurosci; 1996, 16(8): 2649-2658.
    197. Ninomiya M, Yamashita T, Araki N, et al. Enhanced neurogenesis in the ischemic striatum following EGF-induced expansion of transit-amplifying cells in the subventricular zone. Neurosci Lett, 2006, 403(1-2): 63-67.
    198. Jin K, Mao XQ, Sun Y, et al. Heparin-binding epidemtal growth factor-like growth factor hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci; 2002, 22: 5365-5373.
    199. Jin K, Sun Y, Xie L, et al. Post-ischemic administration of heparin-binding epidermal growth factor-like growth factor(HB-ECF) reduces infarct size and modifies neurogenesis after focal cerebral ischemia in the rat. J Cereb Blood Flow Metab; 2004, 24: 399-408.
    200. Sugiura S, Kitagawa K, Tanaka S, et al. Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke, 2005, 36(4): 859-864.
    201. Leker RR, Soldner F, Velasco I, et al. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke, 2007, 38(1): 153-161.
    202. Tureyen K, Vemuganti R, Bowen KK, et al. EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery, 2005, 57(6): 1254-1263.
    203. Baldauf K, Reymann KG. Influence of EGF/bFGF treatment on proliferation, early neurogenesis and infarct volume after transient focal ischemia. Brain Res, 2005; 1056(2): 158-167.
    204. Manoonkitiwongsa PS, Schultz RL, Whitter EF, et al. Contraindications of VEGF-based therapeutic angiogenesis: effects on macrophage density and histology of normal and ischemic brains. Vascul Pharmacol, 2006, 44(5): 316-325.
    205. Zhu W, Mao Y, Zhao Y, et al. Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia. Neurosurgery, 2005, 57(2): 325-333.
    206.姚瑞芹,李林.血管内皮细胞生长因子在缺血性脑损伤中血管新生、神经发生和神经保护的作用.中国康复理论与实践, 2007, 13(3): 208-211.
    207. Carsweu HV, Macrae JM, Gauagher L, et al. Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of globa lischemia. Am J Physiol Heart Circ Physiol, 2004, 287(4): 1501-1504.
    208. Ran SW, Daubcd DB, Botrner M, et al. Estradiol attenuates programmed cell death after stroke-like injury. J Neurosci., 2003, 23(36): 11420-11426.
    209. Santizo RA, Anderson S, Ye S, et al. Effects of estrogen on leukocyte adhesion after transient forebrain ischemia. Stroke, 2000, 31(9): 2231-2235.
    210. Audesirk T, Cabell L, Kern M, et al. Beta-estradiol influences differentiation of hippocampal neurons in vitro through an estrogen receptor-mediated process. Neuroscience, 2003, 121(4): 927-934.
    211. Brannvall K, Korhonen L, Lindholm D. Estrogen-receptor-dependent regulation of neural stem cell proliferation and differentiation. Molecular and Cellular Neuroscience, 2002, 21(3): 512-520.
    212.陈迎春,曾庆杏,段申汉等.雌激素对大鼠脑缺血再灌注神经干细胞内源性激活的实验研究.卒中与神经疾病, 2005, 12(5): 265-268.
    213. Liu Y, Fowler CD, Young LJ, et al. Expression and regulation of brain-derived neurotrophic factor gene and protein in the forebrain of female prairie voles. J Comp Neurol, 2001, 433(4): 499-514.
    214. Chiba S, Suzuki M, Yamanouchi K, et al. Involvement of granulin in estrogen-inducedneurogenesis in the adult rat hippocampus. J Reprod Dev. 2007, 53(2): 297-307.
    215. Suzuki S, Gerhold LM, Bottner M, et al. Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol, 2007, 500(6): 1064-1075.
    216. Miyashita K, Itoh H, Arai H, et al. The neuroprotective and vasculo-neuro-regenerative roles of adrenomedullin in ischemic brain and its therapeutic potential. Endocrinology, 2006, 147(4): 1642-1653.
    217.张黎明,李云峰,刘艳芹等.新生大鼠海马神经干细胞培养及皮质醇和氟西汀对其增殖的影响.中国临床康复, 2005, 9(13): 53-55.
    218. Chang YC, Tzeng SF, Yu L, et al. Early-life fluoxetine exposure reduced functional deficits after hypoxic-ischemia brain injury in rat pups. Neurobiol Dis, 2006, 24(1): 101-113.
    219. Kim EH, Kim YJ, Lee HJ, et al. Acupuncture increases cell proliferation in dentate gyrus after transient global ischemia in gerbils. Neurosci Lett, 2001, 297: 21-24.
    220.李常新,黄如训,陈立云等.大鼠脑梗死后神经前体细胞的增殖及电针作用的实验研究.中国神经精神疾病杂志, 2004, 30(3): 190-193.
    221. Yang ZJ, Shen DH, Guo X, et al. Electroacupuncture enhances striatal neurogenesis in adult rat brains after a transient cerebral middle artery occlusion. Acupunct Electrother Res, 2005, 30(3-4): 185-199.
    222.郑婵娟,廖维靖,杨万同,等.当归注射液对大鼠脑缺血再灌注损伤后VEGF表达的影响.中国康复理论与实践, 2005, 11(12): 973-974.
    223. Shen LH, Zhang JT. Ginsenoside Rg1 increases ischemia-induced cell proliferation and survival in the dentate gyrus of adult gerbils. Neuroscience Letters, 2003, 344: 1-4.
    224. Maden M. Retinoid signaling in the development of the central nervous system. Nat Rev Neurosci, 2002, 3(11): 843-853.
    225. Zhang J, Smith D, Yamamoto M, et al. The meninges is a source of retinoic acid for the late-developing hindbrain. J Neurosci, 2003, 23(20): 7610-7620.
    226. Franco PG, Paganelli AR, Lopez SL, et al. Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. Development, 1999, 126(19): 4257-4265.
    227. Maden M, Gale E, Kostetski I, et al.Vitamin A deficient quail embryos have half a hindbrain and other neural defects. Curr Biol, 1996, 6(4): 417-426.
    228.侯天勇,伍亚民,张玉波.维甲酸对神经干细胞的增殖和分化效应.中华神经医学杂志, 2005, 4(9): 888-891.
    229. Jung DS, Baek SY, Park KH, et al. Effects of retinoic acid on ischemic brain injury-induced neurogenesis. Exp Mol Med. 2007, 39(3): 304-315.
    230. Crandall J, Sakai Y, Zhang JH, et al. 13-cis-retinoic acid suppresses hippocampal cell division and hippocampal- dependent learning in mice[J]. Proc Natl Acad Sci USA, 2004, 101(14): 5111-5116.
    231. Tang M, Feng W, Zhang Y, et al. Salvianolic acid B improves motor function after cerebral ischemia in rats. Behav Pharmacol, 2006, 17(5-6): 493-498.
    232. Liu Z, Fan Y, Won SJ, et al. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke., 2007, 38(1): 146-152.
    233. Hoehn BD, Palmer TD, Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke, 2005, 36(12): 2718-2724.
    234. Zhang RL, Zhang Z, Zhang L, et al. Delayed treatment with sildenafil enhances neurogenesis and improves functional recovery in aged rats after focal cerebral ischemia. J-Neurosci-Res. 2006 May 15; 83(7): 1213-1219.
    235. Naylor M, Bowen KK, Sailor KA, et al. Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem Int, 2005, 47(8): 565-572.
    236. Lee SH, Kim YJ, Lee KM, et al. Ischemic preconditioning enhances neurogenesis in the subventricular zone. Neuroscience, 2007, 146(3): 1020-1031.
    237. Gustavsson M, Wilson MA, Mallard C, et al. Global gene expression in the developing rat brain after hypoxic preconditioning: involvement of apoptotic mechanisms? Pediatr Res, 2007, 61(4): 444-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700