用户名: 密码: 验证码:
葡聚糖对碳酸饱充和蔗糖成核过程影响机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制糖行业是涉及国计民生的重要行业。污染排放已成为影响我国甘蔗制糖业生存与可持续发展的瓶颈问题。制糖过程产生的葡聚糖,引起加工困难的同时也影响食糖产品的产量和质量,如何消除或减少葡聚糖对制糖工业的影响,是行业非常关注的问题。
     本论文以制糖工业中葡聚糖为主线。研究了葡聚糖分子量对模拟烟道气饱充糖液生成的碳酸钙的物化性质及蔗糖成核过程的影响机理。利用超声场辅助饱充蔗糖钙生成碳酸钙过程工艺和分段式饱充技术工艺,可解决采用锅炉烟道气中CO_2存在其纯度低、浓度波动大和吸收率低等共性关键问题,为实现制糖产业的绿色加工和节能减排提供理论和技术依据。
     用乙醇沉淀法提取砂糖中葡聚糖,体积排阻色谱法测定的重均分子量范围为:1.04×10~4-2.24×10~6Da。葡聚糖分子量对模拟烟道气饱充石灰乳生成碳酸钙的影响为:碳酸钙颗粒的弦长范围和不加权中位数弦长,都随葡聚糖分子量的增大而增加;葡聚糖的存在,可使生成的方解石型的碳酸钙的晶格发生畸变;葡聚糖与碳酸钙之间存在物理吸附作用。
     葡聚糖分子量对模拟烟道气饱充蔗糖钙生成的碳酸钙的影响:随着葡聚糖分子量的增加,碳酸钙颗粒形状,从分叉钟乳石状变为不规则状;碳酸钙颗粒的弦长范围和不加权中位数弦长,都随着葡聚糖分子量的增大而减小;葡聚糖不引起方解石型碳酸钙晶格的变化;糖液中存在分子量T40的葡聚糖时,生成的碳酸钙有利于糖液清净。
     超声辅助葡聚糖对烟道气饱充蔗糖钙的影响:随着超声波功率的增加,不规则形状的碳酸钙颗粒数目增加,而颗粒的弦长分布范围和不加权中位数的弦长减小;超声场和葡聚糖的存在,方解石型的碳酸钙的晶格没有发生畸变;在2W/cm~2的超声功率作用下,饱充生成的碳酸钙有利于糖液清净,并可缩短饱充时间。
     葡聚糖对碳酸氢钙制备碳酸钙的影响。将Ca(HCO_3)_2加热分解制备碳酸钙:碳酸钙颗粒中有方解石和文石相,其中文石相的质量百分比为67.0±0.5%;碳酸钙颗粒的形状主要是立方体状、柱状和纺锤形等;存在的葡聚糖和蔗糖,碳酸钙不发生晶型变化。通过Ca(HCO_3)_2与Ca(OH)_2反应制备碳酸钙:生成方解石型碳酸钙,形状主要有球状和立方体状等;葡聚糖和蔗糖的存在,能使碳酸钙的晶格发生畸变。用Ca(HCO_3)_2与Ca(OH)_2反应制备的碳酸钙,对糖液澄清的效果较优。
     蔗糖在水溶液中的超溶解度,随着葡聚糖分子量的增加而增加。糖液中存在高分子量的葡聚糖时,能抑制蔗糖自发成核,减缓和减少生成蔗糖晶体的颗粒数。随着添加葡聚糖分子量的增加,可显著抑制蔗糖晶体(110)和(110)面的生长。
     通过中心组合优化结果分析,表明糖液锤度一次项、添加酶量一次项和糖浆温度一次项对糖浆中葡聚糖酶解率的影响,达极显著水平。通过控制末效蒸发罐的糖浆锤度和添加葡聚糖酶的量,可降低糖浆中葡聚糖的含量。
The Sugar industry was acknowledged crucial importance to the national economy andpeople's livelihood. Emissions and wastes are becoming the bottleneck problem to the sugarindustry with survival and sustainable development. In addition, recent research detailed thepresence of dextran in the sugar factories leads to processing problems like increased ofsucrose loss to molasses, that how to remove or reduce the dextran was urgently concerned inthe sugar industry.
     Dextran in the sugar industry was the main research object in this thesis. Effect of themolecular weights of dextran on physicochemical properties of calcium carbonate obtained bycarbonation in the juice and the nucleation process of sucrose in pure sucrose solutions wereinvestigated. With the method of ultrasound to assist carbonation in the juice and sectionalcarbonation to figure out the low concentration, fluctuation and low absorption rate of CO_2inthe boiler flue gas were proposed. Which make foundation for practical application on greenprocessing and energy savings of sugar industry in the future.
     The ethanol sedimentary method was used to extract dextran from the sucrose. Theweight-average molecular weight of the dextran was between1.04×10~4and2.24×10~6Da bysize-exclusion chromatography, using a refractive index detector. Then, the effect ofmolecular weights of dextran on the calcium carbonate obtained by carbonation in the milk oflime was investigated. Chord length range and unweighted median chord length of thecalcium carbonate increased with the increase of the molecular weight of dextran. The dextranin the milk of lime can raised lattice distortion in the calcium carbonate. And we found thephysical adsorption was exist between the dextran and the calcium carbonate.
     The effect of molecular weights of dextran on the calcium carbonate obtained bycarbonation in the calcium saccharate solution was investigated. The morphology of thecalcite was changed from bifurcation stalactite into irregular shape with the increasing ofdextran molecular weight. In addition, both of chord length range and unweighted medianchord length of the calcite decreased with the increase of the dextran molecular weight. Thedextran in the calcium saccharate solution could not cause lattice distortion in the calciumcarbonate. The calcium carbonate obtained by carbonation with presence of dextran T40waspositively effect to clarify juice.
     And also we found the effect of ultrasonic on the calcium carbonate obtained bycarbonation in the calcium saccharate solution with dextran, the number of the calcite with the irregular shape was increased by the increasing of ultrasonic power. Furthermore, both ofchord length range and not weighted median chord length of the calcite decreased with theincrease of ultrasonic power. Both ultrasonic and dextran could not cause lattice distortion inthe calcium carbonate. The calcium carbonate obtained by carbonation with presence ofdextran T40and ultrasonic power2w/cm~2was positively effect to clarify juice.
     The effect of dextran on the calcium carbonate obtained by Ca(HCO_3)_2also wasinvestigated. The calcium carbonate which could include calcite and aragonite was producedusing the decomposition of Ca(HCO_3)_2by heat treatment and the percentage of aragonite was67.0±0.5%. The shape of the calcium carbonate was cubic, columnar and fusiform. Thedextran and sucrose in the Ca(HCO_3)_2solution could not cause lattice distortion in thecalcium carbonate. However, the calcium carbonate produced by reacting betweenCa(HCO_3)_2and Ca(OH)_2was calcite. The shape of the calcite was globular, cubic andneedlelike. Both sucrose and dextran could cause lattice distortion in the calcium carbonate.the existence of dextran and sugar could can cause lattice distortion in the calcium carbonate.Clarified juice was better with the calcium carbonate obtained by reacting betweenCa(HCO_3)_2and Ca(OH)_2.
     The supersolubility of sucrose in the water solution increased with the increase of thehigher molecular weights of dextran. The spontaneous nucleation of sucrose, mitigation andreducing the counts of sucrose crystal in the syrup could be obviously inhibited by the highermolecular weight of dextran in sugar liquid. The development of the crystals faces of sucrose(110and110) were inhibited by the increasing of molecular weights of dextan.
     With the center combination design optimization of the test results, the concentration ofsolid matter in the solution, the dosage of enzyme and the temperature of the soltuion affectedthe dextran in the syrup digestion rate extremely. By controlling the concentration of solidmatter at the end of the effect evaporation tank and the dosage of the dextranase can reducethe content of dextran in the syrup.
引文
[1]于淑娟,张本山,李奇伟.甘蔗制糖产业节能减排技术路线图[M].广州:华南理工大学出版社,2009.
    [2]黄悦刚.论制糖工艺路线的选择及经济分析[J].广西蔗糖.2010(1):19-21.
    [3]陈维钧,许斯欣.甘蔗制糖原理与技术(第二分册).甘蔗清净[M].北京:轻工业出版社,2001.
    [4]常纪文.二氧化碳的排放控制与《大气污染防治法》的修订[J].中国环境法治.2009:116-119.
    [5]肖邵方. FDI对中国二氧化碳排放影响的研究[D].湖南大学,2011.
    [6]高尚全.中国改革新论[M].北京:人民出版社,2012: p164.
    [7]杨发华,刘永钦.用烟道气干燥蔗渣节能显著-广西召开用烟道气干燥蔗渣技术交流会[J].甘蔗糖业.1984(2):36-37.
    [8]周锡文,农洲才,罗寿民,等.锅炉烟道气余热干燥蔗渣应用研究[J].甘蔗糖业.2012(2):41-44.
    [9]张卓辉.利用烟道气废热干燥蔗渣[J].环境科学与技术.1985(3):64.
    [10]周少基,梁勇,梁卫.新型烟道气蔗渣干燥器的试验研究[J].甘蔗糖业.2010(1):40-43.
    [11]陈世治.我国甘蔗糖厂节能问题的若干思路[J].甘蔗糖业.2008(3):21-27.
    [12]霍汉镇.我国制糖工业的研究开发与推广的重点问题[J].甘蔗糖业.2004(4):48-51.
    [13]陈其斌,周重吉.甘蔗制糖手册[M].第十二版.广州:华南理工大学出版社,1993.
    [14] Rosa L P, Ribeiro S K. Avoiding emissions of carbon dioxide through the use of fuelsderived from sugar cane[J]. AMBIO.1998,27(6):465-470.
    [15] Fairbairn E M R, Americano B B, Cordeiro G C, et al. Cement replacement by sugarcane bagasse ash: CO2emissions reduction and potential for carbon credits[J].JOURNAL OF ENVIRONMENTAL MANAGEMENT.2010,91(9):1864-1871.
    [16] de Paula M, Rolim Pereira F A, Arrabal Arias E R, et al. Fixing of carbon and emissionof greenhouse gases in the exploitation of sugar cane[J]. CIENCIA EAGROTECNOLOGIA.2010,34(3):633-640.
    [17]何华柱,周锡文,吴辉,等.“烟道气CO2饱充,蔗汁渣沫分离”技术在亚硫酸法糖厂澄清工艺的应用与探讨[J].广西蔗糖.2009(2):37-40.
    [18]何华柱,杨振仙,周洪祥,等.甘蔗糖厂混合汁烟道气饱充上浮工艺探讨[J].甘蔗糖业.2009(4):27-30.
    [19]陈子华.锅炉烟道气饱充上浮新工艺在糖厂的应用[J].甘蔗糖业.2010(1):31-34.
    [20]温亦钦,潘儿,罗军,等.利用提浓锅炉烟道气CO2饱充糖浆的探讨[J].广西轻工业.2011(10):103-104.
    [21]何华柱,赵强,周锡文,等.烟道气饱充混合汁澄清方法[P]. CN101358250.
    [22]赵强,周锡文,黄福,等.烟道气饱充上浮技术处理顽性蔗汁工艺[J].甘蔗糖业.2010(2):32-36.
    [23]何华柱,赵强,周锡文,等.烟道气饱充糖浆上浮方法[P]. CN101358251.
    [24]李丽.用于碳饱充的锅炉烟道气[J].广西蔗糖.2004(4):49-51.
    [25] Eggleston G, Legendre B, Richard C. Effect of harvest method and storage time onsugarcane deterioration II: Oligosaccharide formation[J]. INTERNATIONAL SUGARJOURNAL.2001(103):445-451.
    [26]梁达奉,曾练强,郭亭,等.葡聚糖对制糖工业的影响及对策(上)[J].甘蔗糖业.2008(3):28-33.
    [27]田甜.海洋微藻β-葡聚糖的研究[D].宁波大学,2012.
    [28]李雪莲.香菇β-D-葡聚糖的构象转变及其对抗肿瘤活性的影响[D].武汉大学,2004.
    [29]李红波.香菇纤维素衍生物鉴定及其抑制黄曲霉菌产毒机制研究[D].河南科技学院,2012.
    [30]陈昌福,陈萱,陈超然,等. β-葡聚糖的特性及其对动物免疫功能的调节[J].华中农业大学学报.2003(1):95-100.
    [31]安尚泽. β-葡聚糖对小鼠抗氧化能力及非特异性免疫的影响[D].延边大学,2012.
    [32]管骁,姚惠源,周素梅.燕麦麸中β-葡聚糖的提取及其分子量分布测定[J].食品科学.2003(7):40-43.
    [33] Singleton V. Review article: Advances in techniques of dextran analysis-A modernday perspective[J]. INTERNATIONAL SUGAR JOURNAL.2002,104(1239):132.
    [34]张力田.碳水化合物化学[M].北京:轻工业出版社,1988.
    [35] Abdel-Rahman E A, Smejkal Q, Schick R, et al. Influence of Dextran concentrationsand molecular fractions on the rate of sucrose crystallization in pure sucrosesolutions[J]. JOURNAL OF FOOD ENGINEERING.2008,84(4):501-508.
    [36] Abdel-Rahman E, Schick R, Kurz T. Influence of dextran on sucrose crystallization[J].ZUCKERINDUSTRIE.2007,132(6):453-460.
    [37] Abdel-Rahman E A, Smejkal Q, Schick R, et al. Influence of Dextran concentrationsand molecular fractions on the rate of sucrose crystallization in pure sucrosesolutions[J]. JOURNAL OF FOOD ENGINEERING.2008,84(4):501-508.
    [38] Eggleston G. Deterioration of cane juice-sources and indicators[J]. FOODCHEMISTRY.2002,78(PII S0308-8146(01)00390-91):95-103.
    [39] Eggleston G, Harper W. Determination of sugarcane deterioration at the factory:Development of a rapid, easy and inexpensive enzymatic method to measuremannitol[J]. FOOD CHEMISTRY.2006,98(2):366-372.
    [40] Eggleston G, Legendre B, Tew T. Indicators of freeze-damaged sugarcane varietieswhich can predict processing problems[J]. FOOD CHEMISTRY.2004,87(1):119-133.
    [41] Rein P. Cane sugar engineering[M]. Berlin: Elbe Drucherei Wittenberg,2007.
    [42] de Guglielmone C, G. D O, Cardenas G, et al. Sucrose utilization and dextranproduction by Leuconostoc mesenteroides isolated from the sugar industry[J]. SUGARJOURNAL.2000,62:36-40.
    [43] Santos M, Rodrigues A, Teixeira J A. Production of dextran and fructose from carobpod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f)[J].BIOCHEMICAL ENGINEERING JOURNAL.2005,25(1):1-6.
    [44] Eom H, Seo D M, Han N S. Selection of psychrotrophic Leuconostoc spp. producinghighly active dextransucrase from lactate fermented vegetables[J]. INTERNATIONALJOURNAL OF FOOD MICROBIOLOGY.2007,117(1):61-67.
    [45] Eom H, Moon J, Cho S K, et al. Construction of theta-type shuttle vector forLeuconostoc and other lactic acid bacteria using pCB42isolated from kimchi[J].PLASMID.2012,67(1):35-43.
    [46] Leathers T D, Bischoff K M. Biofilm formation by strains of Leuconostoc citreum andL. mesenteroides[J]. BIOTECHNOLOGY LETTERS.2011,33(3):517-523.
    [47] Tallgren A H, Airaksinen U, von Weissenberg R, et al. Exopolysaccharide-producingbacteria from sugar beets[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY.1999,65(2):862-864.
    [48] Michelena G, Martinez A, Cerutti G, et al. Inhibitory effect on Leuconostoc and otherbacteria[J]. INTERNATIONAL SUGAR JOURNAL.2006,108(1285):44-48.
    [49] Mingzheng L, Mei L, Lihong L, et al. Optimization of Fermentation Conditions forSynthesis Dextran by Biochemical Conversion[J]. ADVANCED MATERIALSRESEARCH.2011,396-398:1611-1614.
    [50]冯紫艳,陈山,陈玮,等.甘蔗糖厂混合汁中代表性有害菌株的筛选[J].食品科技.2009(8):10-13.
    [51]梁达奉,曾练强,郭亭,等.葡聚糖对制糖工业的影响及对策(上)[J].甘蔗糖业.2008(3):28-33.
    [52]梁达奉,曾练强,郭亭,等.葡聚糖对制糖工业的影响及对策(下)[J].甘蔗糖业.2008(4):23-27.
    [53] Kaur S, Kaler R S S. Dextran and its effect on the flow behaviour of molasses andcrystallization rate[J]. JOURNAL OF FOOD ENGINEERING.2008,86(1):55-60.
    [54] A A P, A A F, Schneider P. Measurement andanalysisofthedextranpartitioncoefficientin sucrosecrystallization[J]. JOURNAL OFCRYSTALGROWTH.2009,209(311):3667-3673.
    [55] Saska M, Godshall M A, Day D F. Dextran Analysis with Polarimetric, Immunological,Roberts’ and Haze Methods [C]. New Orleans:2002.
    [56] Singleton V, Horn J, Bucke C, et al. A new polarimetric method for the analysis ofdextran and sucrose[J]. INTERNATIONAL SUGAR JOURNAL.2001,103(1230):251-254.
    [57] Kim D, Day D F. Determination of dextran in raw sugar process streams[J]. FOODSCIENCE AND BIOTECHNOLOGY.2004,13(2):248-252.
    [58] Du Boil P. The analysis of dextran and sarkaran in cane products using enzymichydrolysis and HPAEC[J]. INTERNATIONAL SOCIETY OF SUGAR CANETECHNOLOGISTS, VOL I, PROCEEDINGS.2001:53-58.
    [59] Kim D, Day D F. Determination of dextran in raw sugar process streams[J]. FOODSCIENCE AND BIOTECHNOLOGY.2004,13(2):248-252.
    [60]温木盛,张巧巧,黄玉南.用Roberts铜法测定蔗汁中葡聚糖含量的研究[J].甘蔗糖业.1984(4):30-33.
    [61]吴飒丽.蔗汁中葡聚糖的测定及葡聚糖含量的变化特性研究[D].广西大学,2007.
    [62]徐建光,梁达奉,曾练强,等.酶解法定量测定葡聚糖的研究[J].化学与生物工程.2010(4):92-94.
    [63]杨才誉.近红外光谱法测定糖厂中间制品葡聚糖含量的研究[D].广西大学,2005.
    [64] Jolly S C, Prakash C. Removal of dextran from can juice[J]. INTERNATIONALSUGAR JOURNAL.1987,1066(89):184-188.
    [65]陈玮,李凯,冯紫艳,等.超声降解葡聚糖的研究[J].食品工业.2009(6):45-48.
    [66] Eggleston G, Monge A, Montes B, et al. Factory trials to optimize the application ofdextranase in raw sugar manufacture: Part I[J]. INTERNATIONAL SUGARJOURNAL.2006,108(1293):528.
    [67] Eggleston G, Monge A, Montes B, et al. Factory trials to optimize the application ofdextranase in raw sugar manufacture: Part II[J]. INTERNATIONAL SUGARJOURNAL.2007,109(1308):757.
    [68] Eggleston G, Monge A, Stewart D, et al. Optimization of applications of dextranases insugarcane factories[J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICALSOCIETY.2005,230: U663-U664.
    [69] Eggleston G, Monge A. Optimization of sugarcane factory application of commercialdextranases[J]. PROCESS BIOCHEMISTRY.2005,40(5):1881-1894.
    [70] de Bruijn J M. Processing of frost-damaged beets at CSM and the use of dextranase[J].ZUCKERINDUSTRIE.2000,125(11):898-902.
    [71]王国庆,崔英德.轻质碳酸钙生产工艺[M].北京:化学工业出版社,1999.
    [72]肖品东.纳米沉淀碳酸钙工业化技术[M].北京:化学工业出版社,2004.
    [73]王训遒,赵文莲,蒋登高,等.纳米碳酸钙在内墙涂料中的应用研究[J].新型建筑材料.2005(8):22-25.
    [74]刘银,吴燕,杨玉芬,等.纳米包覆重质碳酸钙在造纸中的应用[J].造纸科学与技术.2013(1):60-62.
    [75]金达莱,岳林海,徐铸德.球形碳酸钙复合物的红外、拉曼光谱分析研究[J].无机化学学报.2004(6):715-720.
    [76]李丽匣.碳酸钙晶须的一步碳化法制备及应用研究[D].东北大学,2008.
    [77] Huang S, Naka K, Chujo Y. A carbonate controlled-addition method for amorphouscalcium carbonate spheres stabilized by poly(acrylic acid)s[J]. LANGMUIR.2007,23(24):12086-12095.
    [78] Tong H, Ma W T, Wang L L, et al. Control over the crystal phase, shape, size andaggregation of calcium carbonate via a L-aspartic acid inducing process[J].BIOMATERIALS.2004,25(17):3923-3929.
    [79]霍汉镇.制糖工艺与装备新概念与新实践[M].全国糖业甘蔗糖业信息中心,2002.
    [80]梅特勒-托利多公司. FBRM (聚焦光束反射测量)专利技术[Z].http://cn.mt.com/cn/zh/home/supportive_content/specials.Lasentec-FBRM-Method-of-Measurement.oneColEd.html.
    [81] Kail N, Briesen H, Marquardt W. Advanced geometrical modeling of focused beamreflectance measurements (FBRM)[J]. PARTICLE&PARTICLE SYSTEMSCHARACTERIZATION.2007,24:184-192.
    [82] Kail N, Briesen H, Marquardt W. Analysis of FBRM measurements by means of a3Doptical model[J]. POWDER TECHNOLOGY.2008,185(3):211-222.
    [83] Adlington N K, Black S N, Adshead D L. How To Use the Lasentec FBRM Probe onManufacturing Scale[J]. ORGANIC PROCESS RESEARCH&DEVELOPMENT.2013,17(3):557-567.
    [84] Zhao J, Wang M, Dong B, et al. Monitoring the Polymorphic Transformation ofImidacloprid Using in Situ FBRM and PVM[J]. ORGANIC PROCESS RESEARCH&DEVELOPMENT.2013,17(3):375-381.
    [85] Arellano M, Benkhelifa H, Flick D, et al. Online ice crystal size measurements duringsorbet freezing by means of the focused beam reflectance measurement (FBRM)technology. Influence of operating conditions[J]. JOURNAL OF FOODENGINEERING.2012,113(2):351-359.
    [86]郑乾. Lasentec原理介绍[Z].梅特勒-托利多公司.
    [87]梁敬魁编著.粉末衍射法测定晶体结构[M].北京:科学出版社,2011.
    [88]刘小风,钟宏.不同形态纳米碳酸钙的研究进展[J].上海涂料.2009(4):22-25.
    [89]陈志军,张秋云,坝德伟,等.纳米碳酸钙的研究进展[J].广州化工.2010(10):20-22.
    [90]白燕.环糊精与季铵盐表面活性剂的相互作用及其在碳纳米管分散和碳酸钙制备中的应用[D].山东大学,2009.
    [91]关爽.功能性纳米碳酸钙的制备及性质研究[D].吉林大学,2011.
    [92]赵丽娜.碳酸钙的形貌控制及表面改性研究[D].吉林大学,2009.
    [93]杨效登.生物多糖调控碳酸钙合成研究[D].山东大学,2010.
    [94]王婷.生物大分子对碳酸钙结晶的调控及其机理探究[D].复旦大学,2011.
    [95]郭晓辉.有机分子模板及溶剂效应控制下的碳酸盐的矿化结晶及机理研究[D].中国科学技术大学,2007.
    [96] Njegic-Dzakula B, Falini G, Brecevic L, et al. Effects of initial supersaturation onspontaneous precipitation of calcium carbonate in the presence of chargedpoly-L-amino acids[J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE.2010,343(2):553-563.
    [97] Ukrainczyk M, Kontrec J, Kralj D. Precipitation of different calcite crystalmorphologies in the presence of sodium stearate[J]. JOURNAL OF COLLOID ANDINTERFACE SCIENCE.2009,329(1):89-96.
    [98] Xie L, Song X, Tong W, et al. Preparation and structure evolution of bowknot-likecalcium carbonate particles in the presence of poly(sodium4-styrene sulfate)[J].JOURNAL OF COLLOID AND INTERFACE SCIENCE.2012,385:274-281.
    [99] Yang J, Shih S. Preparation of high surface area CaCO3by bubbling CO2in aqueoussuspensions of Ca(OH)2: Effects of (NaPO3)6, Na5P3O10, and Na3PO4additives[J].POWDER TECHNOLOGY.2010,197(3):230-234.
    [100] Sarka E, Bubnik Z, Kadlec P, et al. The particle size of carbonation mud, andpossibilities for influencing it[J]. JOURNAL OF FOOD ENGINEERING.2008,87(1):45-50.
    [101]李海花,刘振法,高玉华,等.静电场对CaCO3结晶过程的影响及与绿色阻垢剂的协同阻垢性能[J].化工学报.2013:1736-1742.
    [102]陆海勤,丘泰球,谢军生.超声波防除黑液蒸发器积垢的应用及机理[J].纸和造纸.2005(2):52-55.
    [103]陆海勤,丘泰球,刘晓艳,等.超声场-静电场协同防垢机理[J].华南理工大学学报(自然科学版).2005(9):82-86.
    [104]陈永生.超声场-脉冲电场协同防除换热设备积垢的研究[D].广西大学,2011.
    [105]熊兰,席朝辉,叶晓杰,等.大功率高频电磁阻垢系统的设计及实验研究[J].工业水处理.2011(6):46-48.
    [106]葛红花,位承君,龚晓明,等.电磁处理对水溶液中碳酸钙微粒沉降及附着性能的影响[J].化学学报.2011(19):2313-2318.
    [107]李海花,刘振法,高玉华,等.静电场对CaCO3结晶过程的影响及与绿色阻垢剂的协同阻垢性能[J].化工学报.:1.
    [108]西林.甜菜糖与精炼糖生产工艺学(中译本)[M].北京:轻工业出版社,1964.
    [109] Honig P.碳酸法.制糖工艺学原理(中译本).第一卷下卷[M].北京:轻工业出版社,1960:187-245.
    [110] Haghnegahdar M R, Rahimi A, Hatamipour M S. A rate equation for Ca(OH)2and CO2reaction in a spouted bed reactor at low gas concentrations[J]. CHEMICALENGINEERING RESEARCH AND DESIGN.2011,89:616-620.
    [111]陈树功.现代制糖工艺理论[M].北京:轻工业出版社,1988.
    [112]黄上信,彭震,余海平,等.碳酸法制糖滤泥的回收利用问题[J].甘蔗.1996(2):41-43.
    [113]霍汉镇.碳酸法糖厂解决滤泥污染问题的途径[J].中国甜菜糖业.2008(3):26-29.
    [114]蓝贤州,李政.碳酸法糖厂滤泥污染治理新思路[J].广西轻工业.2000(3):24-26.
    [115]黄飒,欧宗喜.碳酸法糖厂滤泥在甘蔗种植应用上的探索[J].广西蔗糖.2012(2):20-25.
    [116]王从玉,卫国基,张进权,等.用碳酸法甘蔗糖厂污染物制复合肥料的研究[J].甘蔗糖业.1986(2):24-28.
    [117]钟伟,王锐,谭宝枝.低温磷浮工艺在碳酸法糖厂生产上的应用[J].广西轻工业.2002(3):5-7.
    [118]瞿东平,寸守庄.亚硫酸-碳酸法蔗汁澄清工艺[P]. CN1317577.
    [119]黄桂忠.用石灰-碳酸法新工艺生产无含硫白砂糖的研究[J].广西蔗糖.2001(3):32-35.
    [120]编著无锡轻工业学院,华南理工大学.甘蔗制糖工艺学[M].北京:轻工业出版社,1983.
    [121] Mcginnis R. Beet-Sugar Technology[M].1971:161-273,559-572.
    [122]西林.甜菜糖与精炼糖生产工艺学(中译本)[M].北京:轻工业出版社,1964.
    [123] Hamerski F, Da Silva V R, Corazza M L, et al. Assessment of variables effects on sugarcane juice clarification by carbonation process[J]. INTERNATIONAL JOURNAL OFFOOD SCIENCE AND TECHNOLOGY.2012,47(2):422-428.
    [124] Cheng L H, Soh C Y, Liew S C, et al. Effects of sonication and carbonation on guavajuice quality[J]. FOOD CHEMISTRY.2007,104(4):1396-1401.
    [125] Saska M, Zossi B S, Liu H. Removal of colour in sugar cane juice clarification bydefecation, sulfitation and carbonation[J]. INTERNATIONAL SUGAR JOURNAL.2010,112(1337):258.
    [126] Song C, Zhong W. Study on control of the second carbonation in the clarifying processof sugar cane juice via generalized predictive control algorithm[M].2013:303-306,1257-1260.
    [127] Hamerski F, de Aquino A D, Ndiaye P M. Sugar cane juice clarification by carbonation-preliminary tests[J]. ACTA SCIENTIARUM-TECHNOLOGY.2011,33(3):337-341.
    [128]杨昌仁编译.国外甜菜糖汁清净技术资料选辑[M].北京:轻工业出版社,1984:82-86.
    [129]于淑娟,喻佩,扶雄,等. CO2饱充流速对碳酸钙形态及吸附能力的影响[J].华南理工大学学报.2012,40(10):146-151.
    [1] Naessens M, Cerdobbel A, Soetaert W, et al. Leuconostoc dextransucrase and dextran:production, properties and applications[J]. JOURNAL OF CHEMICALTECHNOLOGY AND BIOTECHNOLOGY.2005,80(8):845-860.
    [2]陈维钧,许斯欣.甘蔗制糖原理与技术(第二分册).蔗汁清净[M].北京:轻工业出版社,2001.
    [3] Singleton V. Review article: Advances in techniques of dextran analysis-A modern dayperspective[J]. INTERNATIONAL SUGAR JOURNAL.2002,104(1239):132.
    [4] Khalikova E, Susi P, Korpela T. Microbial dextran-hydrolyzing enzymes: Fundamentalsand applications[J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS.2005,69(2):306.
    [5] Rauh J S, Cuddihy J A, Falgout R N, et al. Dextran test method provides versatility forsugar factory process monitoring[J]. INTERNATIONAL SUGAR JOURNAL.2003,105(1251):100.
    [6] Haynes L, Zhou N, Hopkins W. Dextran in, refined sugar: Impact on hard candyprocessing[C]. Atlanta: Verlag:2004.
    [7] Ravno A B, Purchase B S. Dealing with dextran in the South Africa sugar industry[J].INTERNATIONAL SUGAR JOURNAL.2006,1289(108):255-269.
    [8]陈维钧,许斯欣.甘蔗制糖原理与技术(第四分册:蔗糖结晶与成糖)[M].北京:轻工业出版社,2000.
    [9] Aquino F W B, Franco D W. Molecular mass distribution of dextran in Brazilian sugarand insoluble deposits of cachaca[J]. FOOD CHEMISTRY.2009,114(4):1391-1395.
    [10]申瑞玲.燕麦β-葡聚糖的提取纯化及功能特性研究[D].江南大学,2005.
    [11]戴军.杜氏盐藻多糖的提取、分离分析及其生物活性的研究[D].江南大学,2007.
    [12]汪海波.燕麦中β-葡聚糖的化学结构、溶液行为及降血糖作用的机制研究[D].华中农业大学,2004.
    [13]余永廷.小麦全蚀病菌胞外β-1,3-葡聚糖酶的分离纯化及其在致病过程中的免疫标记定位[D].西北农林科技大学,2008.
    [14] Li N, Yan C, Hua D, et al. Isolation, purification, and structural characterization of anovel polysaccharide from Ganoderma capense[J]. INTERNATIONAL JOURNAL OFBIOLOGICAL MACROMOLECULES.2013,57:285-290.
    [15] Shen H, Tang G, Zeng G, et al. Purification and characterization of an antitumorpolysaccharide from Portulaca oleracea L.[J]. CARBOHYDRATE POLYMERS.2013,93(2):395-400.
    [16] Resende A, Catarina S, Geraldes V, et al. Separation and Purification by Ultrafiltration ofWhite Wine High Molecular Weight Polysaccharides[J]. INDUSTRIAL&ENGINEERING CHEMISTRY RESEARCH.2013,52(26):8875-8879.
    [17] Wang H, Jiang H, Wang S, et al. Extraction, purification and preliminarycharacterization of polysaccharides from Kadsura marmorata fruits[J].CARBOHYDRATE POLYMERS.2013,92(2):1901-1907.
    [18] Suresh V, Senthilkumar N, Thangam R, et al. Separation, purification and preliminarycharacterization of sulfated polysaccharides from Sargassum plagiophyllum and its invitro anticancer and antioxidant activity[J]. PROCESS BIOCHEMISTRY.2013,48(2):364-373.
    [19] Hsu W, Hsu T, Lin F, et al. Separation, purification, and alpha-glucosidase inhibition ofpolysaccharides from Coriolus versicolor LH1mycelia[J]. CARBOHYDRATEPOLYMERS.2013,92(1):297-306.
    [20]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社,1994.
    [21] Karmarkar S, Garber R, Kluza J, et al. Gel permeation chromatography of dextrans inparenteral solutions: Calibration procedure development and method validation[J].JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS.2006,41(4):1260-1267.
    [22]柳风祥.中药提取物免疫调节作用的研究及多糖的提取分离鉴定和分子量测定[D].山东农业大学,2009.
    [23]谢红旗,周春山,杜邵龙,等.超滤分离和鉴定三种香菇多糖(英文)[J].天然产物研究与开发.2007(3):369-373.
    [24]魏远安,方积年.高效凝胶渗透色谱法测定多糖纯度及分子量[J].药学学报.1989(7):532-536.
    [25]叶晓,易剑平,俞军,等.微滤、超滤和纳滤联用对多糖进行分子量分级[J].食品科技.2006(8):107-110.
    [26] Chmelík J, Chmelíková J, Novotny M V. Characterization of dextrans by size-exclusionchromatography on unmodified silica gel columns, with lightscattering detection, andcapillary electrophoresis with laser-induced fluorescence detection[J]. JOURNAL OFCHROMATOGRAPHY A.1977,1-2(790):93-100.
    [27] Kostanski L K, Keller D M, Hamielec A E. Size-exclusion chromatography-a review ofcalibration methodologies[J]. JOURNAL OF BIOCHEMICAL AND BIOPHYSICALMETHODS.2004,58(2):159-186.
    [28] Kumar N, Azzam T, Domb A J. Molecular mass distribution of polycations and dextransby high-performance size exclusion chromatography[J]. POLYMERS FORADVANCED TECHNOLOGIES.2002,13(10-12):1071-1077.
    [29]陈其斌,周重吉.甘蔗制糖手册[M].广州:华南理工大学出版社,1993.
    [30] Francisco W.B. Aquino, Douglas W. Franco. Molecular mass distribution of dextran inBrazilian sugar and insoluble deposits of cacha a[J]. FOOD CHEMISTRY.2009,114:1391–1395.
    [31]马歇克等著.蛋白质纯化与鉴定实验指南[M].北京:科学出版社,1999.
    [1] Wei S H, Mahuli S K, Agnihotri R, et al. High surface area calcium carbonate: Porestructural properties and sulfation characteristics[J]. INDUSTRIAL&ENGINEERINGCHEMISTRY RESEARCH.1997,36(6):2141-2148.
    [2] Agnihotri R, Mahuli S K, Chauk S S, et al. Influence of surface modifiers on thestructure of precipitated calcium carbonate[J]. INDUSTRIAL&ENGINEERINGCHEMISTRY RESEARCH.1999,38(6):2283-2291.
    [3] Tong H, Ma W T, Wang L L, et al. Control over the crystal phase, shape, size andaggregation of calcium carbonate via a L-aspartic acid inducing process[J].BIOMATERIALS.2004,25(17):3923-3929.
    [4] Wada N, Yamashita K, Umegaki T. Effects of carboxylic acids on calcite formation inthe presence of Mg2+ions[J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE.1999,212(2):357-364.
    [5] Garcia-Carmona J, Gomez-Morales J, Fraile-Sainz J, et al. Morphological characteristicsand aggregation of calcite crystals obtained by bubbling CO2through a Ca(OH)2suspension in the presence of additives[J]. POWDER TECHNOLOGY.2003,130(PIIS0032-5910(02)00209-71-3SI):307-315.
    [6] Tracy S L, Francois C, Jennings H M. The growth of calcite spherulites from solution I.Experimental design techniques[J]. JOURNAL OF CRYSTAL GROWTH.1998,193(3):374-381.
    [7] Ukrainczyk M, Kontrec J, Kralj D. Precipitation of different calcite crystal morphologiesin the presence of sodium stearate[J]. JOURNAL OF COLLOID AND INTERFACESCIENCE.2009,329(1):89-96.
    [8] Shen Q, Wei H, Wang L C, et al. Crystallization and aggregation behaviors of calciumcarbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate[J].JOURNAL OF PHYSICAL CHEMISTRY B.2005,109(39):18342-18347.
    [9] Sheng Y, Zhou B, Wang C, et al. In situ preparation of hydrophobic CaCO3in thepresence of sodium oleate[J]. APPLIED SURFACE SCIENCE.2006,253(4):1983-1987.
    [10] Konopacka-Lyskawa D, Lackowski M. Influence of ethylene glycol on CaCO3particlesformation via carbonation in the gas-slurry system[J]. JOURNAL OF CRYSTALGROWTH.2011,321(1):136-141.
    [11] Bonfils B, Julcour-Lebigue C, Guyot F, et al. Comprehensive analysis of direct aqueousmineral carbonation using dissolution enhancing organic additives[J].INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL.2012,9:334-346.
    [12] Zhang C, Zhang J, Feng X, et al. Influence of surfactants on the morphologies of CaCO3by carbonation route with compressed CO2[J]. COLLOIDS AND SURFACESA-PHYSICOCHEMICAL AND ENGINEERING ASPECTS.2008,324(1-3):167-170.
    [13] Liang L, Guo F, Chen J. Preparation of nano-alumina trihydroxide by carbonation withsurfactants in non-Newtonian fluid[J]. CHEMICAL ENGINEERING JOURNAL.2008,138(1-3):341-348.
    [14] Li W, Yu Q, Wu P. Submicronic calcite particles with controlled morphology tailored bypolymer skeletons via carbonation route with compressed or supercritical CO2[J].GREEN CHEMISTRY.2009,11(10):1541-1549.
    [15] Dionisi F A R, Aoki I V, Calabrese R J. Clarification of raw sugar cane juice useful inthe production of cane sugar for human consumption involves adding a source of lime,anionic inorganic colloid or polyacrylamide polymer, followed by carbonation[J].(WO2005090611-A1; US2005229813-A1; AU2005224642-A1; MX2006010441-A1;BR200508174-A; CN1965091-A; IN200604736-P1; US7338562-B2; MX259013-B;IN254837-B).
    [16] Eisch J J, Fregene P O, Gitua J N. The epimetallation and carbonation of carbonyl andimino derivatives: Epivanadation route to2-amino and2-hydroxy acids[J]. JOURNALOF ORGANOMETALLIC CHEMISTRY.2007,692(21):4647-4653.
    [17] Yang J, Shih S. Preparation of high surface area CaCO3by bubbling CO2in aqueoussuspensions of Ca(OH)2: Effects of (NaPO3)6, Na5P3O10, and Na3PO4additives[J].POWDER TECHNOLOGY.2010,197(3):230-234.
    [18]陈维钧,许斯欣.甘蔗制糖原理与技术[M].北京:轻工业出版社,2001.
    [19]霍汉镇.制糖工艺与装备新概念与新实践[M].全国甘蔗糖业信息中心,2002.
    [20] Barrett P, Glennon B. Characterizing the metastable zone width and solubility curveusing lasentec FBRM and PVM[J]. CHEMICAL ENGINEERING RESEARCH&DESIGN.2002,80(A7):799-805.
    [21] Heath A R, Fawell P D, Bahri P A, et al. Estimating average particle size by focusedbeam reflectance measurement (FBRM)[J]. PARTICLE&PARTICLE SYSTEMSCHARACTERIZATION.2002,19(2):84-95.
    [22]梁敬魁.粉末衍射法测定晶体结构[M].北京:科学出版社,2003.
    [23]苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社,2002.
    [24] Vagenas N V, Gatsouli A, Kontoyannis C G. Quantitative analysis of synthetic calciumcarbonate polymorphs using FT-IR spectroscopy[J]. TALANTA.2003,59(4):831-836.
    [25] Kontoyannis C G, Vagenas N V. Calcium carbonate phase analysis using XRD andFT-Raman spectroscopy[J]. ANALYST.2000,125(2):251-255.
    [26] Njegic-Dzakula B, Falini G, Brecevic L, et al. Effects of initial supersaturation onspontaneous precipitation of calcium carbonate in the presence of charged poly-L-aminoacids[J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE.2010,343(2):553-563.
    [27]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社,1994.
    [28]金达莱,岳林海,徐铸德.球形碳酸钙复合物的红外、拉曼光谱分析研究[J].无机化学学报.2004(6):715-720.
    [29]金一平,金达莱,岳林海.球形纳米复合方解石型碳酸钙的合成及表征[J].浙江大学学报(理学版).2007(1):66-70.
    [30] Gu W, Bousfield D W, Tripp C P. Formation of calcium carbonate particles by directcontact of Ca(OH)2powders with supercritical CO2[J]. JOURNAL OF MATERIALSCHEMISTRY.2006,16(32):3312-3317.
    [31] Cizer O, Van Balen K, Elsen J, et al. Real-time investigation of reaction rate and mineralphase modifications of lime carbonation[J]. CONSTRUCTION AND BUILDINGMATERIALS.2012,35:741-751.
    [32]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社,1994.
    [1]西林.石灰在水中和在糖液中的异常溶解度[J].制糖译从,第二辑.1956:70-74.
    [2]西林.甜菜糖与精炼糖生产工艺学(中译本)[M].北京:轻工业出版社,1964.
    [3]霍汉镇.现代制糖化学与工艺学[M].北京:化学工业出版社,2008.
    [4]西林等.溶解性蔗糖化碳酸钙[J].制糖译丛,第二辑.1956:61-69.
    [5] Eggleston G. Hot and cold lime clarification in raw sugar manufacture-II: Lime additionand settling behaviour[J]. INTERNATIONAL SUGAR JOURNAL.2000,102(1221):453-457.
    [6] Tatevossian A, Jenkins G N. Sucrose and the role of saccharates in enamel caries.[J].CARIES RESEARCH.1974,8(4):317-330.
    [7] Rein P. Cane sugar engineering[M]. Berlin: Elbe Drucherei Wittenberg,2007.
    [8] Bento L S. Decolorization and decalcification of sugar solutions using ion exchangeresins treated by the saccharate regeneration process[J]. ZUCKERINDUSTRIE.2001,126(2):139-140.
    [9] Yu S J, Gao D W, Qin Z R. Utilization of the saccharate resin regeneration process in asulphitation sugar factory[J]. ZUCKERINDUSTRIE.2001,126(7):552-555.
    [10]陈维钧,许斯欣.甘蔗制糖原理与技术(第二分册:甘蔗清净)[M].北京:轻工业出版社,2001.
    [11] Wawro S. Application of calcium saccharate in juice purification process[J]. LISTYCUKROVARNICKE A REPARSKE.2003,119(3):84-87.
    [12] Granda C B, Holtzapple M T. Experiences with raw thin sugarcane juice preservation[J].INTERNATIONAL SUGAR JOURNAL.2006,108(1288):209.
    [13] Eggleston G. Hot and cold lime clarification in raw sugar manufacture I: Juice qualitydifferences[J]. INTERNATIONAL SUGAR JOURNAL.2000,102(1220):406.
    [14] Doherty W O S. Improved Sugar Cane Juice Clarification by Understanding CalciumOxide-Phosphate-Sucrose Systems[J]. JOURNAL OF AGRICULTURAL AND FOODCHEMISTRY.2011,59(5):1829-1836.
    [15] Thai C C D, Bakir H, Doherty W O S. Insights to the Clarification of Sugar Cane JuiceExpressed from Sugar Cane Stalk and Trash[J]. JOURNAL OF AGRICULTURALAND FOOD CHEMISTRY.2012,60(11):2916-2923.
    [16]陈其斌,周重吉.甘蔗制糖手册[M].第十二版.广州:华南理工大学出版社,1993.
    [17] Labgairi K, Jourani A, Kaddami M. An isothermal (30oC) study of heterogeneousequilibria in the sucrose (C12H22O11)-calcium hydroxide (Ca(OH)2)-water system[J].FLUID PHASE EQUILIBRIA.2011,307(1):100-103.
    [18]华南理工大学.制糖工业分析[M].北京:轻工业出版社,1983.
    [19] Gu W, Bousfield D W, Tripp C P. Formation of calcium carbonate particles by directcontact of Ca(OH)2powders with supercritical CO2[J]. JOURNAL OF MATERIALSCHEMISTRY.2006,16(32):3312-3317.
    [20] Cizer O, Van Balen K, Elsen J, et al. Real-time investigation of reaction rate and mineralphase modifications of lime carbonation[J]. CONSTRUCTION AND BUILDINGMATERIALS.2012,35:741-751.
    [21]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社,1994.
    [1] Hagenson L C, Doraiswamy L K. Comparison of the effects of ultrasound andmechanical agitation on a reacting solid-liquid system[J]. CHEMICAL ENGINEERINGSCIENCE.1998,53(1):131-148.
    [2] Al Nasser W N, Shaikh A, Morriss C, et al. Determining kinetics of calcium carbonateprecipitation by inline technique[J]. CHEMICAL ENGINEERING SCIENCE.2008,63(5):1381-1389.
    [3] Li H, Liu Z, Li X, et al. Effect of electrostatic field on calcium carbonate precipitation[J].20115TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS ANDBIOMEDICAL ENGINEERING.2011:4.
    [4] Tijing L D, Lee D, Kim D, et al. Effect of high-frequency electric fields on calciumcarbonate scaling[J]. DESALINATION.2011,279(1-3):47-53.
    [5] Wagterveld R M, Miedema H, Witkamp G. Effect of Ultrasonic Treatment on EarlyGrowth during CaCO3Precipitation[J]. CRYSTAL GROWTH&DESIGN.2012,12(9):4403-4410.
    [6] Miao X, Xiong L, Chen J, et al. Experimental study on calcium carbonate precipitationusing electromagnetic field treatment[J]. WATER SCIENCE AND TECHNOLOGY.2013,67(12):2784-2790.
    [7] Al Nasser W N, Pitt K, Hounslow M J, et al. Monitoring of aggregation and scaling ofcalcium carbonate in the presence of ultrasound irradiation using focused beamreflectance measurement[J]. POWDER TECHNOLOGY.2013,238(SI):151-160.
    [8] Cefalas A C, Kobe S, Drazic G, et al. Nanocrystallization of CaCO3at solid/liquidinterfaces in magnetic field: A quantum approach[J]. APPLIED SURFACE SCIENCE.2008,254(21):6715-6724.
    [9] Nishida I. Precipitation of calcium carbonate by ultrasonic irradiation[J].ULTRASONICS SONOCHEMISTRY.2004,11(6):423-428.
    [10] Bhanvase B A, Pinjari D V, Gogate P R, et al. Process intensification of encapsulation offunctionalized CaCO3nanoparticles using ultrasound assisted emulsionpolymerization[J]. CHEMICAL ENGINEERING AND PROCESSING.2011,50(11-12):1160-1168.
    [11] Hassan T A, Rangari V K, Rana R K, et al. Sonochemical effect on size reduction ofCaCO3nanoparticles derived from waste eggshells[J]. ULTRASONICSSONOCHEMISTRY.2013,20(5):1308-1315.
    [12] Ruecroft G, Hipkiss D, Ly T, et al. Sonocrystallization: The use of ultrasound forimproved industrial crystallization[J]. ORGANIC PROCESS RESEARCH&DEVELOPMENT.2005,9(6):923-932.
    [13] Dalas E. The effect of ultrasonic field on calcium carbonate scale formation[J].JOURNAL OF CRYSTAL GROWTH.2001,222(1-2):287-292.
    [14] Santos R M, Francois D, Mertens G, et al. Ultrasound-intensified mineral carbonation[J].APPLIED THERMAL ENGINEERING.2013,57(1-2):154-163.
    [15]冯若,李化茂.声化学及其应用[M].合肥市:安徽科学技术出版社,1992.
    [16] Lyczko N, Espitalier F, Louisnard O, et al. Effect of ultrasound on the induction time andthe metastable zone widths of potassium sulphate[J]. CHEMICAL ENGINEERINGJOURNAL.2002,86(PII S1385-8947(1)00164-43):233-241.
    [17]陆海勤,丘泰球,刘晓艳,等.超声场-静电场协同防垢机理[J].华南理工大学学报(自然科学版).2005(9):82-86.
    [18] Yu S J, Gao D W, Qin Z R. Ultrasonic desorption-a new regeneration technology[J].INTERNATIONAL SUGAR JOURNAL.2000,102(1216):202-204.
    [19]丘泰球,胡爱军,姚成灿,等.超声波防除积垢节能技术及设备开发[J].应用声学.2002(2):8-11.
    [20]喻佩,于淑娟,徐献兵.超声处理石灰乳在精炼糖清净中的应用[J].食品工业科技.2013(1):191-193.
    [21]韩忠.甘蔗糖厂混合汁上浮澄清法浮渣黄酮类化合物的分离与纯化[D].广西大学,2007.
    [22]陈树功.溶剂-超声波协同成核起晶机[P]. CN2072973.
    [23]西林等.溶解性蔗糖化碳酸钙[J].制糖译丛,第二辑.1956:61-69.
    [24]霍汉镇.现代制糖化学与工艺学[M].北京:化学工业出版社,2008.
    [25]陈维钧,许斯欣.甘蔗制糖原理与技术(第二分册:甘蔗清净)[M].北京:轻工业出版社,2001.
    [26]陆海勤.超声场-静电场协同减缓换热设备积垢的研究[D].华南理工大学,2005.
    [27] Gu W, Bousfield D W, Tripp C P. Formation of calcium carbonate particles by directcontact of Ca(OH)2powders with supercritical CO2[J]. JOURNAL OF MATERIALSCHEMISTRY.2006,16(32):3312-3317.
    [28]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社,1994.
    [1]肖品东.纳米沉淀碳酸钙工业化技术[M].北京:化学工业出版社,2004.
    [2]王国庆,崔英德.轻质碳酸钙生产工艺[M].北京:化学工业出版社,1999.
    [3] Lakshminarayanan R, Loh X J, Gayathri S, et al. Formation of transient amorphouscalcium carbonate precursor in quail eggshell mineralization: An in vitro study[J].BIOMACROMOLECULES.2006,7(11):3202-3209.
    [4] Amjad Z. Influence of natural and synthetic additives on calcium carbonate precipitationand crystal morphology[J]. TENSIDE SURFACTANTS DETERGENTS.2006,43(4):184.
    [5] Zhao D F, Buchholz A, Mentel T F, et al. Novel method of generation of Ca(HCO3)2andCaCO3aerosols and first determination of hygroscopic and cloud condensation nucleiactivation properties[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS.2010,10(17):8601-8616.
    [6] Jiang J, Ye J, Zhang G, et al. Polymorph and Morphology Control of CaCO3viaTemperature and PEG During the Decomposition of Ca(HCO3)2[J]. JOURNAL OF THEAMERICAN CERAMIC SOCIETY.2012,95(12):3735-3738.
    [7] Muller L, Muller F A. Preparation of SBF with different HCO3-content and its influenceon the composition of biomimetic apatites[J]. ACTA BIOMATERIALIA.2006,2(2):181-189.
    [8] Zhou G T, Yu J C, Wang X C, et al. Sonochemical synthesis of aragonite-type calciumcarbonate with different morphologies[J]. NEW JOURNAL OF CHEMISTRY.2004,28(8):1027-1031.
    [9] Zhang Y P, Dawe R. The kinetics of calcite precipitation from a high salinity water[J].APPLIED GEOCHEMISTRY.1998,13(2):177-184.
    [10] Di Tommaso D, de Leeuw N H. The onset of calcium carbonate nucleation: A densityfunctional theory molecular dynamics and hybrid microsolvation/continumn study[J].JOURNAL OF PHYSICAL CHEMISTRY B.2008,112(23):6965-6975.
    [11]陆海勤,丘泰球,刘晓艳,等.超声场-静电场协同防垢机理[J].华南理工大学学报(自然科学版).2005(9):82-86.
    [12]陈维钧,许斯欣.甘蔗制糖原理与技术(第三分册:糖汁加热与蒸发)[M].北京:轻工业出版社,2001.
    [13]李丽匣.碳酸钙晶须的一步碳化法制备及应用研究[D].东北大学,2008.
    [14] Kitamura M, Konno H, Yasui A, et al. Controlling factors and mechanism of reactivecrystallization of calcium carbonate polymorphs from calcium hydroxide suspensions[J].JOURNAL OF CRYSTAL GROWTH.2002,236(PII S0022-0248(01)02082-61-3):323-332.
    [15] Hu Z S, Deng Y L. Supersaturation control in aragonite synthesis using sparingly solublecalcium sulfate as reactants[J]. JOURNAL OF COLLOID AND INTERFACESCIENCE.2003,266(2):359-365.
    [16] Huang S, Naka K, Chujo Y. A carbonate controlled-addition method for amorphouscalcium carbonate spheres stabilized by poly(acrylic acid)s[J]. LANGMUIR.2007,23(24):12086-12095.
    [17]张惟杰.糖复合物生化研究技术[M].浙江:浙江大学出版社,1994.
    [1] Decloux M, Labatut F, Saska M, et al. Effect of ethanol on sucrose solubility andmolasses exhaustion[J]. INTERNATIONAL SUGAR JOURNAL.2001,103(1236):547-552.
    [2] Rozsa L. Sucrose solubility in impure cane sugar solutions[J]. INTERNATIONALSUGAR JOURNAL.2000,102(1217):230.
    [3] Tsavas P, Polydorou S, Voutsas E C, et al. Sucrose solubility in mixtures of water,alcohol, ester, and acid[J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA.2002,47(3):513-517.
    [4] Bubnik Z, Steffek P, Starhova H, et al. Sucrose solubility in the raw juice[J]. LISTYCUKROVARNICKE A REPARSKE.1997,113(10):266-271.
    [5] Reber L A. The solubility of sucrose in hydroalcoholic solutions.[J]. Journal of theAmerican Pharmaceutical Association. American Pharmaceutical Association.1953,42(4):192-193.
    [6]叶铁林.化工结晶过程原理及应用[M].北京:北京工业大学出版社,2006.
    [7]徐宝琨等编.结晶学[M].长春:吉林大学出版社,1991.
    [8]化学工业部人事教育司,化学工业部教育培训中心组织编写.结晶[M].北京:化学工业出版社,1997.
    [9]张相洋.杂质存在条件下的乳酸锌结晶行为研究[D].华东理工大学,2010.
    [10]刘亚群.添加剂对聚氯乙烯结晶行为、微观形态和性能影响[D].武汉理工大学,2008.
    [11]陈葵.红霉素结晶过程研究[D].华东理工大学,2011.
    [12] Taylor M. The solubility at high temperatures of pure sucrose in water.[J]. JOURNALOF THE CHEMICAL SOCIETY.1947,1:1678-1683.
    [13] Sapoundjiev D, Lorenz H, Seidel-Morgenstern A. Determination of solubility data bymeans of calorimetry[J]. THERMOCHIMICA ACTA.2005,436(1-2):1-9.
    [14] Da Silva A D P M, Cajaiba Da Silva J F. Determination of the Adipic Add SolubilityCurve in Acetone by Using ATR-FTIR and Heat Flow Calorimetry[J]. ORGANICPROCESS RESEARCH&DEVELOPMENT.2011,15(4):893-897.
    [15] Schultz A C, Edye L A. Studies of sucrose solubility using nuclear magnetic resonancespectroscopy[J]. ZUCKERINDUSTRIE.2005,130(8):617-621.
    [16] Liang B M, Hartel R W, Berglund K A. Contact nucleation in sucrose crystallization[J].CHEMICAL ENGINEERING SCIENCE.1987,42(11):2723-2727.
    [17] Hindmarsh J P, Russell A B, Chen X D. Observation of the surface and volumenucleation phenomena in undercooled sucrose solution droplets[J]. JOURNAL OFPHYSICAL CHEMISTRY C.2007,111(16):5977-5981.
    [18] Ouiazzane S, Messnaoui B, Wouters J, et al. Secondary nucleation study of sucrosecrystallization: experiments and modelling[J].5THINDUSTRIAL SIMULATIONCONFERENCE2007.2007:467-473.
    [19] Leugers M A, Kuo T, Mecca J M, et al. Turbidity measurement system used in studies ofsolubility comprises sample assembly for receiving samples; light source; light detectionsystem to obtain exposure of sample assembly; and data analysis system configured toanalyze exposure[J].(WO2008140874-A1; US2010110220-A1).
    [20] Subasri R, Mallika C, Mathews T, et al. Solubility studies, thermodynamics andelectrical conductivity in the Th1-xSrxO2system[J]. JOURNAL OF NUCLEARMATERIALS.2003,312(PII S0022-3115(02)01648-32-3):249-256.
    [21] Brown C J, Ni X. Determination of metastable zone width, mean particle size anddetectable number density using video imaging in an oscillatory baffled crystallizer[J].CRYSTENGCOMM.2012,14(8):2944-2949.
    [22] He G, Tjahjono M, Chow P S, et al. In Situ Determination of Metastable Zone WidthUsing Dielectric Constant Measurement[J]. ORGANIC PROCESS RESEARCH&DEVELOPMENT.2010,14(6):1477-1480.
    [23] Bakhbakhi Y, Charpentier P, Rohani S. The solubility of phenanthrene in toluene: In-situATR-FTIR, experimental measurement, and thermodynamic modelling[J]. CANADIANJOURNAL OF CHEMICAL ENGINEERING.2005,83(2):267-273.
    [24] Barrett P, Glennon B. Characterizing the metastable zone width and solubility curveusing lasentec FBRM and PVM[J]. CHEMICAL ENGINEERING RESEARCH&DESIGN.2002,80(A7):799-805.
    [25] Barrett P B, Becker R. Nucleation, solubility, and polymorph identification: Theinterrelationship as monitored with lasentec FBRM.[J]. ABSTRACTS OF PAPERS OFTHE AMERICAN CHEMICAL SOCIETY.2002,223(1): U641-U642.
    [26] Ziparo C, Giannasi A, Ulivi L, et al. Raman spectroscopy study of molecular hydrogensolubility in water at high pressure[J]. INTERNATIONAL JOURNAL OF HYDROGENENERGY.2011,36(13):7951-7955.
    [27] Guangwen H, Hermanto M W, Tjahjono M, et al. Comparison of dielectric constantmeter with turbidity meter and focused beam reflectance measurement for metastablezone width determination[J]. CHEMICAL ENGINEERING RESEARCH&DESIGN.2012,90(2):259-265.
    [28] Nagy Z K, Fujiwara M, Woo X Y, et al. Determination of the kinetic parameters for thecrystallization of paracetamol from water using metastable zone width experiments[J].INDUSTRIAL&ENGINEERING CHEMISTRY RESEARCH.2008,47(4):1245-1252.
    [29] Abdel-Rahman E A, Smejkal Q, Schick R, et al. Influence of Dextran concentrations andmolecular fractions on the rate of sucrose crystallization in pure sucrose solutions[J].JOURNAL OF FOOD ENGINEERING.2008,84(4):501-508.
    [30] Chou C C, Wnukowski M. Administration, Science And Education[C]. La., USA:1981.
    [31] Gumaraes L, Susana S, Bento L S M, et al. Investigation of crystal growth in a laboratoryfluidized bed[J]. INTERNATIONAL SUGAR JOURNAL.1995,97:199-204.
    [32] Sutherland D, Paton N H. Dextran and crystal elongation[J]. INTERNATIONALSUGAR JOURNAL.1969,71:355-358.
    [33] Promraksa A, Flood A E, Schneider P A. Measurement and analysis of the dextranpartition coefficient in sucrose crystallization[J]. JOURNAL OF CRYSTAL GROWTH.2009,14(311):3667-3673.
    [1]陈其斌,周重吉.甘蔗制糖手册[M].广州:华南理工大学出版社,1993: P713.
    [2]陈维钧,许斯欣.甘蔗制糖原理与技术(第二分册:甘蔗清净)[M].北京:轻工业出版社,2001.
    [3] Abdel-Rahman E A, Smejkal Q, Schick R, et al. Influence of Dextran concentrations andmolecular fractions on the rate of sucrose crystallization in pure sucrose solutions[J].JOURNAL OF FOOD ENGINEERING.2008,84(4):501-508.
    [4] Rein P. Cane sugar engineering[M]. Berlin: Elbe Drucherei Wittenberg,2007.
    [5] Eggleston G, Monge A, Montes B, et al. Factory trials to optimize the application ofdextranase in raw sugar manufacture: Part I[J]. INTERNATIONAL SUGAR JOURNAL.2006,108(1293):528.
    [6] Tamura H, Yamada A, Kato H. Identification and characterization of a dextranase geneof streptococcus criceti[J]. MICROBIOLOGY AND IMMUNOLOGY.2007,51(8):721-732.
    [7] Eggleston G, Cote G, Santee C. New insights on the hard-to-boil massecuitephenomenon in raw sugar manufacture[J]. FOOD CHEMISTRY.2011,126(1):21-30.
    [8] Eggleston G, Monge A. Optimization of sugarcane factory application of commercialdextranases[J]. PROCESS BIOCHEMISTRY.2005,40(5):1881-1894.
    [9] El-Tanash A B, El-Baz E, Sherief A A. Properties of Aspergillus subolivaceus free andimmobilized dextranase[J]. EUROPEAN FOOD RESEARCH AND TECHNOLOGY.2011,233(5):735-742.
    [10] Bourne E J, Hutson D H, Weigel H. Studies on dextrans and dextranases.3. Structures ofoligosaccharides from Leuconostoc mesenteroides (Birmingham) dextran.[J]. THEBIOCHEMICAL JOURNAL.1963,86:555-562.
    [11] Eggleston G, Huet J. The measurement of mannitol in beet sugar factories to monitordeterioration and processing problems[J]. SUGAR INDUSTRY-ZUCKERINDUSTRIE.2012,137(1):33-39.
    [12] Inkerman. An appraisal of the use of dextranase[J]. PROC INTERN SOC SUGARCANE TECHNOLS.1980,17:11-27.
    [13] Rp F, Pa I. Dextranase. I. Characterization of the enzyme for use in sugar mills.[J].PROC QUEENSLAND SOC SUGAR CANE.1976:295-305.
    [14] Du M, Pg B, S W. Enzymic reduction of dextran in process-laboratory evaluation ofdextranases[J]. PROC S AFR SUGAR TECHNOL ASS.2002,76:435-443.
    [15] Eggleston G, Monge A, Montes B, et al. Factory trials to optimize the application ofdextranase in raw sugar manufacture: Part II[J]. INTERNATIONAL SUGARJOURNAL.2007,109(1308):757.
    [16] Jiménez E R. The dextranase along sugar-making industry[J]. BIOTECNOLOGíAAPLICADA.2005,1(22):20-27.
    [17]吴兆鹏,蚁细苗,曾练强,等. α-葡聚糖酶的酶学性质初步研究[J].甘蔗糖业.2012(3):47-52.
    [18]梁达奉,黄曾慰,曾练强,等. α-葡聚糖酶在毕赤酵母中的组成型表达[J].华南理工大学学报(自然科学版).2012(5):96-100.
    [19]陆海勤,郭海蓉,麻少莹,等. α-葡聚糖酶在甘蔗制糖中的应用研究进展[J].食品科学.2012(23):362-364.
    [20]黄俊杰,范家恒.酶在蔗汁澄清中的应用[J].甘蔗糖业.2008(2):36-37.
    [21]姜毅,王元春,雷光鸿,等.酶在制糖工业应用的研究进展[J].广西轻工业.2011(9):7-8.
    [22]杨辉,廖威,梁海秋,等.葡聚糖酶高产菌株的分离鉴定及其培养基优化的研究[J].广西大学学报(自然科学版).2003(S1):88-92.
    [23]贺湘,赵振刚,于淑娟,等.葡聚糖酶应用于甘蔗混合汁的工艺优化[J].食品工业科技.2012(4):330-335.
    [24]贺湘,赵振刚,于淑娟,等.葡聚糖酶在甘蔗混合汁澄清中的应用[J].食品工业科技.2012(9):175-180.
    [25]周晓云.酶学原理与酶工程[M].北京:中国轻工业出版社,2005.
    [26]孙君社.酶与酶工程及其应用[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700