用户名: 密码: 验证码:
湖南浓香型烤烟代谢特征和分子基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟叶是卷烟工业的原材料,是行业发展的物质基础。烟叶的质量和风格直接影响卷烟产品的品质和风格。浓香型烟叶在中式卷烟原料中占有重要地位。浓香型风格烤烟形成机制的研究对浓香型风格烤烟的育种、生产具有重要意义。本研究以湖南省浓香型特色优质烟叶为研究对象,通过对烟草叶片解剖图谱的构建、叶片质体色素含量和碳氮代谢相关酶活性的测定、叶片基因组DNA的MSAP分析和叶片叶绿体差异蛋白质组分析,探求湖南浓香型风格烤烟的形态发育和物质代谢规律,以及浓香型烤烟风格形成的分子机制,具体的研究结果如下:
     (1)通过对桂阳不同烤烟品种和K326在不同烟区生长过程中烟叶解剖结构显微观察测量表明:浓香型风格烤烟,在烤烟生长前期,气候条件适宜,叶片碳氮代谢旺盛,各组织结构生长迅速,叶片厚度平均增长幅度为67.4%、栅栏组织厚度平均增长幅度为68.6%、海绵组织厚度平均增长幅度为68.1%,在烤烟成熟期,高温、少雨,叶片各组织结构快速降解,叶片迅速变黄成熟。这是浓香型风格烤烟形成过程中烟叶组织结构变化的一个特点。
     (2)通过对桂阳不同烤烟品种和K326在不同烟区生长过程中质体色素含量变化的分析结果表明:在烤烟大田的生长前期,叶绿素含量的变化幅度比较小,下降幅度为19.6%,在烤烟大田的成熟期,叶绿素含量下降幅度大,下降幅度为62%,在烤烟大田生长期内,类胡萝卜素含量的变化不大。这是浓香型风格烤烟形成的质体色素代谢的特点。
     (3)通过对桂阳不同烤烟品种和K326在不同烟区生长过程中碳氮代谢相关酶活性的分析结果表明:浓香型风格的烤烟,碳代谢相关酶转化酶是下降的曲线,淀粉酶是双峰曲线,在成熟期转化酶的平均活是3.395mg/g·h,淀粉酶的平均活是6.33u/mg,显著低于中间香型烟区的酶活性;氮代谢相关酶硝酸还原酶是下降的曲线,谷氨酰胺合成酶是双峰曲线,在成熟期酶硝酸还原酶的平均活是0.865u/mg,谷氨酰胺合成酶的平均活是0.291u/mgport,显著高于中间香型烟区的酶活性,有利于烟碱的合成。这是浓香型风格烤烟形成的碳氮代谢的一个重要特点。
     (4)同一烤烟品种在不同的生态烟区具有不同的香型风格,为了研究揭示香型风格形成的机制,以烤烟品种K326为材料,对其在典型清香型烟区玉溪和浓香型烟区永州烟叶基因组DNA进行MSAP分析,结果表明:永州烟草叶片的甲基化水平明显高于玉溪的甲基化水平,其中半甲基化比率要高出3.97%,全甲基化比率高出1.74%,MSAP比率高出5.78%。BLAST比对表明,永州K326的基因组中发生了甲基化的MSAP差异片段与编码tRNA-Asn、tRNA-Arg的基因和参与编码叶绿体核糖体蛋白的基因高度同源。DNA甲基化水平和模式的不同影响了永州K326基因组的调控和表达,从而形成了浓香型风格的烤烟。
     (5)同一烤烟品种在不同的生态烟区具有不同的香型风格,为了研究揭示香型风格形成的机制,以烤烟品种K326为材料,利用双向电泳联合质谱技术对其在典型清香型烟区玉溪和浓香型烟区桂阳烟叶叶绿体差异蛋白质组进行分析,结果表明:桂阳叶绿体蛋白质在分子量为14.3KD-97.2KD之间可以检测到的蛋白质点数分别为1270,上升表达的蛋白质点为41个,其中特异表达的蛋白质点为10个。对质谱鉴定结果,用Mascot软件对烟草数据库和NCBInr数据库进行检索得到4个同源匹配蛋白质,经过生物信息学的综合比对确定特异表达的蛋白为ATP合酶的β亚基和核酮糖-1,5-二磷酸羧化酶/加氧酶。
Tobacco is the raw material of cigarette industry, is the material basis for the development of the cigarette industry. The quality and style of tobacco directly influence the quality and style of cigarette product. Luzhou-flavor Flue-cured tobacco leaf production occupies an important position in the Chinese style cigarette materials. It is important to study the mechanism of the formation of strong aroma style flue-cured tobacco on the breeding and production of strong aroma style flue-cured tobacco.
     This research took Luzhou-flavor high-quality tobacco leaves in Hunan province as the object of study, through the developing anatomical mapping of tobacco leaf, studying the changes of leaf pigment content and the activities of carbon and nitrogen metabolism related enzyme, the MSAP analysis of leaf genomic DNA,the analysis of different proteom of chloroplast, coformed the developmental foundation of flue-cured tobacco varieties, metabolism rules of flue-cured tobacco style formation, explored the molecular mechanism of the formation of flue-cured tobacco style, the specific research results were as follows:
     (1) Through the observation and measurement of leaf anatomical structure which was different flue-cured tobacco varieties in Guiyang and K326in different tobacco-growing areas,the results showed:Strong aroma style flue-cured tobacco, at the early growth stage of flue-cured tobacco, climatic conditions was suitable, carbon and nitrogen metabolism was exuberant, the organizational structure growed rapidly, the average growth rate of leaf thickness was67.4%, average growth rate of palisade tissue thickness was68.6%, the average growth rate of sponge tissue thickness was68.1%, during the flue-cured tobacco mature period, high temperature, little rain, the organizational structure of leaves degradated rapidly, leaf yellowing mature quickly.This is a feature of the change of leaf tissue structure during the formation of strong aroma style flue-cured tobacco.
     (2) Through analysing the change of plastid pigment content which were different flue-cured tobacco varieties in Guiyang and K326in different tobacco-growing areas,the results showed:at the early growth stage of flue-cured tobacco in the field, changes of chlorophyll content was relatively small, a decline of19.6%, during the flue-cured tobacco mature period, the chlorophyll content decreased greatly, decreased by62%, during the field growth period, the change of carotenoid content was little. This is a characteristic of plastid pigment metabolism during the formation of strong aroma style flue-cured tobacco
     (3) Through the analysis enzyme activities associated carbon and nitrogen metabolism of different flue-cured tobacco varieties in Guiyang and of K326in different areas in the growth process,the results showedrduring the tobacco growth process in the field, carbon metabolism related enzyme invertase was a downward curve, amylase was a Shuangfeng curve, the average activity of invertase in mature period was3.395mg/g· h, the average activity of amylase was6.33u/mg, which was significantly lower than the activity of middle flavor tobacco area; Nitrogen metabolism related enzyme nitrate reductase was a downward curve, glutamine synthetase was a Shuangfeng curve, the average maturity of enzyme activity of nitrate reductase was0.865u/mg, the average activity of glutamine synthetase was0.29lu/mgport,which was significantly higher than the enzyme activity of middle flavor tobacco area, which was suitable for synthesis of nicotine. This is an important feature of the carbon and nitrogen metabolism of the formation of Luzhou style Flue-cured tobacco.
     (4) The same flue-cured tobacco variety in different ecological tobacco area has a different style of flavor, to reveal the mechanism of the flavor style formation, Flue-cured tobacco K326as the material, We used MSAP to analysis tabacco genomic DNA wich was in typical faint scent tobacco area Yuxi and thick aroma tobacco area Yongzhou. The results showed that The methylation level of Yongzhou tobacco leaf is significantly higher than Yuxi,Of which the hemimethylated ratio is3.97%higher, full methylation ratio is1.74%higher, MSAP ratio is5.78%higher.BLAST comparison showed that The methylated MSAP fragments of Yongzhou K326genome and coding tRNA-Asn, tRNA-Arg genes,encoding chloroplast ribosomal protein genes are highly homologous. The difference of DNA methylation level and pattern impacted the regulation and expression of Yongzhou K326genome, thus forming a strong aroma style flue-cured tobacco.
     (5) The same flue-cured tobacco variety in different ecological tobacco area has a different style of flavor, to reveal the mechanism of the flavor style formation, Flue-cured tobacco K326as the material, Using two-dimensional electrophoresis combined with mass spectrometry to analysis Chloroplast proteome of tobacco leaves in typical Fen-flavor tobacc area Yuxi and Luzhou-flavor tobacco area Guiyan.The results showedGuiyang chloroplast protein spots were1270wich can be detected in the molecular weight of14.3KD-97.2KD of wich the increased expressed protein was41points, the specific expressed protein was10points.According Mass spectrometry identification results,using Mascot softwaren to search the tobacco database and the NCBInr database,we found4homologous matching protein, after a comprehensive bioinformatic comparison, the specific expressed protein were ATP synthase beta subunit and ribulose-1,5-two phosphate carboxylase/oxygenase.
引文
[1]金闻博,戴亚,张悠金.烟草香味化学[M].合肥:合肥经济技术学院,1992:28-58.
    [2]宫长荣.烟草调制学[M].北京中国农业出版社,2003:171-181.
    [3]席元肖,宋纪真,李锋,等.不同香型烤烟香气前体物及香味成分含量的差异分析[J].浙江农业科学,2011(2):355-361.
    [4]李恒,罗华元,徐兴阳,等.云南曲靖烟区烟叶挥发性致香物质组分及其含量差异研究初报[J].昆明学院学报,2009,31(3):8-10.
    [5]丁瑞康,王承瀚,朱尊权,等.卷烟工艺学[M].北京:食品工业出版社,1958:49-50,60-71.
    [6]黄振勋,张大鹏.科学技术名词解释——糖烟酒部分[M].北京:科学普及出版社,1958:15-19.
    [7]邵岩,宋春满,邓建华,等云南与津巴布韦烤烟致香物质的相似性分析[J].中国烟草学报,2007,13(4):19-25.
    [8]史宏志,刘国顺.烟草香味学[M].北京:中国农业出版社,1998:396-398.
    [9]张双双,闫铁军,刘国顺,等.不同基因型烤烟化学成分及致香物质差异研究[J].江苏农业科学,2012,40(4):286-289.
    [10]刘友杰,赵铭钦,李元实,等.延吉烟区不同烤烟品种中性致香物质差异分析[J].吉林农业大学学报.2009,31(2):125-130.
    [11]雷永和.云南烟草中微肥营养与土壤管理[M].昆明:云南科技出版社,1995.
    [12]刘国顺,张春华,代李鹏,等.不同氮磷钾配施对烤烟石油醚提取物和中性致香物质的影响[J].土壤.2009,41(6):974-979.
    [13]Liu Xia, Zhang Yi, Liu Guoshun et. Effects of Nitrogen Application on the Contents of Neutral Aroma Constituents of Flue-cured Tobacco [J]. Chinese Agricultural Science Bulletin Vol.24 No.3 2008 March.
    [14]刘海轮,和文祥,许静,等.培肥措施对烟田肥力及烟草品质影响的研究进展[J].陕西农业科学,2009,(6):97-99,148.
    [15]张会芳,刘喜平,崔文艺.绿肥在烤烟中的应用及其对烟叶品质的影响[J].安徽农业科学,2007,35(29):9291-9292.
    [16]罗贞宝.绿肥在改良土壤提高烟叶质量上的应用[D].郑州:河南农业大学,2006.
    [17]史宏志,刘国顺.烟草香味学[M].北京:中国农业出版社,1998.
    [18]黄一兰,李文卿,陈顺辉,等.移栽期对烟株生长、各部位烟叶比例及产、质量的影响[J].烟草科技,2001(11):38-40.
    [19]许自成,刘国顺,刘金海,等.铜山烟区生态因素和烟叶质量特点[J].生态学报,2005,25(7):1748~1753.
    [20]Tso T C. Production, physiology and biochemistry of tobacco plant. Maryland:Ideals IncBeltsville,1990.
    [21]Smeeton B W. Genetical control of tobacco quality. Rec Adv Tob Sci.,1987,13: 3-26.
    [22]Court W A. Factors affecting the concentration of the duvatrienediols of flue-cured tobacco. Tob Sci,1982,26:40-43.
    [23]Chaplin J F & Miner G S. Production factors affecting chemical components of the tobaccoleaf. Rec Adv Tob Sci,1980,6:3-63.
    [24]贺长华,任纬烤烟气象[M].云南:云南科技出版社,2001.
    [25]刘国顺.烟草栽培学[M].北京:中国农业出版社,2003.
    [26]程林仙.渭北旱作区干旱对烤烟产量和品质的研究及覆盖抗旱栽培技术[J].中国农业气象,1996,17(2):18-21.
    [27]王彪,李天福.气象因子与烟叶化学成分关联度分析[J].云南农业大学学报,2005,20(5):742-745.
    [28]赵如文,杨韬,艾永智,等.玉溪市烟区气候条件特征分析[J].云南农业科技,2007(2):27-31.
    [29]粱莉,钟章成.三种攀援植物对光抑制的敏感性[J].西南师范大学(自然科学版)2005,30(6).
    [30]黄国文,陈良碧.高温对烟叶品质的影响[J].生命科学研究,2002,6(4):362-366
    [31]左天觉,朱尊权,等译.烟草的生产、生理和生物化学[M].上海:远东出版社,1991.
    [32]王广山,陈卫华,薛超群.等烟碱形成的相关因素分析及降低烟碱技术措施[J].烟草科技,2001(2):38-41.
    [33]杨兴有,刘国顺,伍仁军.等不同生育期降低光强对烟草生长发育和品质的影响[J].生态学杂志,2007,26(7):1014-1020
    [34]李东霞,杨兴友,刘国顺,等.遮阴对烤烟叶片结构和中性致香物质含量的影响[J].安徽农业科学,2009,37(18):8449-8450,8483.
    [35]张文锦,梁月荣,张应根,等.遮阴对夏暑乌龙茶主要内含化学成分及品质的影响[J].福建农业学报,2006,21(4):360-365.
    [36]史宏志,韩锦峰,远彤,等.红光和蓝光对烟叶生长,碳氮代谢和品质的影响[J].作物学报,1999,25(2)215-220.
    [37]杨虹琦,周冀衡,杨述元,等.不同产区烤烟中主要潜香型物质对评吸质量的影响研究[J].湖南农业大学学报(自然科学版),2005,31(1):10-14.
    [38]韩锦峰,汪耀富,杨素勤.干旱胁迫对烤烟化学成分和香气物质含量的影响[J].中国烟草,1994(1):35-38.
    [39]李鹏飞,周冀衡,张建平,等.烤烟成熟期土壤水分状况对烟叶挥发性香气物质及主要化学成分的影响[J].中国烟草学报,2009,15(3):44-45.
    [40]彭新辉.土壤和气候及其互作对湖南优质烟区烤烟品质的影响[D].长沙:湖南农业大学,2009.
    [41]方亮,周冀衡,鲁永新,等.楚雄州烤烟主要种植区气候生态类型区划分析[J].湖南农业科学,2008,(5):53-56.
    [42]常寿荣,吴涛,罗华元等.烤烟品种、部位及生态环境对烟叶致香物质的影响术[J].云南农业大学学报,2010,25(1):58-62.
    [43]任永浩,陈建军,马常力.不同根际pH值下烤烟香气化学成分的研究[J].华南农业大学学报,1994,15(1):127-132.
    [44]姜莱,谢胜利,范洪慈,等.烤烟叶片大小与烟叶化学成分的关系研究初报.中国烟草,1991,(2):13-17.
    [45]王玉军,谢胜利,姜莱,等.烤烟叶片厚度与主要化学组成相关性研究.中国烟草科学,1997,(2):48-5.
    [46]孙梅霞,陈义红.烤烟不同水分条件下成熟期叶片植物学特征[J]安徽农业科学,2002,30(4):603-604.
    [47]王艳丽,刘国顺.磷用量对烟叶细胞壁物质含量和烟叶厚度的影响[J].烟草科技,2005(5):41-44.
    [48]聂荣邦,李海峰.烤烟不同成熟度鲜叶组织结构研究.烟草科技,1991(3):37-39.
    [49]Barnard C. Leaf structure in relation to quality in flue-cured tobacoo[J]. Pant Industry,1959:169-178.
    [50]赵光伟,孙广玉.烤烟成熟时栅栏组织与海绵组织厚度比值的变化[J].湖北农业科学,2007(2):265-267.
    [51]刘德育,蔡淑燕.移栽期对烤烟叶片组织结构的影响[J].中国农学通报,2005,21(21):187-189.
    [52]张树堂,杨雪彪,王亚辉,等.不同成熟度烤烟鲜叶的组织结构比较[J].烟草科技,2005(1):38-40.
    [53]闫克玉,闫洪洋,李兴波,等.烤烟烟叶细胞壁物质的对比分析[J].烟草科技,2005(10):6-11
    [54]张华,翁梦苓,梁志敏.烟草腺毛发育过程中叶绿体形态研究[J].西北植物学报,2008,28(8):1592-1595
    [55]黄树永,陈良存.烟草碳氮代谢研究进展[J].河南农业科学,2005(4):8-11
    [56]黄树永,陈良存.烟草碳氮代谢研究进展[J].河南农业科学,2005(4):8-11
    [57]史宏志,韩锦峰.烤烟碳氮代谢几个问题的探讨[J].烟草科技,1998(2):34-36
    [58]刘卫群,陈良存,甄焕菊,等.烟叶成熟过程中碳氮代谢关键酶对追施氮肥的响应[J].华北农学报,2005,20(3):74-78
    [59]张生杰,黄元炯,任庆成,杨铁剑不同基因型烤烟烟叶碳氮代谢差异研究[J].华北农学报,2010,25(3):217-220
    [60]胡国松,郑伟.烤烟营养原理[M].北京:科学出版社,2000:38-79
    [61]李潮海,刘奎,连艳鲜.玉米碳氮代谢研究进展[J].河南农业大学学报,2000,4(34):318-323
    [62]史宏志.烤烟碳氮代谢及其与烟叶品质关系的研究[D].长沙:湖南农业大学,1998.
    [63]刘卫群,陈良存,甄焕菊,等.烟叶成熟过程中碳氮代谢关键酶对追施氮肥的响应[J].华北农学报,2005,20(3):74-78.
    [64]史宏志,韩锦峰,赵鹏.不同氮量与氮源下烤烟淀粉酶和转化酶活性动态变化[J].中国烟草科学,1999(3):5-8.
    [65]尚志强.施氮量对白肋烟生长发育及产量质量的影响[J].中国农学通报,2007,23(1):299-301.
    [66]沈方科,李婷,王蕾,等.钾素营养对烟株氮代谢及烟叶品质形成的影响[J].中 国农学通报,2010,26(9):214-219.
    [67]冉邦定,刘敬业,李天福.烤烟K326成熟期五种酶动态的研究[J].中国烟草学报,1993(4):13-19
    [68]刘卫群,韩锦峰.数种烤烟品种中碳氮代谢与酶活性的研究[J].中国农业大学学报,1998,3(3):22-26.
    [69]Weybrew, J. A. et al. The cultural management Flue-cured tobacco quality[J]. tobacco International.1983:185(10):82-87.
    [70]王瑞新.烟草化学[M].北京:中国农业出版社,2003:84-85.
    [71]杨虹琦,周冀衡,罗泽民,等.不同产区烤烟中质体色素与降解产物的研究[J].西南农业大学学报:自然科学版,2004,26(5):640-644.
    [72]Kaneko H, Harada M.4-Hydroxy-pdamascone and 4-Hydroxy-dihydro-8-damascone from Cigar Tobacco.Agric Biol Chem,1972,36(1):168-171
    [73]孟祥东,赵铭钦,李元实,等.耕作方式对成熟期烤烟质体色素及其降解产物含量的影响[J].西北植物学报,2010,30(8):1660-1666
    [74]习红昂,赵明山,孙波,等.不同基因型烤烟叶片质体色素及其降解产物含量的对比分析[J].江西农业学报,2010,22(7):11-13.
    [75]赵宸楠,赵二卫,肖炳光,等.不同生态区烤烟质体色素生物合成规律及色素含量比较[J].西北农业学报,2010,19(12):68-71
    [76]Dennis C. Epigenetics and disease:Altered states[J]. Nature,2003,421(6924): 686-688.
    [77]Dahl C, Guldberg P. DNA methylation analysis techniques [J]. Biogerontology,2003, 4(4):233-250.
    [78]J. D. Sherman, L. E. Talbert. Vernalization-induced changes of the DNA methylation pattern in winter wheat[J]. genome,2002,45:253-260. M.
    [79]Labra, A. Ghiani, S. Citterio, et al. Analysis of cytosine methylation pattern in response to water deficit in pea root tips[J]. Plant biology.2002,4:694-699.
    [80]李雪林,林忠旭,聂以春,等.盐胁迫下棉花基因组DNA表观遗传变化的MSAP分析[J].作物学报,2009,35(4):588—596.
    [81]M. P. Tan. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism[J]. Plant Physiol Biochem,2010,48:21-26.
    [82]W. S. Wang, Y. J. Pan, X. Q. Zhao, et al. Drought-induced site-specificnDNA methylation and its association with drought tolerance in rice[J]. Journal of experimental botany,2011,62:1951.
    [83]L. Gao, Y. Geng, B, Li. et al. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulationed habitats:implications for epigenetic regulation of rapid response to environmental fluctuation and phenotypic variation[J]. Plant Cell Environ.2010,33:1820-1827.
    [84]Xiong L Z, Xu C G, Saghai Maroof M A. Patterns of cytosine methylation in an elite rice hybrid and its Parental lines, deteeted by a methylation-sensitive amplification polymorphism technique[J]. Mol Gen Genet.1999,261(3):439-446.
    [85]XinXinzhao, YangChai, BaoLi. EPigenetic inheritance and variation of DNA methylation level and Pattern in maize intra-specific hybrids [J].
    [86]Yan li Lu, Ting zhao Rong, Moju Cao. Analysis of DNA methylation in different maize tissues[J]. Genet&Genomics2008,1(35):41-48.
    [87]Ezio Portis, Alberto Aequadro, Cinzia Comino, et. al. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification Polymorphism (MSAP) [J]. Plant Science.2004,166(1): 169-178
    [88]柳李旺,宋贤勇,龚义勤,等.萝卜MSAP体系优化与抽蔓过程中MSAP分析[J].江苏农业科学[J].2006(6):203 - 206 Plant Science 2007,5(172):930-938.
    [89]Giovanna Mason, Emanuela Noris, Sergio Lanteri, et. al. Potentiality of Methylation-sensitive Amplification polymorphism (MSAP) in identifying Genes Involved In Tomato Response to Tomato Yellow Leaf Curl Sardinia Virus [J]. Plant Mol Biol ReP. 2008,26(3):156-173.
    [90][88]France Christophe Baurens, Franeois Bonnot, David Bienvenu, et al. Using SD-AFLP and MSAP toAssess CCGG Methylation in Banana Genome [J]. Plant Molecular Biology RePorter.2003,21(4):339-348.
    [91]梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展[J].植物生态学报,2004,28(1):114-125
    [92]周海涛,朱红,贾少微,梅树江.蛋白质组技术新进展[J].肿瘤防治研究,2006,33(12):920-922
    [93]LI Lei, YING Wantao, YANG Heyi, et a 1.Two-dimensional electrophoresis separation technique in proteome research[J].Chin J Chromatogr,2003,21(1):27-31.
    [94]Zhang qunye Chenzhu.Usual technology in differential proteomics[J].forg Med Sci, 2004,27(2):64-71.
    [95]李莉,王书平,张改生,等.小麦生理型和遗传型雄性不育系及其保持系小花完整叶绿体蛋白质组分析比较研究[J].作物学报,2011,37(7):1134-1143
    [96]崔红,冀浩,张华,等.不同生态区烟草叶片蛋白质组学的比较[J].生态学报,2008,28(10):4873-4880
    [97]史宏志,李治,刘国顺,等.皖南焦甜香烤烟碳氮代谢差异分析及糖分积累变化动态[J].华北农学报.2009,24(3):144-149.
    [98]郑湖南.不同香气风格烤烟常规化学成分和香气物质的差异研究[J].安徽农业科学,2008,36(31):13700-13702,13728
    [99]梁前进.表观遗传学-理论·方法·研究进展(1).生物学通报,2007,42(10):4-7.
    [100]Chan, S. W., Henderson, I. R. and Jacobsen, S. E., (2005) Gardening, the genome: DNA methylation in Arabidopsis thaliana Nat. Rov. Genet.6,351-360.
    [101]PavloPoulou, A. and Kossida, S. (2007)Plant cytosine-5 DNA methyltransferases: Structure, function, and molecular evolution. Genomics,90,530-541.
    [102]Mund, C., Musch, T., Strodicke, M., Assmann, B., Li, E. and Lyko, F. (2004) Comparative analysis of DNA methylation patterns transgenic Drosophila overexpressing mouse DNA methyltransferases. Biochem. J,378,763-768.
    [103]Ponger, L. and Li, W. H. Evolutionary diversification of DNA Methyltransferases in enkaryotic genomes Mol. Biol. Evol.2005,22,1119-1128.
    [104]Ni Zhanglin, Wei jiamian.The structure and catalytic mechanism of ATP synthase[J]. Journal of plant physiology and Molecular Biology,2003,29(5):367-374.
    [105]Bendall DS, Manasse RS. Cyclic photophosphorylation and electron transport. Biochim Biophys Acta,1995,1229:23-38.
    [106]Munekage Y, Hojo M, Meurer J, et al. PGR5 is involved in cyclic electron flow around photosysteml and is essential for photoprotection in Arabidopsis. Cell,2002, 110:361-71.
    [107]Munekage Y, Hashimoto M, Miyake C, et al. Cyclic electronflow around photosys tem I i s essential forphotosynthesis. Nature,2004,429:579-82.
    [108]赵世杰,艾希珍,王绍辉,等.叶黄素循环和光呼吸对生姜光抑制破坏的防御作用.西北农业学报,1999.8(3):81-85.
    [109]余让才,范燕萍,李明启.光呼吸与硝酸还原关系研究—光呼吸抑制剂与代谢物对黄化小麦硝酸还原酶光诱导的影响.中国农业科学,2002,35(1):49-52.
    [110]张树芹.小麦叶片光呼吸与蛋白质积累关系的研究.麦类作物学报,2000,20(3):64-66.
    [111]Muraoka H, TangY H, Terashima I, Koizumi H, Washitani I, TangYH. Contribution of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light[J].Plant Cell and Environment.2000,23(3):235-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700