用户名: 密码: 验证码:
东南景天内生菌分离鉴定及其强化重金属超积累效应与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染是目前面临的一个严重的环境问题,由于采矿、冶金、金属制造业排污,农业和城市生活废物的填埋和污水灌溉,导致土壤重金属污染日益严重。植物修复是一种新型的、价格低廉并且可持续发展的原位修复技术。重金属超积累植物是修复重金属污染土壤、底泥和水体资源的良好材料。然而,大多数重金属超积累植物都存在生物量小、生长速度缓慢、根系不发达以及根际土壤重金属生物有效性低等限制其大规模修复应用的因素。为了提高植物修复效率,一些促进超积累植物生长及强化根际重金属生物有效性的策略也在逐渐引起大家的关注。
     超积累生态型东南景天(Sedum alfredii Hance)是最初在浙江省衢州市古老PbZn矿址上发现的第一个中国原生的Zn/Cd超积累植物,也能积累Pb,不仅是研究植物吸收、转运和超积累Zn/Cd机理的良好模式材料,也是提升植物修复重金属污染技术的良好材料。尽管东南景天在生长速率和生物量上相比多数重金属超积累植物要有些优势,但其修复土壤重金属污染的效率还是受到生长慢、生物量小、适应性弱和土壤重金属可及性的限制,研发促进东南景天生长和抗逆、提高东南景天生物量、提高东南景天对土壤重金属可及性和吸收、转运、积累重金属能力的微生物强化技术对于发挥东南景天修复重金属污染的潜能,提高实际应用的效率至关重要。
     本研究主要研究结果如下:
     1.用以1-氨基环丙烷-1羧酸(ACC)为唯一氮源并添加Zn、Cd和/或Pb的多碳源无机盐基本培养基,从超积累植物东南景天原生地的植株和根际土壤中分离得到85个耐受重金属的细菌菌株。对细菌16S rRNA基因(16S rDNA)序列的分析显示所得细菌分别归属于变形菌门(55%),放线菌门(27%),厚壁菌门(11%)和拟杆菌门(7%)的20个属,其中45个(53%)菌株可能分别代表8个属的15-17个新种。从28个菌株中扩增得到ACC脱氨酶结构基因(acdS)的片段,其中21个菌株在自由培养条件下表现出ACC脱氨酶活性,另7个不表现ACC脱氨酶活性的贪Cu菌属菌株的acdS与其16S rDNA序列在系统发育上不符,可能在进化过程中通过基因水平转移获得了acdS。所有菌株都不同程度地耐受Zn、Cd和/或Pb。从根际土壤,根和地上部分离到的菌株中能耐受较高浓度Zn、Cd或Pb的比例往往与原生境中该金属的浓度正相关,显示出原生地土壤和植株中高浓度的重金属对细菌耐受重金属的选择作用和与东南景天联合细菌对生境中重金属的适应性。大多数菌株能产生吲哚乙酸,嗜铁素或溶磷,有促进植物生长和提高土壤中重金属可溶性的潜能。
     2.研究了从东南景天体内分离的伯克氏菌属9Burkholderia)的SaZR4, SaMR10,鞘氨醇单胞菌属(Sphingomonas)的SaMR12和贪噬菌属(Variovorax)的SaNR1四个菌株的内生特性、在根部的定殖模式及其强化植物提取重金属的能力。激光扫描共聚焦显微镜的观测结果表明菌株SaZR4, SaMR12,和SaNR1具有在植物根部形成生物被膜(biofilm)的能力,SaZR4和SaMR12可以定殖在根内部组织。SaMR10在东南景天体内定殖的总量是最低的,对东南景天生长和提取重金属的促进作用也是最弱的。SaZR4显著强化了东南景天对Zn的提取,但是对Cd的提取没有显著影响。SaMR12和SaNR1可以在含有Zn或Cd的基质中显著促进东南景天生长并提高了对Zn或Cd的提取。结果表明所用的四株特异内生细菌能以不同的方式在植物体内定殖、调控植物生长及提取和积累重金属。SaMR12和SaNR1菌株具有强化东南景天修复Zn和Cd污染土壤的应用潜力。
     3.基于伯克氏菌属的SaZR4,鞘氨醇单胞菌属的SaMR12和贪噬菌属的SaNR1能促进东南景天生长和吸收、转运Zn和/或Cd的潜能,进一步用它们接种在两种重金属复合污染土壤上生长的东南景天,检验了内生细菌对东南景天修复重金属复合污染土壤的作用;基于东南景天的多年生特性,采用两季收获地上部和多次接种,检验了内生细菌应用于强化多年生超积累植物连续提取重金属的可行性。结果表明接种内生细菌可以连续两季显著提高在两种重金属复合污染土壤上生长的东南景天地上部的生物量,提高东南景天对Zn和Cd的提取量,而且提高最后所收获根部的生物量,提高了植物对Pb和Cu的提取量,证实了连续接种内生细菌结合多季收获东南景天修复重金属复合污染土壤的可行性。
     4. SaCS12是从在矿山原生境健康生长的东南景天体内分离到的一株耐受多种重金属并可以用人工培养基纯培养的真菌。根据菌落形态、孢子形态和分子鉴定初步将其确定为尖孢镰刀菌(Fusarium oxysporum)。致病性检测结果表明SaCS12对易发生枯萎病和根腐病的农作物没有致病性。通过溶液培养与土培盆栽试验研究了该真菌对东南景天的生长和吸收积累重金属的影响。水培结果表明SaCS12可以增加根长和表面积、促进侧根发育,促进了植物对营养元素的吸收和叶绿素的合成。显微观察结果表明SaCS12促进了东南景天根毛的发育,扩大了根毛区在根系中的比例。SaCS12可以促进东南景天在矿山土和水稻土两种原始重金属复合污染土壤上的生长,能够强化东南景天对土壤中重金属的活化,增加了植物对重金属的吸收及转运。和不接种对照相比,接种植物对Zn、Cd、Pb和Cu的植物修复效率在矿山土上分别增加了144、139、84和63%,在水稻土上分别增加了44、55、85和77%。研究发现了一种可培养真菌而非菌根真菌强化超积累植物修复重金属污染土壤的作用,发现了非致病尖孢镰刀菌在植物修复重金属中的应用潜力。
     5.采用水培实验系统比较了内生真菌印度梨形孢(Piriformospora indica)对两种生态型东南景天生长、根系形态、营养元素吸收及重金属吸收与转运的影响。在Zn或Cd处理下,超积累生态型比非超积累生态型具有更好的耐性以及吸收与转运重金属的能力。印度梨形孢能够在两种生态型东南景天根部定殖,促进两种生态型植物根系的生长发育,提高了植物体内氮和磷含量,促进了植物生长。印度梨形孢可以提高两种生态型东南景天对Zn和Cd的耐性,但是对二者在吸收和转运重金属方面却有不同的调控作用。印度梨形孢可以提高超积累生态型对Zn和Cd的吸收及转运,提高Zn和Cd在植物地上部的积累,地上部Zn和Cd积累量分别是不接种对照的1.17-1.75倍和1.83-2.21倍。而对非超积累生态型,在200μM Zn或10μM Cd处理水平下,非超积累生态型已经表现出了重金属毒害症状。印度梨形孢可以通过降低非超积累生态型对Zn或Cd的吸收在一定程度上缓解重金属的毒害作用。研究表明印度梨形孢能强化超积累植物提取和积累重金属,在植物修复重金属污染中发挥作用,也能帮助非金属积累植物耐受重金属。
     研究发现与东南景天在原生境联合生长的细菌具有丰富的多样性和新颖的基因型,有些细菌能以不同的方式在东南景天根部定殖,促进植物生长并吸收和积累重金属,并提高植物修复土壤重金属污染的效率。研究也发现了一种耐受重金属的非致病内生尖孢镰刀菌和广谱促植物生长的内生真菌印度梨形孢促进超积累植物提取和积累重金属的新功能。研究为微生物强化超积累植物东南景天修复重金属污染技术提供了实验依据和新颖的细菌和真菌资源。
Heavy metal contaminations occur in soil due to mining, anthropogenic activities and soil amendment using industrial, agricultural and municipal wastes. Phytoremediation is a novel, low-cost, sustainable technique for remediation of contaminated soil in situ. Metal hyperaccumulating plants are used for remediation of heavy metal-polluted soils, sediments, and water resources. The efficiency of phytoremediation, particularly, for large scale metal phytoextraction, is often limited by the slow growth and low aboveground biomass of the metal hyperaccumulators and the metal bioavailability in soil. However, most of hyperaccumulators grow slowly and produce shallow root systems and low shoot biomass, limiting their application for heavy metal phytoextraction. Therefore, new techniques that significantly increase metal bioavailability and accumulation and plant biomass would enhance the efficacy of phytoextraction by hyperaccumulators for future phytoremediation application.
     Sedum alfredii Hance is a vegetatively propagated perennial of the Crassulaceae family and was first found in an old Pb/Zn mined area in Quzhou, Zhejiang Province, southeast of China. It is a relatively fast-growing, high-biomass Zn/Cd co-hyperaccumulator and Pb accumulator. S. alfredii has now been used as a model plant to study metal hyperaccumulation and develop new techniques to enhance phytoextraction. We aim to use indigenous plant growth-promoting microbes to enhance S. alfredii phytoextraction of heavy metals.
     1. Eighty-five metal-resistant bacterial strains were isolated from rhizosphere soils and Sedum alfredii plants grown in the old Pb/Zn mining area using mineral-minimal media containing1-aminocyclopropane-l-carboxylic acid (ACC) as the sole nitrogen source and high levels of Zn, Cd and/or Pb. Analyses of bacterial16S ribosomal RNA genes (16S rDNA) revealed that the85strains were affiliated to20genera of Proteobacteria (55%), Actinobacteria (27%), Firmicutes (11%) and Bacteroidetes (7%) and that45strains (53%) might represent15-17novel species of eight genera. ACC deaminase structure genes (acdS) were amplified from28strains; ACC deaminase activities were detected from21of them in free-living states. The phylogenies of the acdS sequences from the other seven strains that did not show ACC deaminase activities were incongruent with those of their16S rDNA; these acdS genes may have evolved through horizontal transfer. All the85strains showed differential resistance to high levels of Zn, Cd and/or Pb. The percentages of the obtained bacterial strains with relatively higher metal-resistance were positively correlated to the metal concentrations of the rhizosphere soil, root and shoot tissues. This indicated the nature selection of the high level metals in the soils and plants on the bacterial metal-resistance and adaption. Most of the bacterial strains could produce indole acetic acids and siderophores, or solubilize mineral phosphate, and thus had potentials to promote plant growth and increase metal-solubility from soils.
     2. Four native endophytic bacteria, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12and Variovorax sp. SaNR1were used to investigate their endophytic nature and root colonization patterns and effects on phytoextraction of Zn and Cd. Laser scanning confocal microscopy revealed that gfp-tagged SaZR4, SaMR12, and SaNR1cells formed biofilms on roots and that SaZR4and SaMR12cells could invade root tissues. SaMR10showed the lowest total population associated with S. alfredii and little effect on plant growth and phytoextraction. SaZR4significantly promoted Zn-extraction but not Cd-extraction. SaMR12and SaNR1significantly promoted plant growth in substrates supplemented with Zn or Cd and phytoextraction of Zn and Cd. Together, this study have shown that the four native endophytic bacteria differently colonize the host plants and modulate metal uptake and growth of host plant, and that SaMR12and SaNR1strains are promising assistants of S. alfredii plants for phytoremediation of Zn/Cd-contaminated soil.
     3. Soil experiments showed that endophytic bacteria SaZR4, SaMR12and SaNR1could increase the shoot biomass of S. alfredii in the two harvest and root biomass in the second harvest in original Pb/Zn mined soil and a multi-metal contaminated paddy soil. The phytoextraction of the four heavy metals was significantly enhanced in the two soils. Phytoextraction of Zn was approximately2-fold after inoculation with SaZR4. This study showed that continual inoculation of endophytic bacteria in the perennial Zn/Cd hyperaccumulator S. alfredii is applicable.
     4. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that500μM Zn or50μM Cd combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144and44%), Cd (139and55%), Pb (84and85%) and Cu (63and77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This is the first report that showed an indigenous culturable Fusarium fungus other than mycorrhizal fungi to enhance phytoextraction by hyperaccumulators. This report showed a new avenue of microorganism-assisted phytoextraction for hyperaccumulators that are mainly non-mycorrhized Brassicaceae plants. Moreover, this report showed a new function and application potential for the worldwide distributed soil and plant-associated nonpathogenic Fusarium oxysproum fungi.
     5. In hydroponic experiments, HE plants exhibited stronger tolerance and higher translocation of Zn and Cd compared with NHE. The endophytic fungus Piriformospora indica could colonize in the roots of two ecotypes and promote the root development, nitrogen and phosphorus uptake. P. indica enhanced the heavy metals tolerance of the two ecotypes. The shoots of HE accumulated1.17-1.75fold amount of Zn or1.83-2.21amount of Cd compared to the uninoculation. While for NHE, even in the treatment of200μM Zn or10μM Cd, the plant exhibited heavy metal stress and the growth was inhibited. P. indica decreased Zn or Cd uptake in the heavy metal stress conditions in the NHE. However, under the higher Zn (400μM) or Cd (20μM) treatments for NHE, both noninfested and infested plants exhibited a severe biomass reduction. The results showed that the endophytic fungus P. indica has a potential application in the phytoextraction of heavy metals by the Zn/Cd hyperaccumulator Sedum alfredii Hance. In addition, results from NHE indicated that P. indica may be used for phytostabilization of heavy metals by agricultural crops.
引文
Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003a) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytologist 158:219-224
    Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World Journal of Microbiology Biotechnology 24:253-262
    Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry 38:2882-2889
    Abou-Shanab RAI, Angle JS, van Berkum P (2007a) Chromate-tolerant bacteria for enhanced metal uptake by Eichornia crassipes (Mart.). International Journal of Phytoremediation 9:91-105
    Abou-Shanab RAI, van Berkum P, Angle JS (2007b) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360-367
    Abou-Shanab RAI, van Berkum P, Angle JS, Delorme TA, Chaney RL, Ghozlan HA, Ghanem K, Moawad H (2010) Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis. World Journal of Microbiology Biotechnology 26:101-108
    Abou-Shanab RI, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003b) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. International Journal of Phytoremediation 5:367-379
    Achatz B, Kogel KH, Franken P, Waller F (2010) Piriformospora indica mycorrhization increases grain yield by accelerating early development of barley plants. Plant Signaling and Behavior 5:1685-1687
    Andrade SAL, Silveira APD and Mazzafera P (2010) Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Science of Total Environment 408:5381-5391
    Arduini I, Godbold DL, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiologia Plantarum. 92:675-680
    Arriagada CA, Herrera MA, Garcia-Romera I, Ocampo JA (2004) Tolerance to Cd of soybean (Glycine max) and Eucalyptus (Eucalyptus globulus) Inoculated with arbuscular mycorrhizal and saprobe fungi. Symbiosis 36:285-299
    Arriagada CA, Herrera MA and Ocampo JA (2005) Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water, Air,& Soil Pollution 166:31-47
    Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends in Biotechnology 25:356-362
    Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation:meta-analytical and conceptual perspectives. Environmetal Pollution 147:609-614
    Azcon R, del Carmen Peralvarez M, Roldan A and Barea J-M (2010) Arbuscular mycorrhizal fungi, Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microbial Ecology 59:668-677
    Babu A and Reddy M (2011) Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds. Water, Air,& Soil Pollution 219:3-10
    Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator Plant Alyssum bertolonii. Microbial Ecology 53:306-316
    Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schafer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist 180:501-510
    Barcelo J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress:A review. Journal of Plant Nutrition 13:1-37
    Basta NT, Gradwohl R, Snethen KL and Schroder JL (2001) Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality 30:1222-1230
    Baysse C, De Vos D, Naudet Y, Vandermonde A, Ochsner U, Meyer JM, Budzikiewicz H, Schafer M, Fuchs R and Cornelis P (2000) Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology 146:2425-2434
    Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard(Brassica juncea L. Czern.). Soil Biology and Biochemistry 37(2):241-250
    Beolchini F, Dell'Anno A, De Propris L, Ubaldini S, Cerrone F and Danovaro R (2009) Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74:1321-1326
    Bianco C and Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. Journal of Experimental Botany 60:3097-3107
    Bolan NS, Adriano DC, Duraisamy P, Mani A and Arulmozhiselvan K (2003) Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant and Soil 250:83-94
    Braud A, Geoffroy V, Hoegy F, Mislin GLA and Schalk IJ (2010) Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environmental Microbiology Reports 2:419-425
    Braud A, Hannauer M, Mislin GL and Schalk IJ (2009a) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. Journal of Bacteriology 191:3517-3525
    Braud A, Jezequel K, Bazot S and Lebeau T (2009b) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280-286
    Braud A, Jezequel K, Vieille E, Tritter A and Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water, Air, & Soil Pollution 6:261-279
    Brundrett MC, Piche Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Canadian Journal of Botany 62:2128-2134
    Bruzzese E, Hasan S (1983) A Whole Leaf Clearing and Staining Technique for Host Specificity Studies of Rust Fungi. Plant Pathology 32(3):335-338
    Burd GI, Dixon DG and Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appled and Environmental Microbiology 64:3663-3668
    Burd GI, Dixon DG and Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology 46:237-245
    Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I, Forzani C, Munnik T, Hirt H, Oelmuller R (2011) The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. Plos Pathogens 7:e1002051
    Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, Oelmuller R (2010) Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytologist 185:1062-1073
    Cao X, Ma LQ and Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environmental Pollution 126:157-167
    Catherine S, Christophe S and Louis MJ (2006) Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation. International Journal of Phytoremiation 8:149-161
    Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS and Baker AJ (1997) Phytoremediation of soil metals. Current Opinion in Biotechnology 8:279-284
    Chanway CP (1996) Endophytes:they're not just fungi!. Canadian Journal of Botany 74(3):321-322
    Chatterjee S, Sau G and Mukherjee S (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World Journal of Microbiology Biotechnology 25:1829-1836
    Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B, Xu T, Xi Q, Rao C, Liu C, Zeng G (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Applied Soil Ecology 46:383-389
    Chen SY and Lin JG (2001) Effect of substrate concentration on bioleaching of metal-contaminated sediment. Journal of Hazardous Materials 82:77-89
    Chen YX, Wang YP, Lin Q and Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environment International 31:861-866
    Chen T, Wei C, Huang Z, Huang Q, Lu Q, Fan Z (2002) Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation. Chinese Science Bulletin 47(1):902-905
    Cheng HP, Walker GC (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. Journal of Bacteriology 180(19):5183-5191
    Cheng S (2003) Heavy metal pollution in China:origin, pattern and control. Environmental Science and Pollution Research 10(3):192-198
    Cheng Z, Park E and Glick BR (2007) 1-Aminocyclopropane-l-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Canadian Journal of Microbiology 53:912-918
    Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology 71(11):7271-7278
    Corrales Escobosa AR, Landero Figueroa JA, Gutierrez Corona JF, Wrobel K (2009) Effect of Fusarium oxysporum f. sp. lycopersici on the degradation of humic acid associated with Cu, Pb, and Ni:an in vitro study. Analytical and Bioanalytical Chemistry 394,2267-2276
    Corrales Escobosa AR, Wrobel K, Landero Figueroa JA, Gutierrez Corona JF (2010) Effect of Fusarium oxysporum f. sp. lycopersici on the Soil-to-Root Translocation of Heavy Metals in Tomato Plants Susceptible and Resistant to the Fungus. Journal of Agricultural and Food Chemistry 58:12392-12398
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annual Reviews in Microbiology 49:711-745
    Cserhati M, Kriszt B, Szoboszlay S, Toth A, Szabo I, Tancsics A, Nagy I, Horvath B, Nagy I, Kukolya J (2012) De novo genome project of Cupriavidus basilensis OR 16. Journal of Bacteriology 194:2109-2110
    Cui Y, Dong Y, Li H and Wang Q (2004) Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize. Environment International 30:323-328
    Cunningham SD and Ow DW (1996) Promises and Prospects of Phytoremediation. Plant Physiology 110(3):715-719
    Dakora FD and Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil 245:35-47
    Dangre D, Rai Mahendra, Strasser R. A new, rapid and non-destructive biophysical method (chlorophyll A fluorescence) proves that growth promoting endophytes alleviate Cd stress in Cicer arietinum L.4th international plant protection symposium at Debrecen University,251-256
    De Miguel E, de Grado MJ, Llamas JF, Martin-Dorado A, Mazadiego LF (1998) The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Science of Total Environment 215:113-122
    De Miguel E, Iribarren I, Chacon E, Ordonez A, Charlesworth S (2007) Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 66:505-513
    de-Bashan LE, Hernandez JP, Bashan Y (2011) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation-A comprehensive evaluation. Appl Soil Ecol doi:10.1016/j.apsoil.2011.09.003
    de Souza L, de Andrade S, de Souza S and Schiavinato M (2012) Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiologiae Plantarum 34:523-531
    de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by indian mustard. Plant Physiology 119,565-574
    Delvasto P, Ballester A, Munoz JA, Gonzalez F, Blazquez ML, Igual JM, Valverde A and Garcia-Balboa C (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Minerals Engineering 22:1-9
    Deng DM, Deng JC, Li JT, Zhang J, Hu M, Lin Z, Liao L (2008) Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. J Integr Plant Biol 50:691-698
    Deng DM, Shu WS, Zhang J, Zou HL, Lin Z, Ye ZH, Wong MH (2007) Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environmetal Pollution 147:381-386
    Deshmukh S, Huckelhoven R, Schafer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of National Academy of Sciences of the USA 103:18450-18457
    Dheri GS, Singh Brar M and Malhi SS (2007) Influence of phosphorus application on growth and cadmium uptake of spinach in two cadmium-contaminated soils. J Plant Nutr Soil Sc 170:495-499
    Diels L, Dong Q, van der Lelie D, Baeyens W and Mergeay M (1995) The operon of Alcaligenes eutrophus CH34:from resistance mechanism to the removal of heavy metals. Journal of Indusrial Microbiology and Biotechnology 14:142-153
    Di Fiore S, Del Gallo M (2005) Endophytic bacteria:the possible role in the host plant. In:Azospirillum VI and related microorganisms, Fendrik et al., Eds. Springer Verlag, Berlin, Heidelberg
    Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E and Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293-299
    Di Gregorio S, Lampis S and Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus:a biotechnological perspective. Environment International 31:233-241
    Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E (2009a) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower(Helianthus annuus), respectively. Journal of Appled Microbiology 107(5):1687-1696
    Dimkpa CO, Merten D, Svatos A, Buchel G and Kothe E (2009b) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology and Biochemistry 41:154-162
    Dolatabadi HK, Goltapeh EM, Jaimand K, Rohani N, Varma A (2011) Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. Journal of Basic Microbiology 51:33-39
    Dominguez-Solis JR, Gutierrez-Alcala G, Vega JM, Romero LC and Gotor C (2001) The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. The Journal of Biological Chemistry 276:9297-9302
    Druege, U, Baltruschat H, Franken P (2007) Piriformospora indica promotes adventitious root formation in cuttings. Scientia Horticulturae 112:422-426
    Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology 75:592-601
    Edgar RC. (2004) MUSCLE:Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792-1797
    Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiologiae Plantarum 31:861-864
    Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Buttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20:191-200
    Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Polati R, Berta G, Vallini G and Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837-4850
    Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG and Glick BR (2007) Tolerance of transgenic canola plants(Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environmental Pollution 147:540-545
    Fasim F, Ahmed N, Parsons R and Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters 213:1-6
    Faucon MP, Shutcha M and Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa:influence of washing and metal concentrations in soil. Plant and Soil 301:29-36
    Fomina MA, Alexander IJ, Colpaert JV and Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry 37:851-866
    Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Canandian Journal of Microbiology 55:501-514
    Garg N and Aggarwal N (2011) Effects of interactions between Cadmium and Lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. Journal of Plant Growth Regulation 30:286-300
    Geiser DM, Jimenez-Gasco MD, Kang SC, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O'Donnell K (2004) FUSARIUM-ID v.1.0:A DNA sequence database for identifying Fusarium. European Journal of Plant Pathology 110:473-479
    Gilis A, Corbisier P, Baeyens W, Taghavi S, Mergeay M and van der Lelie D (1998) Effect of the siderophore alcaligin □E on the bioavailability of Cd to Alcaligenes eutrophus CH34. Journal of Indusrial Microbiology and Biotechnology 20:61-68
    Giller KE, Witter E and McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review. Soil Biology and Biochemistry 30:1389-1414
    Glick BR and Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances 15:353-378.
    Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology 119:329-339
    Glick BR, Stearns JC. (2011) Making phytoremediation work better:maximizing a plant's growth potential in the midst of adversity. International Journal of Phytoremediation 13 Suppl 1:4-16
    Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences 26:227-242
    Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnology Advances 28:367-374
    Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF and Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution 130:317-323
    Gordon TR, Martyn RD (1997) The evolutionary biology of Fusarium oxysporum. Annual Review of Phytopathology 35:111-128
    Gulser F and Erdogan E (2008) The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environmental Monitoring and Assessment 145:127-133
    Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology 101:8599-8605
    Guo J, Tang S, Ju X, Ding Y, Liao S, Song N (2011) Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World Journal of Microbiology and Biotechnology 27:2835-2844
    Gurska J, Wang W, Gerhardt KE, Khalid AM, Isherwood DM, Huang XD, Glick BR and Greenberg BM (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environmental Science and Technology 43:4472-4479
    Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Journal of Bacteriology 183(8):2634-2645
    Hahn N, Varma A, Oelmuller R, Sherameti I (2007) Members of Sebacinales confer resistance against heavy metal stress in plants. In Varma A and Oelmuller R, Springer-Verlag Berlin Heidelber,356-361
    Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43:895-914
    Hamlin RL, Schatz C and Barker AV (2003) Zinc accumulation in Indian Mustard as influenced by nitrogen and phosphorus Nutrition. Journal of Plant Nutriton 26:177-190
    Hammer D and Keller C (2003) Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use and Management 19:144-149
    Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D and Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453(7193):391-395
    Hao XZ, Zhou DM, Wang YK, Shi FG and Jiang P (2011) Accumulation of Cu, Zn, Pb, and Cd in edible parts of four commonly grown crops in two contaminated soils. International Journal of Phytoremediation 13:289-301
    Hao Y, Charles TC and Glick BR (2007) ACC deaminase from plant growth-promoting bacteria affects crown gall development. Canadian Journal of Microbiology 53:1291-1299
    Harada E, Yamaguchi Y, Koizumi N and Hiroshi S (2002) Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. Journal of Plant Physiology 159:445-448
    Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16(10):463-471
    He B, Yang XE, Ni WZ, Wei YZ, Long XX, Ye ZQ (2002) Sedum alfredii:A new lead-accumulating ecotype. Acta Botanica Sinica 44:1365-1370
    Hrynkiewicz K, Dabrowska G, Baum C, Niedojadlo K and Leinweber P (2012) Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein mtl expression and phytoextraction of Cd and Zn by willows. Water, Air,& Soil Pollution 223:957-968
    Huang SS, Liao QL, Hua M, Wu XM, Bi KS, Yan CY, Chen B and Zhang XY (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 67(11):2148-2155
    Huang XD, El-Alawi Y, Penrose DM, Glick BR and Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environmental Pollution 130:453-463
    Huang H, Li T, Gupta DK, He Z, Yang X, Ni B, Li M (2012) Heavy metal phytoextraction by Sedum alfredii is affected by continual clipping and phosphorus fertilization amendment. Journal of Environmental Science 24:376-386
    Huang JW, Cunningham SD (1996) Lead phytoextraction:species variation in lead uptake and translocation. New Phytolist 134:75-84
    ndris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70(5):2667-2677
    Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW and Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Systematic and Applied Microbiology 29:634-644
    Ike A, Sriprang R, Ono H, Murooka Y and Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670-1676
    Israr M, Sahi SV (2008) Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots. Environmental Pollution 153(1):29-36
    Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel KH, Schafer P (2011) Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiology 156:726-740
    Ji PH, Sun TH, Song YF, Ackland ML and Liu Y (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environmental Pollution 159:762-768
    Jiang CY, Sheng XF, Qian M and Wang QY (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157-164
    Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials 156(1-3):387-397
    Joner EJ and Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/ Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytologist 135:353-360
    Joner EJ, Leyval CL (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biology and Fertility of Soils 33:351-357
    Jones DL, Dennis PG, Owen AG and van Hees PAW (2003) Organic acid behavior in soils-misconceptions and knowledge gaps. Plant and Soil 248:31-41
    Joshi PM and Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environmental Science and Technology 43:5884-5889
    Juwarkar AA, Nair A, Dubey KV, Singh SK and Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996-2002
    Kabagale AC, Cornu B, van Vliet F, Meyer CL, Mergeay M, Simbi JL, Droogmans L, Vander Wauven C, Verbruggen N (2010) Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant and Soil 334:461-474
    Kachenko A and Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Poll 169(1):101-123
    Kastori R, Petrovic M, Petrovic N (1992) Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. Journal of Plant Nutrition 15:2427-2439
    Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil:the use of NTA and sulfur amendments. Environmental Science and Technology. 34:1778-1783
    Keller C, Hammer D (2005) Alternatives for phytoextraction:biomass plants versus hyperaccumulators. Geophysical Research Abstracts 7:03285
    Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency:comparison of different plant species in the field. Plant and Soil 249:67-81
    Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41(1-2):197-207
    Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters 7:1-19
    Khan S, Cao Q, Zheng YM, Huang YZ and Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution 152(3):686-692
    Kloepper JW and Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbiology 38: 1219-1232
    Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885-886
    Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology 7:39-44
    Kozdroj J, Piotrowska-Seget Z and Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(Ⅱ) impact. Ecotoxicology 16:449-456
    Kramer U (2005) Phytoremediation:novel approaches to cleaning up polluted soils. Currrent Opinion in Biotechnology 16:133-141
    Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517-534
    Krupa P and Kozdroj J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine(Pinus Sylvestris L.) seedlings. Water, Air,& Soil Pollution 182:83-90
    Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M and Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant and Soil 304:35-44
    Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. Joural of Appled Microbiology 108:1471-1484
    Kumar KV, Srivastava S, Singh N and Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. Journal of Hazardous Materials 170:51-57
    Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signaling and Behavior 6:723-725
    Lai HY and Chen ZS (2006) The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis). Journal of Hazardous Materials 137:1710-1718
    Lambrecht M, Okon Y, Vande Broek A and Vanderleyden J (2000) Indole-3-acetic acid:a reciprocal signalling molecule in bacteria-plant interactions. Trends in Microbiology 8:298-300
    Lane DJ. (1991) 16S/23S rRNA sequencing, p.115-175. In E. Stackebrandt, and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics, John Wiley & Sons, New York
    Larkin RP, Hopkins DL, Martin FN (1996) Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease suppressive soil. Phytopathology 86,812-819
    Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils:A review. Environmental Pollution 153:497-522
    Leung HM, Ye ZH and Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environment International 139:1-8
    Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Diversity 54:11-18
    Li W, Ye Z and Wong M (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant and Soil 326:453-467
    Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. Journal of Experimental Botany 58:4173-4182
    Li Z, Chang S, Lin L, Li Y, An Q (2011) A colorimetric assay of 1-aminocyclopropane-l-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Letters in Applied Microbiology 53:178-185
    Li TQ, Yang XE, Jin XF, He ZL, Stoffella PJ, Hu QH (2005) Root responses and metal accumulation in two contrasting ecotypes of Sedum alfredii Hance under lead and zinc toxic stress. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 40:1081-1096
    Lin L, Guo W, Xing Y, Zhang X, Li Z, Hu C, Li S, Li Y, An Q (2012) The actinobacterium Microbacterium sp.16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N2 associated with micropropagated sugarcane plants. Applied Microbiology and Biotechnology 93:1185-1195
    Liu D, Islam E, Li T, Yang X, Jin X and Mahmood Q (2008) Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials 153:114-122
    Liu D, Li T, Yang X, Islam E, Jin X, Mahmood Q (2007) Enhancement of lead uptake by hyperaccumulator plant species Sedum alfredii Hance using EDTA and IAA. Bulletin of Environmental Contamination and Toxicology 78(3-4):280-283
    Liu WX, Shen LF, Liu JW, Wang YW, Li SR (2007) Uptake of toxic heavy metals by rice(Oryza sativa L.) cultivated in the agricultural soil near zhengzhou city, people's republic of china. Bulletin of Environmental Contamination and Toxicology 79:209-213
    Liu Y, Zhou T, Crowley D, Li L, Liu D, Zheng J, Yu X, Pan G, Hussain Q, Zhang X and Zheng J (2012) Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across south China. Plos One 7(6):e38858
    Liu Y, Zhu YG, Chen BD, Christie P and Li XL (2005) Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG 167 in As spiked soil under glasshouse conditions. Environment International 31:867-873
    Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H and van der Lelie D (2002a) Isolation, characterization and identification of bacteria associated to the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. International Journal of Phytoremediation 4:101-115
    Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H and Lelie Dvd (2001) The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. International Journal of Phytoremediation 3:173-187
    Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D. (2002b). Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences 21:583-606
    Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLos One 3:e2702
    Long X, Chen X, Chen Y, Woon-Chung WJ, Wei Z, Wu Q (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World Journal of Microbiology and Biotechnology 27:1197-1207
    Long XX, Zhang YG, Jun D, Zhou Q (2009) Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions. Bulletin of Environmental Contamination and Toxicology 460-467
    Lopez ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL.2005. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promotor. Chemosphere 61:595-598
    Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. Journal of Experimental Botany 59:3203-3213
    Luo C, Shen Z, Li X and Baker AJ (2006) Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere 63:1773-1784
    Luo C, Shen Z, Lou L and Li X (2006) EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environmental Pollution 144:862-871
    Luo SL, Chen L, Chen JL, Xiao X, Xu TY, Wan Y, Rao C, Liu CB, Liu YT, Lai C, Zeng GM (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85(7):1130-1138
    Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C and Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Applied Microbiology and Biotechnology 93:1745-1753
    Luo X, Yu S, Zhu Y and Li X (2012) Trace metal contamination in urban soils of China. Science of Total Environment 4212-422:17-30
    Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7-13
    Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR. (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobia spp. Antonie Van Leeuwenhoek 83:285-291
    Ma Y, Prasad MNV, Rajkumar M, Freitas (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances 29:2482-258
    Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. Journal of Hazardous Materials 195:230-237
    Madhaiyan M, Poonguzhali S and Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato(Ly copersicon esculentum L). Chemosphere 69:220-228
    Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T and Kirpichtchikova T (2008) Formation of metallic copper nanoparticles at the soil-root interface. Environment Science and Technology 42:1766-1772.
    Marschener H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Research 56:203-207
    Martino E, Perotto S, Parsons R and Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry 35:133-141
    Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation 11:251-267
    Mayak S, Tirosh T and Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science 166:525-530
    McGrath SP, Chaudri AM and Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology and Biotechnolgy 14(2):94-104
    McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ and Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution 141:115-125
    McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnolgy 14(3):277-282
    Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FM and Verloo MG (2004) Enhanced phytoextraction:in search of EDTA alternatives. International Joural of Phytoremediation 6:95-109
    Meers E, Tack FM, Van Slycken S, Ruttens A, Du Laing G, Vangronsveld J and Verloo MG (2008) Chemically assisted phytoextraction:a review of potential soil amendments for increasing plant uptake of heavy metals. International Joural of Phytoremediation 10:390-414
    Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research 107:1253-1265
    Mehlich A (1984) Mehlich-3 Soil Test Extractant-a Modification of Mehlich-2 Extractant. Communications in Soil Science and Plant Analysis 15:1409-1416
    Mengoni A, Barzanti R, Gonnelli C, Gabbrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environmental Microbiology 3:691-698
    Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M (2004) Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. Microbial Ecology 48:209-217
    Mengoni A, Pini F, Shu W-S, Huang L-N, Bazzicalupo M (2009) Plant-by-plant variations of leaf-associated bacterial communities in the nickel-hyperaccumulator Alyssum bertolonii Desv. Microbial Ecology 58:660-667
    Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant and Soil 331:5-16
    Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiology Ecology 76:342-351
    Mohsenzadeh F, Nasseri S, Mesdaghinia A, Nabizadeh R, Zafari D, Khodakaramian G, Chehregani A (2010) Phytoremediation of petroleum-polluted soils:application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicology and Environmental Safe 73:613-619
    Monsant AC, Wang Y, Tang C (2010) Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant and Soil 336:391-404
    Murakami M, Nakagawa F, Ae N, Ito M and Arao T (2009) Phytoextraction by rice capable of accumulating Cd at high levels:reduction of Cd content of rice grain. Environment Science and Technology 43:5878-5883
    Neilands JB (1981) Microbial iron compounds Annual Review of Biochemistry 50:715-731
    Ni WZ, Sun Q, Yang X (2004) Growth and zinc accumulation of Sedum alfredii Hance--a Zn hyperaccumulator as affected by phosphorus application. Bulletin of Environmental Contamination and Toxicology 72:756-762
    Nogueira M, Nehls U, Hampp R, Poralla K and Cardoso E (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant and Soil 298:273-284
    Notten MJ, Oosthoek AJ, Rozema J and Aerts R (2005) Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environmetal Pollution 138(1):178-190
    "Nukui N, Minamisawa K, Ayabe SI, Aoki T. (2006) Expression of the 1-aminocyclopropane-l-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Applied Environmental Microbiology 72:4964-4969
    Orlowska E, Przybylowicz W, Orlowski D, Turnau K and Mesjasz-Przybylowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environmental Pollution 159:3730-3738
    Ortiz-Castro R, Valencia-Cantero E, Lopez-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant signal behav 3:263-265
    Ouziad F, Hildebrandt U, Schmelzer E and Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. Journal of Plant Physiology 162:634-649
    Pal A, Wauters G, Paul AK (2007) Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant and Soil 293:37-48
    Park JH, Bolan N, Megharaj M and Naidu R (2011) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials 185:829-836
    Park BJ and Cho JY (2011) Assessment of copper and zinc in soils and fruit with the age of an Apple Orchard. Journal Korean Soc Applied Biology Chemistry 54:910-914
    Patten CL and Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied Environmental Microbiology 68:3795-3801
    Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum 118(1):10-15
    Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity:cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal 32:539-548
    Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362-370
    Pilon-Smits E (2005) Phytoremediation. Annual Reviews in Plant Biology 56:15-39
    Poehlein A, Kusian B, Friedrich B, Daniel R, Bowien B (2011) Complete genome sequence of the type strain Cupriavidus necator N-1. Journal of Bacteriology 193:5017
    Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16. Nature Biotechnology 24:1257-1262
    Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73:149-156
    Prasad DDK, Prasad ARK (1987) Altered 8-aminolevulinic acid metabolism by lead and mercury in germinating seedlings of Bajra (Pennisetum typhoideum). Journal of Plant Physiology 127:241-249
    Qiang X, Weiss M, Kogel KH, Schafer P (2012) Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range. Molelular Plant Pathology 13(5):508-518
    Qiang X, Zechmann B, Reitz MU, Kogel KH, Schafer P (2012) The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress-triggered caspase-dependent cell death.The Plant Cell 24:794-809
    Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153-160
    Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology 28(3):142-149
    Rajkumar M, Nagendran R, Lee KJ and Lee WH (2005) Characterization of a novel Cr6+reducing Pseudomonas sp. with plant growth-promoting potential. Current Microbiology 50:266-271
    Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances Doi:10.1016/j.biotechadv.2012.04.011
    Reed ML and Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology 51:1061-1069
    Reeves RD, Baker AJM (2000) Metal-accumulating plants. In Phytoremediation of Toxic Metals-using plants to clean up the environment,. Raskin H, Ensley BD, eds. pp.193-229. New York:Wiley
    Reinhold-Hurek B, Hurek T (1998) Life in grasses:diazotrophic endophytes. Trends in Microbiology 6(4):139-144
    Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions 19:827-837
    Safronova V, Stepanok V, Engqvist G, Alekseyev Y and Belimov A (2006) Root-associated bacteria containing 1-aminocyclopropane-l-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils 42:267-272
    Salt DE, Benhamou N, Leszczyniecka M, Raskin I and Chet I (1999) A Possible role for rhizobacteria in water treatment by plant roots. International Journal of Phytoremediation 1:67-79
    Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I and Raskin I (1995) Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology 13(5):468-474
    Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annual Review of Plant biolgogy 49:643-668
    Saravanan VS, Madhaiyan M and Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794-1798.
    Sarret G, Schroeder WH, Marcus MA, Geoffroy N, Manceau A 2003.Localization and speciation of Zn in mycorrihizd roots by μSXRF and μEXAFS Journal de physique IV France 107:1193-1196
    Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology 20:202-205
    Sayer JA, Cotter-Howells JD, Watson C, Hillier S and Gadd GM (1999) Lead mineral transformation by fungi. Current Biology 9:691-694
    Schafer P, Khatabi B, Kogel KH (2007) Root cell death and systemic effects of Piriformospora indica:a study on mutualism. FEMS Microbiology Letters 275:1-7
    Schafer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kuhnemann J, Sonnewald S, Sonnewald U, Kogel KH (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. The Plant Journal 59,461-474
    Schalk IJ, Hannauer M and Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology 13:2844-2854
    Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991). Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species(Vitis vinifera L.). Annals of Botany 68:135-141
    Schneider RW (1984) Effects of nonpathogenic strains of Fusarium oxysporum on celery root infection by Fusarium oxysporum f. sp. apii and a novel use of the Lineweaver-Burk double reciprocal plot technique. Phytopathology 74:646-653
    Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53:1351-1365
    Schwyn B, Neilands JB (1987) Universal chemical assay for the dectection and determination of siderophores. Analytical Biochemistry 160(1):47-56
    Sell J, Kayser A, Schulin R and Brunner I (2005) Contribution of ectomycorrhizal fungi to Cadmium uptake of poplars and willows from a heavily polluted soil. Plant and Soil 277:245-253
    Sessitsch A, Puschenreiter M (2008) Endophytes and rhizosphere bacteria of plants growing in heavy metal-containing soils. In:Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology 13, pp 317-332. Springer-Verlag, Berlin Heidelberg
    Shahollari B, Vadassery J, Varma A, Oelmuller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. The Plant Journal 50:1-13
    Shahollari B, Varma A, Oelmuller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. Journal of Plant Physiology 162:945-958
    Sheng X, He L, Wang Q, Ye H and Jiang C (2008a) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. Journal of Hazardous Materials 155:17-22
    Sheng XF and Xia JJ (2006) Improvement of rape(Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036-1042
    Sheng XF, Xia JJ, Jiang CY, He LY and Qian M (2008b) Characterization of heavy metal-resistant endophytic bacteria from rape(Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution 156:1164-1170.
    Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. The Journal of Biological Chemistry 280:26241-26247
    Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmuller R (2008) PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. The Plant Journal 54:428-439
    Shi JY, Lin HR, Yuan XF, Chen XC, Shen CF and Chen YX (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16:1409-1417
    Shin MN, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. Journal of Hazardous Materials 199-200:314-320
    Singh A, Sharma J, Rexer KH, Varma A (2000) Plant productivity determinants beyond minerals, water and light:Piriformospora indica-A revolutionary plant growth promoting fungus. Current science 79:1548-1554
    Sinha S and Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Current Microbiology 56:55-60
    Sirrenberg A, Gobel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiologia Plantarum 131:581-589
    Sitte J, Akob DM, Kaufmann C, Finster K, Banerjee D, Burkhardt EM, Kostka JE, Scheinost AC, Buchel G and Kusel K (2010) Microbial links between sulfate reduction and metal retention in uranium-and heavy metal-contaminated soil. Applied and Environmental Microbiology 76:3143-3152
    Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62:227-250
    Stan V, Gament E, Cornea CP, Voaides C, Dusa M and Plopeanu G (2011) Effects of heavy metal from polluted soils on the Rhizobium diversity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39:88-95
    Steenhoudt O and Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses:genetic, biochemical and ecological aspects. FEMS Microbiology Reviews 24:487-506
    Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany 47:271-280
    Sullivan WM, Jiang Z, Hull RJ (2000) Root morphology and its relationship with nitrate uptake in Kentucky Bluegrass. Crop Science 40:765-772
    Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology 101(2):501-509
    Sun Y, Zhou Q, Xie X, Liu R (2010) Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials 174(1-3):455-462
    Sun Y-b, Zhou Q-x, An J, Liu W-t and Liu R (2009) Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant(Sedum alfredii Hance). Geoderma 150:106-112
    Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. International Journal of Systematic Evolutionary Microbilogy 51:1405-1417
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731-2739
    Tandy S, Schulin R and Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454-1463
    Tank N and Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Journal of Basic Microbiology 49:195-204
    Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytologist 182:116-126
    Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiology 157:1914-1925
    Tian S, Lu L, Yang X, Webb SM, Du Y, Brown PH (2010) Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. Environmental Science and Technology 44:5920-5926
    Timberlake WE, Marshall MA (1989) Genetic engineering of filamentous fungi. Science 244:1313-1317
    Tripathi M, Munot HP, Shouche Y, Meyer JM and Goel R (2005) Isolation and functional characterization of siderophore-producing Lead-and Cadmium-resistant Pseudomonas putida KNP9. Current Microbiology 50:233-237
    Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74-81
    Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185-190
    Uchiumil T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata4 S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi H, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki 1 A, Shimodal Y, Sioyal K, Abel M, Minamisawa K (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. Journal of Bacteriology 186:2439-2448
    Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novak O, Strnad M, Ludwig-Muller J, Oelmuller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant Microbe Interactions 21:1371-1383
    van der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, and Vangronsveld J (1999) The role of bacteria in the phytoremediation of heavy metals. In:Phytoremediation of Contaminated Soil and Water. Terry N. and Baouelos G., Eds., Lewis Publishers, Boca Raton, London, New York, Washington DC, pp.265-281
    Varma A, Savita V, Sahay N, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Applied Environmental Microbiology 65:2741-2744
    Vassil AD, Kapulnik Y, Raskin II, Salt DE (1998) The role of EDTA in lead transport and accumulation by indian mustard. Plant Physiology 117:447-453
    Vassilev A, Berova M, Zlatev Z (1998) Influence of Cd2+on growth, chlorophyll content, and water relations in young barley plants. Biologia Plantarum 41:601-606
    Venkatesh NM and Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Annals of Microbiology 62:85-91
    Verbruggen N, Hermans C and Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181 (4):759-776
    Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Butehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus, Mycologia 90(5):896-903
    Viamajala S, Smith WA, Sani RK, Apel WA, Petersen JN, Neal AL, Roberto FF, Newby DT, Peyton BM (2007) Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils:implications for long-term chromate reduction. Bioresource Technology 98:612-622
    Vig K, Megharaj M, Sethunathan N and Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review. Advances in Environmental Research 8(1):121-135
    Vivas A, Biro B, Ruiz-Lozano JM, Barea JM and Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523-1533
    Vivas A, Voros A, Biro B, Barea JM, Ruiz-Lozano JM and Azcon R (2003) Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil Ecology 24:177-186
    Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of National Academy of Sciences of the USA 102:13386-13391
    Wang F, Lin X and Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant and Soil 269:225-232
    Wang FY, Lin XG and Yin R (2007) Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. International Journal of Phytoremediation 9:345-353
    Wang HH, Shan XQ, Wen B, Owens G, Fang J, Zhang SZ (2007) Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environmental and Experimental Botany 61(3):246-253
    Wang Q, Xiong D, Zhao P, Yu X, Tu B and Wang G (2011) Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. Journal of Applied Microbiology 111:1065-1074
    Wani P, Khan M and Zaidi A (2007) Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil. Current Microbiology 54:237-243
    Wei B and Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal 94(2):99-107
    Wenzel W (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil 321:385-408
    Wenzel WW, Bunkowski M, Puschenreiter M and Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environmental Pollution 123:131-138
    Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009a) Exploiting plant-microbe partnerships for improving biomass production and remediation. Trends in Biotechnology 27:591-598
    Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant-endophyte partnerships take the challenge. Current Opinion in Biotechnology 20:248-254
    White TJ, Bruns T, Lee S, Taylor JW, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in:Innis MA, Gelfand DH, Sninsky JJ, White TJ. (Eds.) PCR protocols:a guide to methods and applications, Academic Press Inc., San Diego Calif,1990, pp.315-322.
    Whiting SN, De Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science and Technology 35(15):3144-3150
    Wilkins DA (1978) Measurement of tolerance to edaphic factors by means of root-growth. New Phytologist 80:623-633
    Wu CH, Wood TK, Mulchandani A and Chen Wilfred (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Applied and Environmental Microbiology 72:1129-1134
    Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363-1378
    Wu G, Kang H, Zhang X, Shao H, Chu L and Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils:issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials 174(1-3):1-8
    Xie QE, Yan XL, Liao XY and Li X (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environmental Science and Technology 439(22):8488-8495
    Xiong J, He Z, Liu D, Mahmood Q, Yang X (2008) The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium. Chemosphere 70:489-494
    Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I, Ogura H, Kobayashi K. (2002) Emendation of the genus Sphingomonas Yabuuchi et al.1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. International Journal of Systematic and Evolutionary Microbiology 52:1485-1496
    Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant.The Journal of Biological Chemistry 285:26532-26544
    Yanai J, Yabutani M, Yumei K, Guobao L and Kosaki T (1998) Heavy metal pollution of agricultural soils and sediments in Liaoning Province, China. Soil Science and Plant Nutriton 44(3):367-375
    Yang Q, Tu S, Wang G, Liao X and Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. International Journal of Phytoremediation 14:89-99
    Yang X, Feng Y, He Z and Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements Medicine and Biology 18:339-353
    Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil 259(1-2):181-189
    Yang X, Li TQ, Yang JC, He ZL, Lu LL, Meng FH (2006a) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224:185-195
    Yang X, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H:A new Zn hyperaccumulating plant first found in China. Chinese Science Bulletin 47:1634-1637
    Yang XE, Li TQ, Long XX, Xiong YH, He ZL, Stoffella PJ (2006b) Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant and Soil 284:109-119
    Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil 259:181-189
    Yu J, Huang ZY, Chen T, Qin DP, Zeng XC and Huang YF (2012) Evaluation of ecological risk and source of heavy metals in vegetable-growing soils in Fujian province, China. Environmental Earth Sciences 65:29-37
    Zeng J and Wang WX (2009) The importance of cellular phosphorus in controlling the uptake and toxicity of cadmium and zinc in Microcystis aeruginosa, a freshwater Cyanobacterium. Environmental Toxicology and Chemistry 28:1618-1626
    Zhang WH, Huang Z, He LY, Sheng XF (2012) Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Chemosphere 87:1171-1178
    Zhang X, Lin L, Zhu Z, Yang X, WangY, An Q (2012) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. International Journal of Phytoremediation 15:51-64
    Zhang XY, Lin FF, Wong MT, Feng XL and Wang K (2009) Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environmental Monitoring Assessment 154(1-4):439-449
    Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011a) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57-62
    Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M, Sheng XF (2011b) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Journal of Hazardous Materials 186:1720-1725
    Zhao FJ, Hamon RE and McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytologist 151:613-620
    Zhao FJ, Shen ZG and McGrath SP (1998) Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment 21:108-114
    Zhu E, Liu D, Li JG, Li TQ, Yang XE, He ZL, Stoffella PJ (2010) Effects of nitrogen fertilizer on growth and cadmium accumulation in Sedum alfredii Hance. Journal of Plant Nutrition 34:115-126
    Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International 33:406-413
    安千里,李久蒂(1999)植物内生固氮菌.植物生理学通讯35:265-272
    陈宝玉,王洪君,曹铁华,梁烜赫,杨建,任军(2010)不同磷肥浓度下土壤-水稻系统重金属的时空累积特征.农业环境科学学报29:2274-2280
    陈怀满(1996)土壤一植物系统中的重金属污染.北京:科学出版社
    陈怀满(2005)环境土壤学.北京:科学出版社
    郭朝晖,肖细元,陈同斌,廖晓勇,宋杰,武斌(2008)湘江中下游农田土壤和蔬菜的重金属污染.地理学报63(1):1-11
    韩继刚,宋未(2004)植物内生细菌研究进展及其应用潜力.自然科学进展,14(4):374-379
    胡宁静,李泽琴,黄棚,程温莹(2003)我国部分市郊农田的重金属污染与防治途径.矿物岩石地球化学通报22:251-254
    李会和,胡绵好,李廷强,杨肖娥(2008)硫对超积累植物东南景天生长和Cd累积的影响.水土保持学报22(6):71-74
    李湘洲(2002)公路系统沿线作物铅积累状况的研究.中南林学院学报22(1):40-42
    李玉浸(2001)集约化农业的环境问题与对策.北京:中国农业出版社
    李郑义(2011)高通量筛选和鉴定具ACC脱氨酶的细菌.硕士学位论文,浙江大学
    楼兵干,孙超,蔡大广(2007)印度梨形孢的多种功能及其应用前景.植物保护学报34(6):653-656
    鲁如坤(2000)土壤农业化学分析法.北京:中国农业科技出版社
    王凤让,毛克克,李国钧,吴铖铖,张慧娟,李大勇,宋凤鸣(2011)印度梨形孢及其近似种Sebacina vermifera促进番茄生长发育及磷吸收.浙江大学学报(农业与生命科学版),37(1):61-68
    王拱辰,郑重,叶琪明,章初龙(1996)常见镰刀菌鉴定指南.北京:中国农业科 技出版社
    魏树和,周启星,王新(2004)一种新发现的镉超积累植物龙葵(Solanum nigrumL).科学通报49(24):2568-2573
    薛生国,陈英旭,林琦(2003)中国首次发现的锰超积累植物—商陆.生态学报23(5):935-937
    杨肖娥,刘勇军,冯英.东南景天的有性繁殖方法.杭州求是专利事务所有限公司,公开号:CN101057542
    杨肖娥,龙新宪,倪吾钟,倪士峰(2001)古老铅锌矿山生态型东南景天对Zn耐性及超积累特性的研究.植物生态学报25(6):665-672
    杨肖娥等,余剑东,倪吾钟(2002)农业环境质量与食品安全.中国农业科技导报4:3-9
    臧宪朋,徐幼平,蔡新忠(2010)一种基于菌丝悬浮液的核盘菌(Sclerotinia sclerotiorum)接种方法的建立.浙江大学学报(农业与生命科学版),36(4):381-386
    郑国璋(2007)农业土壤重金属污染研究的理论与实践.北京:中国环境科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700