用户名: 密码: 验证码:
改进的SBAS地表形变监测及地下水应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达干涉测量技术(D-InSAR)可应用于大范围、全天候、实时的快速地表缓慢形变监测,它已日益成为人们监测地表形变、地裂缝、地震等地质灾害的一项重要技术手段,同时它也大大弥补了传统的监测手段如GPS、水准测量等的不足。近年来,在D-InSAR技术的基础上发展起来的PS-InSAR技术、短基线集的D-InSAR技术(SBAS)、点差分干涉测量技术(IPTA)等已经成功运用于地壳形变、城市地表沉降监测、地震监测、滑坡监测以及冰川运动等领域之中。然而,随着应用领域的进一步拓宽,这些技术的研究还处于起步阶段,里面还涉及到的许多算法还有待于进一步改善。
     在研究D-InSAR关键技术的基础上,本研究重点就PS-InSAR技术、SBAS技术及IPTA技术中的关键问题进行分析研究。PS-InSAR技术可以实现高分辨率的点目标监测,但对于长时间序列的监测存在着无法正确解缠的问题,且受大气影响较大;运用SBAS技术可以减少数据成本,提高数据的应用效率,但由于SBAS技术采用影像多视处理技术,导致空间分辨率降低,降低了PS点的监测精度;IPTA技术运用了矢量数据的高效率的数据结构。该数据结构大大节省了数据的存储空间和提高了运行效率,但同样存在PS-InSAR中解缠困难和受大气影响较大的问题。对以上多种方法进行深入分析和研究之后,本论文发展了一套既能检测线性形变,又能检测周期性和非线性形变的技术流程和方法。基于改进的SBAS算法不是简单的将两种算法的叠加,而是对算法中的仍然存在的问题进行了改进,如利用二元树的复数小波滤波方法对干涉图中的噪声加以去除;针对大气延迟问题提出了利用MERIS数据进行ASAR大气延迟相位的改正;针对低分辨率的传统的SBAS技术利用PS点提高监测精度。在理论研究的基础上,选择河北沧州市区作为实验场,采用了ENVISAT卫星的ASAR数据进行实验分析,得到相应的监测结果。为了验证结果的可靠性,本文利用研究区域监测井的历年水位数据与实验的形变监测结果进行趋势对比分析,并结合形变和地下水位的关系,分析出研究区域地下水的地球物理特性。论文的主要研究工作可分为以下四个方面。
     1)提出了一种基于二元树复小波的差分干涉图滤波方法。针对干涉相位噪声严重影响InSAR生成数字高程模型和地表形变监测精度的问题,在对比研究多种滤波方法的优缺点的基础上,利用本文提出的二元树小波滤波方法分别对模拟SAR数据和真实的SAR数据进行滤波,并将其滤波结果与其它常用的SAR数据的滤波方法的滤波结果进行精度比较,得出基于二元树复小波的滤波方法能大大提高滤波的精度。该方法有效地去除了差分干涉图中由于多种失相干问题引起的噪声,为后续点差分干涉图的处理提供了更有效的数据源。
     2)提出了一种基于MERIS水汽数据的ONN模型与Von_karman kriging模型融合的空间插值方法。应用Von karman kriging方法对局部水汽进行空间插值可以有效地提高传统的OK方法的插值精度;同时它避免了由于样本较少时引起的插值结果不连续的现象,提高了插值精度。通过实验表明:在季节性变化很明显的区域,由于水汽引发的相位延迟是不容忽视的,它将严重影响形变监测的精度,甚至得到错误的监测结果,因此利用MERIS数据进行大气改正是非常必要的。本文利用沧州市的差分干涉对和同时间的MERIS数据进行了实证分析,分析结果表明:沧州地区受大气影响的较为明显,必须去除大气效应。
     3)提出了一种改进的SBAS方法。该方法有效地解决了系列点差分干涉相位方程中的秩亏问题,并有效地分离出周期性形变、非线性形变,为更真实的表达地表形变的变化提供了更精确的监测结果。改进的SBAS方法融合了SBAS的高时间分辨率特点、IPTA的高效处理模式、高空间分辨率的特点以及高效的解缠方法。文中提出相应的算法和数据处理流程。在此基础上,利用ASAR数据对沧州市的地表形变进行了提取实验,同时对大气相位和噪声也采取了时空滤波方法,并且有效地分离了线性与非线性形变,得到了相应的监测结果。
     4)将地面形变结果与监测井的地下水位进行地球物理特征分析。改进的SBAS技术提取得到不同时期的沧州市的沉降结果。结合地下水地层岩性的特点,利用研究区域内不同监测井得到的地下水位变化的数据,估计出该区域的含水层的弹性释水系数和非弹性释水系数。实验结果表明该区域已经发生较为严重的塑性形变,需要进行人为有效地控制地下水的开采量;最后就地下水位沉降与地面沉降的关系作了分析,得到该实验区域沉降的原因。
Differential Synthetic Aperture Radar Interferometry(D-InSAR) had been applied to survey large range, all-weather, real-time surface slow deformation information. It has increasingly become an important technical means in monitoring ground deformation, ground fissure, seismic geological disaster. What's more, it also greatly makes up for the traditional monitoring means such as GPS, leveling and other deficiencies. In recent years, Based on D-InSAR technology, the key techniques of differential synthetic aperture radar interferometry advanced techniques were deeply analyzed and studied in the dissertation such as PS-InSAR technology, small baseline subsets of D-InSAR Technology (SBAS), point differential interferometry (IPTA), which had been successfully applied in variation field,for instance, monitoring surface subsidence of city, crustal and earthquake deformation monitoring, landslide monitoring as well as the glacier variation field. However, with the application of these techniques to further expand, their arithmetic needs to be perfected in high-precision surveying.
     Based on key technology of D-InSAR, SBAS technology and IPTA technology were deeply analyzed and studied in the dissertation. In order to reduce the cost of data and improve deformation monitoring accuracy and efficiency, this paper presents the application of SBAS technology; In order to reduce the loss of coherence effect, PS-InSAR technology was proposed to achieve the PS point on the deformation monitoring; In order to improve the image processing efficiency, the vector data was used as an efficient data structures, which is namely IPTA data processing model; Based on the above, an integral terrain displacement detection method is proposed which not only can detect linear deformation, but also can detect periodicity and nonlinear deformation. In the study, Improved SBAS is not the two algorithms superimposed as SBAS and IPTA, but the algorithm improved. Interferometric phase noise reduction based on Dual Tree Complex Wavelet Transform is proposed; ASAR atmospheric delay phase correction is solved by using MERIS data. On the basis of theoretical research, the choice of Hebei District of Cangzhou was selected as the studied and experimental area. ENVISAT ASAR data were employed in the data processing. In order to verify the reliability of results, underground water level data in the monitoring wells and deformation monitoring result are used to compare. Deformation data and underground water level data are used to analysis of the regional groundwater geophysical characteristics. The specific research work and contributions are listed from four aspects as follows:
     1) Because interferometric phase noise seriously affects the InSAR monitoring accuracy, Compare much variety filtering methods, two dual-tree complex wavelet filtering method was proposed, which is conducted in using SAR simulation data and real interferogram data. Comparing with the precision with other methods, two dual-tree complex wavelet filtering method can greatly improve the filtering precision.
     2) Because of atmospheric delay in InSAR interferogram, InSAR altimetry and deformation precision are affected. On this basis, combined with the InSAR image on the atmospheric delay characteristics, existing methods of atmospheric interpolation model were studied. Von_Kriging spatial interpolation method Based on the terrain model is put forward in MERIS data. After search for the optimal parameters, ordinary Kriging method and Von_Kriging method interpolation are compared at accuracy. Interferogram with the same time of MERIS data is used to study. The result shows Cangzhou region affected by atmospheric effects obviously, which must be removed for precise survey.
     3) Based on the SBAS technology and IPTA technology characteristics, a new algorithm is put forward. Cangzhou city surface deformation was extracted by the algorithm, which include of the effective separation of linear and nonlinear deformation. Atmospheric delay and noise are obtained by spatio-temporal filtering method. Finally, the deformation results is contrasted the groundwater with abundant water period and low water period.
     4) Subsidence result is extracted by improved SBAS technology in Cangzhou city with different periods. The change of underground water level data combined with subsidence results was used to estimate the regional aquifer elastic storativity and non-elastic storativity in different monitoring wells in the study area. The experimental results revealed that the area in some places has already occurred more severe plastic deformation, which need to effectively control the exploitation quantity of groundwater. Finally the underground water level subsidence and subsidence were analyzed to find stratum subsidence mechanism.
引文
[1]Hoffmann J. The application of satellite radar interferometry to the study of land subsidence over developed aquifer systems [D]. Stanford:Stanford University, 2003.
    [2]Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry [J]. Nature,1993,364(8):138-142.
    [3]Massonnet D, Feigl K. Radar interferometry and its applications to changes in the Earth's surface [M]. Reviews of Geophys,1998,36(4):441-500.
    [4]Zebker H A, Rosen P A, Goldstein R M, et al. On the derivation coseismic displacement fields using differential radar Interferometer:The Landers earthquake [J]. Journal of Geophysical Research,1994,99(B10):617-634.
    [5]Massonnet D, Briole P, Arnaud A. Deflation of Mount Etna monitored by spaceborne radar interferometry [J]. Nature,1995,375:567-570.
    [6]Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes [J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):950-959.
    [7]Chen C W, Zebker H A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization [J]. Journal of the Optical Society of America.2001,18(2):338-351.
    [8]Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry [J]. IEEE International Geoscience and Remote Sensing Symposium, 1999,3:1528-1530.
    [9]Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatters in Differential SAR Interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202-2212.
    [10]Ferretti A, Prati C, Rocca F. Permanent Scatters in SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):8-20.
    [11]Ferretti A, Novali F, Burgmann R, et al. InSAR permanent scatterer analysis reveals ups and downs in San Francisco Bay area [J]. EOS, Transactions American Geophysical Union,2004,85(34):317-324.
    [12]Ferretti A, Savio G, Barzaghi R, et al. Submillimeter accuracy of InSAR time series:Experimental Validation [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1142-1153.
    [13]Colesanti C, Ferretti A, Novali F. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(7):1685-1701.
    [14]Colesanti C, Le M S, Bennani M, et al. Detection of mining related ground instabilities using the Permanent Scatterers technique-a case study in the east of France [J]. International Journal of Remote Sensing,2005,26(1):201-207.
    [15]Perissin D, Prati C, Engdahl M. Validating the SAR wave-number shift principle with ERS-Envisat PS coherent combination [J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(9):2343-2351.
    [16]Perissin D, Rocca F. High accuracy urban DEM using Permanent Scatterers [J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(11):3338-3347.
    [17]Perissin D, Ferretti A. Urban target recognition by means of repeated spaceborne SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):4043-4058.
    [18]Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40 (11):2375-2383.
    [19]Lanari R, Mora O, Manunta M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms [J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(7): 1377-1386.
    [20]Lauknes T., Dehls J., Larsen Y., et al. A comparison of SBAS and PS ERS InSAR for subsidenee monitoring in OSLO [C]. Norway:Fringe05,2005
    [21]Casu F, Manzo M., Lanari R.. A quantitative assessment of the SBAS algorithm performance for surfaee deformation retrieval from D-InSAR data [J], Remote Sensing Environment,2006,102:195-210.
    [22]Wegmuller U, T. Strozzi. Characterization of differential interferometry approaches [J]. IEEE International Geoscience and Remote Sensing Symposium, 1999,3:1528-1530.
    [23]Wegmuller U, Werner C. Multi-temporal interferometric point target analysis [C]. In:Simts P, Bruzzone L, eds. Proceedings of the Second International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2004.136-144.
    [24]Werner, C, Wegmuller, U, Strozzi, T. Interferometric point target analysis for deformation mapping [J]. IEEE International Geoscience and Remote Sensing Symposium,2003,7:4362-4364.
    [25]Sandwell D T, Price E J. Phase gradient approach to stacking interferograms [J]. Journal of Geophysical Research,1998,103(B12):30183-30204.
    [26]Williams S, Bock Y, Fang P. Integrated Satellite Interferometry:Tropospheric Noise, GPS Estimates and Implications for Interferometric Synthetic Aperture Products [J]. Journal of Geophysical Research,1998,103(B11):27051-27067.
    [27]Strozzi, T, Dammert P, Wegmiiller U. Land use mapping with ERS SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing,2000, 38(2):766-775.
    [28]Li Z H. Correction of atmospheric water vapour effects on repeat-pass SAR interferometry using GPS, MODIS and MERIS Data [D]. London:University College London,2005.
    [29]Emardson T R, Simons M, Webb H F. Neutral atmospheric delay in interferometric synthetic apertur e radar applications:Statistical description and mitigation [J]. Journal of Geophysical Research,2003,108(B5):2231.
    [30]Crosetto M, Tscherning C C, Crippa B, et al. Subsidence monitoring using SAR interferometry:Reduction of the atmospheric effects using stochastic filtering [J]. Geophysical Research Letters,2002,29(9):26.
    [31]Li Z H, Fielding E J, Cross P, et al. Interferometric synthetic aperture radar atmospheric correction:GPS topography dependent turbulence model [J]. Journal of Geophysical Research,2006,111(B2):404.
    [32]Li Z L, Zou W B, Ding X L, et al. A quantitative measure for the quality of InSAR interferograms based on phase differences [J]. Photogrammetric Engineering and Remote Sensing,2004,70(10):1131-1137.
    [33]Li Z W, Ding X L, Liu G X. Modeling atmospheric effects on InSAR with meteorological and continuous GPS observations:algorithms and some test results [J]. Journal of Atmospheric and Solar-Terrestrial Physics,2004,66(11): 907-917.
    [34]Li Z W, Ding X L, Huang C, et al. Improved Filtering Parameter Determination for the Goldstein Radar Interferogram Filter [J]. ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(6):621-634.
    [35]Li Z W. Modeling atmospheric effects on repeat-pass InSAR measurements [D]. Hong Kong:The Hong Kong Polytechnic University,2005.
    [36]Graham L C. Synthesis interferometric radar for topographic mapping [C]. Proceedings of the IEEE,1974,62:763-768.
    [37]Zebker H A, Goldstein R M. Topographic mapping from Interferometric Synthetic Aperture Radar Observations [J]. Journal of Geophysical Research, 1986,91(BS):4993-4999.
    [38]Gabriel A K, Goldstein R M, and Zebker H A. Mapping small elevation changes over large areas:differential radar interferometry [J], Journal of Geophysical Research,1989,94(B7):9183-9191.
    [39]Xia Y, Kaufmann H, Guo X F. Differential SAR Interferometry using corner reflectors [C]. IEEE InternationalGeoscience and Remote Sensing Symposium, 2002,2:1243-1246.
    [40]Xia Y, Kaufmann H, and Guo X F. Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors [J]. Photogrammetric Engineering and Remote Sensing,2004,70(10):1167-1172.
    [41]Kircher M, Roth A, Adam N, et al. Remote Sensing Observation of Mining Induced Subsidence by means of differential SAR Interferometry [C]. IEEE International Geoscience and Remote Sensing Symposium,2003,1:209-211.
    [42]Rabus B, Werner C,Wegmueller U, et al. Interferometric point target analysis of RADARSAT-1 data for deformation monitoring at the Belridge/Lost Hills oil fields [C]. IEEE International Geoscience and Remote Sensing Symposium, 2004,4:2611-2613.
    [43]Kampes B M, Hanssen R F. Ambiguity resolution for permanent scatterer interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing,2004, 42(11):2446-2453.
    [44]Kampes B M. Displacement Parameter Estimation using Permanent Scatterer Interferometry [D]. Delft:Delft University of technology,2005.
    [45]Hooper A, Zebker H A, Segall P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers [J]. Geophysical research letters,2004,31(L23611):1-5
    [46]Hooper A. Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation [D]. Stanford:Stanford University,2006.
    [47]Hooper A, Zebker H A, Segall P, et al. Phase unwrapping in three dimensions with application to InSAR time series [J]. Journal of the Optical Society of America,2007,24(9):2737-2747
    [48]Ding X L, Liu G X, Li Z W, et al. Ground subsidence monitoring in Hong Kong with satellite SAR interferometry [J]. Photogrammetry Engineering and Remote Sensing,2004,70(10):1151-1156
    [49]Meinzer O E. Outline of ground-water hydrology with definitions [J]. USA: Government Printing Office,1923.494-71.
    [50]Terzaghi K. Erdbaumechanik auf Bodenphysikalischer Grundlage. German: Leipzig u. Wien, F. Deuticke,1925.212-214.
    [51]Biot M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics,1941,12(2):155-165.
    [52]Miller R E. Compaction of an artesian aquifer system computed from consolidation tests and decline in artesian head. U.S [J]. Geological Survey, Professional Paper,424B,1961,26:B54-B58.
    [53]Gastany G Principes et methodes de l'hydrogeologie. Bordas [M].Paris,1982.
    [54]Donald A, Benzaid Z. Asymptotic representation of solutions of perturbed systems of linear difference equations [J]. Studies in Applied Mathematics, 1987,77:195-221.
    [55]Lewis R W, Schrefler B A. The Finite Element Method in the Deformation and Consolidation of Porous Media [J]. New Jersey:John Wiley & Sons,1987.
    [56]Steven J D. Geostatistical and principal-component analyses of groundwater chemistry and soil-salinity data, San Joaquin Valley, California [J]. Regional Characterization of Water Quality.1989,5(182):11-18.
    [57]Galloway D L. Detection of aquifer systemic compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California [J]. Water Resources Research,1998,34:2573-2585.
    [58]Hoffmann J, Zebker H A. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry [J]. Water Resources Research,2001,36(6):1551-1566.
    [59]Hanssen R H. Radar Interferometry:Data Interpretation and Error Analysis [M]. Netherlands:Kluwer Academic Publishers,2001.
    [60]Curlander J C, McDonough R N. Synthetic aperture radar:systems and signal processing [M]. New Jersey:John Wiley & Sons,1991
    [61]Daniel R, Carlo C, Claudie C. Use of SAR interferometry for detecting and assessing ground subsidence [J]. Comptes Rendus Geoscience,2007,3390: 289-302.
    [62]Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping [J]. Radio Science,1988,23(4):713-720.
    [63]Gatelli F, Monti G A, Parizzi F, et al. The wavenumber shift in SAR Interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing,1994, 32(4):855-865.
    [64]Scharroo R, Visser P. Precise orbit determination and gravity field improvement for the ERS satellites [J]. Journal of Geophysical Research,1998,103(C4): 8113-8127.
    [65]Singh K, Stussi N, Keong K L. Baseline estimation in interferometric SAR[C]. International Geoscience and Remote Sensing Symposium,1997,1:454-456.
    [66]Small D, Werner C L, Nuesch D. Baseline Modelling for ERS-1 SAR Interferometry [C]. IEEE International Geoscience and Remote Sensing Symposium,1993,3:1204-1206.
    [67]Charles Elachi, Jakob van Zyl. Introduction to the Physics and Techniques of Remote Sensing. New Jersey:Wiley & Sons,2006.201-202.
    [68]Lee J S, Papathanassiou K P, Ainsworth T L, et al. A new techniques for noise filtering of SAR interferogram phase images [J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1456-1465.
    [69]Goldstein R M, Werner C L. Radar interferogram filtering for geophysical application [J]. Geophysical Research Letters,1998,25 (21):4035-4038.
    [70]Baran L, Stewart M P, Kampes B M, et al. A Modification to the Goldstein Radar Interferogram Filter [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):2114-2118
    [71]Braunisch H, Wu B I, Kong J A. Phase Unwrapping of SAR Interferograms after Wavelet Denoising [J]. IEEE International Geoscience and Remote Sensing Symposium,2000,2:752-754.
    [72]Martinez C L, Canovas X F, Chandra M. SAR Interferometric Phase Noise Reduction Using Wavelet Transform [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,37(10):649-651.
    [73]Lopez M C, Fabregas X. Modeling and Reduction of SAR Interferometric Phase Nosie in the Wavelet Domain [J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(12):2553-2566.
    [74]Yue H Y, Guo H D, Wang C L. SAR Interferogram Map Filtering Based on Stationary Wavelet Transform [J].2002,6:3465-3467.
    [75]Zha X. J., Fu R. S., Dai Z. Y., et al. Noise Reduction in Interferograms Using the Wavelet Packet Transform and Wiener Filtering [J]. IEEE Geoscience and Remote Sensing Letters,2008,5(3):404-408.
    [76]Yong B., Bryan M. Interferometric SAR Phase Filtering in the Wavelet Domain Using Simultaneous Detection and Estimation [J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(4):1396-1416.
    [77]Tan Y. H., Tian J. W., Liu J. Image Denoising Algorithm Based on Local Statistical Property in Wavelet Domain. SignalProcessing,2005,21(3):295-298.
    [78]Eichel P H, Ghiglia D C, et al. Spotlight SAR Interferometry for Terrain Elevation Mapping and Interferometric Change Detection [J]. Sand:Sandia National Labs technology,1993.2593-2546.
    [79]Kingsbury N G. The dual-tree complex wavelet transform:a new efficient tool for image restoration and enhancement [C]. Proc.of European Signal Processing Conference,1998,1:319-322.
    [80]Kingsbury N G. A dual-tree complex wavelet transform with improved orthogonality and symmetry properties [C]. IEEE International Conference on Image Processing,2000,2:375-378.
    [81]Kingsbury N G. Complex wavelets for shift invariant analysis and filtering of signals[J]. Applied and Computational Harmonic Analysis,2001,10(3): 234-253.
    [82]Selesnick I W, Abdelnour A F. Symmetric wavelet tight frames with two generators [J]. Applied and Computational Harmonic Analysis,2001,17(2): 211-225.
    [83]Selesnick I W. The double-density dual-tree DWT [J]. IEEE Transactions on Signal Processing,2004,52(5):1304-1314.
    [84]Zebker H A, Rosen P A, Hensley S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps [J]. Journal of Geophysical Research,1997,103(B4):7547-7563.
    [85]Xu W B, Li Z W, Ding X L, et al. Interpolating atmospheric water vapor delay by incorporating terrain elevation information [J]. Journal of Geodesy,2011, 85(9):555-564.
    [86]Sidler R. Kriging and Conditional Geostatistical Simulation Based on Scale-Invariant Covariance Models [D]. Switzerland:Swiss Federal Institute of Technology Zurich,2003.
    [87]Webley P W, Wadge G, James I N. Determining radio wave delay by non-hydrostatic atmospheric modeling of water vapour over mountains [J]. Physics and Chemistry of the Earth,2004,29:139-148.
    [88]Zebker H A, Rosen P A, Hensley S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps [J]. Journal of Geophysical Research,1997,102(B4):7547-7563.
    [89]Williams S, Bock Y, Fang P. Integrated satellite interferometry:Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. Journal of Geophysical Research,1998,103(B11):27051-27067.
    [90]Fruneau B, Sarti F. Detection of ground subsidence in the city of Paris using radar interferometry:isolation of deformation from atmospheric artifact using correlation [J]. Geophysical Research Letters,2000,27(24):3981-3984.
    [91]Remy D, Bonvalot S, Briole P, et al. Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data:application to Sakurajima volcano (Japan) [J]. Earth and Planetary Science Letters,2003, 213(3):299-310.
    [92]Massonnet D, Feigl K. Discrimination of geophysical phenomena in satellite radar interferograms [J]. Geophysical Research letters,1995,22(12):1537-1540
    [93]Crosetto M, Tscherning C C, Crippa B, et al. Subsidence monitoring using SAR interferometry:Reduction of the atmospheric effects using stochastic filtering [J]. Geophysical Research Letters,2002,29(9):26.
    [94]Shimada M. Correction of the satellites state vector and the atmospheric excess path delay in SAR interferometry:Application to surface deformation detection [C]. IEEE International Geoscience and Remote Sensing Symposium,2000,5: 2236-2238.
    [95]Shimada M, Minamisawa M, Isoguchi O. Correction of atmospheric excess path delay appeared in repeat-pass SAR interferometry using objective analysis data [C]. IEEE International Geoscience and Remote Sensing Symposium,2001,5: 2052-2054.
    [96]Onn F, Zebker H A. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network [J]. Journal of Geophysical Research,2006, 111(B09102):1-16.
    [97]Yamamoto J K. Correcting the smooth effect of ordinary origing estimates [J]. Mathematical Geology,2005,37(11):69-94.
    [98]郭华东,王长林,董庆,等.雷达对地观测理论与应用[M].北京:科学出版社,2000.
    [99]廖明生,林珲.雷达干涉测量学:原理与信号处理基础[M].北京:测绘出版社,2003.111-114.
    [100]廖明生,卢丽君,王艳,等.基于点目标分析InSAR技术检测地表微小形变的研究[J].城市地质,2006,1(2):38-41.
    [101]刘国祥,丁晓利,陈永奇,等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报,2001,46(14):1224-1228.
    [102]王腾.PERISSIN D,ROCCA F,等.基于时间序列SAR影像分析方法的三峡大坝稳定性监测[J].中国科学:地球科学.2011,41(1):110-123.
    [103]王艳,廖明生,李德仁,等.利用长时间序列相干目标获取地面沉降场[J].地球物理学报,2007,50(2):598-604.
    [104]陈强.基于永久散射体雷达差分干涉探测区域地表形变的研究[D].成都:西南交通大学,2006.
    [105]卢丽君.基于时序SAR影像的地表形变检测方法及其应用[D].武汉:武汉大学,2008.
    [106]华东水利学院编制.国际水文十年[M].南京:华东水利学院,1973.
    [107]牛修俊,崔小东,曲焕林,等.天津市地面沉降机理研究及预测预报、综合治理.天津:天津市环境地质研究所,地矿部水文地质工程地质研究所,1995,(6):15-16.
    [108]谭荣初.吴江市地面沉降与开采地下水关系的研究[J].水资源保护,2002,(2):48-50.
    [109]赵清,丁平.抽降地下水引起地面沉降的计算与预测[J].岩土力学,2002,23(z1):189-191.
    [110]冉兴龙,曹海东,夏斌等.Jacob假定下含水层的储水率及其地面沉降机理意义[J].水动力学研究与进展A辑,2005,20(3):393-399.
    [111]赵慧.地面沉降的人为主控因素研究[D].西安:长安大学,2005.
    [112]石建省,郭娇,孙彦敏,孙毅,陈银生.京津冀德平原区深层水开采与地面沉降关系空间分析[J].地质评论,2006,(11):804-809
    [113]李琳,张建根,杨敏.疏干降水引起坑后地面沉降的一种简化计算方法[J].岩土工程学报,2008,(10):307-309.
    [114]周载阳.地下水开采引起地面沉降的机理研究[J].工程勘察,2012,40(3): 22-26
    [115]方志雷.InSAR技术及其在沧州地区地面沉降监测中的应用[D].北京:中国地质大学(北京),2006.
    [116]彭青华.沧州市地面沉降模型研究[D].北京:中国地质大学(北京),2007.
    [117]余文芳.沧州地区地面沉降模型研究[D].北京:中国地质大学(北京),2007.
    [118]河北水文水资源网.http://www.hbsw.net/news/jianbaogongbao/index.html, 2012.
    [119]哈建强,李瑞森,付学功.沧州地下水超采与生态环境演变及控制措施[EB/OL]. http://www.hbsw.net/news/shuiwenjishu/2008620/0862011E15DD1H8AEB0H2 3AD3GD.html,2008.
    [120]李志敏,孙炳华.沧州地下水超采与地面沉降关系的分析与探讨[J].地下水,2010,33(3):35-36.
    [121]胡荣花.沧州市深层地下水用水总量控制指标[J].地下水.2012,34(1):62-63.
    [122]孙淑珍.沧州市封停深层地下水井效果及水位回升机制分析[J].地下水.2011,33(1):16-18.
    [123]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社.2002.
    [124]李陶.重复轨道星载SAR差分干涉监测地表形变研究[D].武汉:武汉大学,2004.
    [125]尹宏杰.基于InSAR的矿区地表形变研究[D].长沙:中南大学,2009.
    [126]岳焕印,郭华东,范典,李新武,王长林.基于静态小波分解的SAR干涉图滤波[J].高技术通讯,2002,(5):5-11.
    [127]汪鲁才,王耀南.基于小波包分析的InSAR干涉图滤波算法研究[J].湖南科技大学学报(自然科学版),2005,20(2):72-75.
    [128]汪鲁才,王耀南,毛六平.基于小波变换和中值滤波的InSAR干涉图像滤波方法[J].测绘学报,2005,34(2):108-112.
    [129]谭毅华,田金文,柳健.基于小波局部统计特性的图像去噪方法[J].信号处理,2005,21(3):295-298.
    [130]何儒云,王耀南.一种基于小波变换的InSAR干涉图滤波方法[J].测绘学报2006,35(2):128-132.
    [131]刘实,毛建旭.基于小波变换和圆周期均值算法的InSAR干涉纹图噪声抑 制[J].测控技术,2007,26(10):13-15.
    [132]蔡国林,刘国祥,李永树.一种基于小波相位分析的InSAR干涉图滤波算法[J].测绘学报,2008,37(3):293-299.
    [133]汪沛,王岩飞,张冰尘,麻丽香.一种新的静态小波域干涉相位图滤波方法[J].数据采集与处理,2008,23(1):70-74.
    [134]靳国旺,韩晓丁,贾博,李豪.InSAR干涉图的矢量分离式小波滤波[J].武汉大学学报,信息科学版,2008,33(2):132-135
    [135]蔡国林,李永树,刘国祥.小波-维纳组合滤波算法及其在InSAR干涉图去噪中的应用[J].遥感学报,2009,13(1):126-129.
    [136]李晨,朱岱寅.基于信噪比门限判断和小波变换的干涉图滤波法[J].电子与信息学报,2009,31(2):497-500.
    [137]樊秋月,张安发.基于双正交小波域的SAR图像滤波方法[J].通信技术,2010,43(8):192-194.
    [138]尹宏杰,王琪洁,王平,等.高条纹率InSAR干涉图滤波方法的对比研究[J].大地测量与地球动力学,2009,29(5):138-142.
    [139]宋小刚,李德仁,廖明生.基于GPS观测量的INSAR干涉图中对流层改正方法及其论证[J].武汉大学学报(信息科学版),2008,(3):233-236.
    [140]许文斌,李志伟,丁晓利,等.利用MERIS水汽数据改正ASAR干涉图中的大气影响[J].地球物理学报,2010,53(5):1073-1084.
    [141]谌华,单新建,张云华,等.利用NOAA_16/FY_1C和ASAR数据纠正大气水汽对重轨星载D-InSAR的影响[J].地球物理学报,2007,50(3):707-713.
    [142]许文斌,李志伟,丁晓利等.利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J].地球物理学报,2012,55(2):452-461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700