用户名: 密码: 验证码:
钢筋混凝土结构抗震性能分析方法及体系可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
到2008年我国《建筑结构抗震规范》(GBJ11-89)实施近20年,新抗震规范(GB50011-2001)实施也有7年时间,我国四川汶川大地震,造成了巨大的人员伤亡、房屋倒塌和经济损失,这些房子大部分是89规范实施后建造的,发生这么大规模的倒塌需要我们对现行抗震设计理论、抗震设计方法和结构构造措施等进行反思,对其进行深入研究,以保证这些结构适用性的前提下,加强强震作用下的结构安全性和可靠性。为此本文基于结构的能量反应研究了结构抗震性能分析方法,基于滞回能统计特征研究了结构动力可靠度,以及通过基于随机有限元方法对结构的体系可靠度进行分析主要研究内容如下:
     1推导了弹性及弹塑性单自由度体系能量反应方法以及能量谱计算方法,分析了地震动特性和结构特性对能量反应的影响规律,每类场地选取40条地震波计算了能量谱,并回归了三段式能量谱简化计算公式。
     2推导了简化层模型多自由体系能量反应的振型分解法和能量反应时程计算方法,研究了弹塑性体系的滞回能的层间分布规律。利用MSC.MARC建立了精细有限元模型,推导了精细有限元模型能量计算,研究了框架结构和框架剪力墙结构的能量反应规律和塑性变形能的分布规律。提出了杆系构件的塑性区长度和平面构件的塑性区面积来衡量构件塑性发展程度。
     3通过总结现行抗震设计方法和结构抗震性能分析方法的不足,提出了基于能量的抗震性能分析方法,该方法利用塑性变形能在结构间的分布研究结构耗能机制,利用塑性区来定位结构的破坏位置,结合材料损伤分析来衡量破坏程度,并利用了某超高层结构验证了该方法的可行性。
     4将多自由度体系等效为单自由度体系,利用等效线性化方法计算平稳地震动作用下结构滞变能的随机反应特征,然后基于Markov假设来求解结构的动力可靠度,虽然可以通过这种基于结构滞回能反应来计算结构动力可靠度,但是由于计算过程中存在过多的简化和等效,其精度难以保证。
     5随机有限元方法是结构可靠度分析的较为精确的方法,具有重要的工程意义,利用前后处理软件GID结合TCL语言及TK图形库对随机有限元软件Opensees进行了可视化处理,形成了随机有限元可靠度分析模块,并利用此软件进行精细有限元模型的可靠度和各随机变量灵敏度分析,提出了利用重要随机变量进行结构可靠度分析的方法。
     6设计了一系列层数的“强柱弱梁”和“强梁弱柱”两种破坏模式的框架结构模型,建立了基于纤维单元的精细随机有限元模型,模型考虑了混凝土和钢筋对结构的贡献。进行结构体系可靠度分析,“强柱弱梁”体系的可靠性要大于“强梁弱柱”体系的可靠性,提出了基于结构可靠性分析的破坏模式优选方法。
Even thought 20 years had been passed from Seimic Resistant Code for Building (GBJ11-89) and 7 years for the new version (GB50011-2001) pressed until Wenchuan earthquake in 2008. A great number of death and enjured and eccnomic losses had been coused for the collapse of building. Most of the destroyed buildings are built after 1989 and the collapse reminds us to examine the now used seismic design method and the constructions. We need to do further research on the area before the new version code press. Normally there will be several different structure schemes with different destroyed type. How to select the more reliable scheme has big value. In this dissertation some problems about structural seismic resistant analysis and reliblity based failure mode selective preference will be considered as follows:
     1 The calculation formula of energy response and energy spectra for elastic and plastic SDOF system had been evaluated. The influence regulation of earthquake factors and structural factors had been studied. 40 earthquake records had been chosen for each site for energy sepectra calculation and a simplified formula had been presented.
     2 The mode superstation meth and time history caculation of energy response for the simplified storey MDOF system had been evalued and based on that the hystecric energy destrucbution in storeys had been studied. MSC.MARC had been used to establish accurate FEM model and the energy response had been evaluated. The gross energy response and distribution of plastic deformation of reinforced concrete frame and frame-shear wall structure had been studied. The length of plastic area for one dimension members such as beams or columns and the area of plastic area for two dimension members such as shear walls and slabs had been presented for measure the extent of plastic.
     3 The limitation of the now used seismic resistant method and seismic performance analysis method had been summaried. According to the hysteric test of beams, columns and shear walls, the limitation of the plastic area of the members had been suggested. And joint together with the damage index of material, a new method that energy based seismic analysis method had been presented. The application on a complex tall building of this method verified its feasibility.
     4 To simplify the MDOF system to SDOF system and applify the equavelent linear method to calculate the scholastic response of hysteric energy response under stable earthquake excitation and then sovle the dynamic reliability basen on the Markov assumpution. Although it can be used to calculate the dynamic reliability based on the hysteric energy response, it is not a accrate way for its simplification and equivalence.
     5 The stochastic finite element method is valuble for its accuracy in structural system reliability analysis. Visilization programme GID is used with script language TCL and graphics library TK to develop the stochastic finite element method software Opensees. A module is added to GID is called OSReliablility to analysis structural system reliability and sensitivity of stochastic variables with accrate FEM model. A reliablility analysis method with important schositc variables had been approved.
     6 Two failure mode“columns stronger than beams”and“beams stronger than columns”for frame structures had been designed and the accurate schositic FEM model which consider the concrete and rebar seprately had been established by OSReiliability. By the system reliability analysis we know that the reliability of“columns stronger than beams”is lager than“beams stronger than columns”. Based on which, a method to select a better failure mode with system reliability analysis had been approved.
引文
1胡聿贤.地震工程学[M].地震出版社. 2005
    2高小旺,龚思礼,苏经宇,易方民.建筑抗震设计规范理解与应用[M].中国建筑工业出版社. 2002
    3工业与民用建筑抗震设计规范(试行)TJ11-74[S].北京. 1974
    4工业与民用建筑抗震设计规范(试行)TJ11-78[S].北京. 1978
    5建筑抗震设计规范JBJ11-89[S].北京. 1989
    6建筑抗震设计规范GB50011-2001[S].北京. 2001
    7谢礼立,王亚勇.建筑工程抗震性态设计通则(试用)[S].北京. 2004
    8徐培福,傅学怡,王翠坤,肖从真.复杂高层建筑结构设计[M].中国建筑工业出版社.2005
    9王亚勇,戴国莹.建筑抗震设计规范疑问解答[M].中国建筑工业出版社. 2006
    10赵国落.结构可靠度的实用分析方法,建筑结构学报[J].1984, 5(3): 1-10
    11贡金鑫,仲伟秋,赵国藩,工程结构可靠性基本理论的发展与应用(1).建筑结构学报[J]. 2002, 23(4): 2-9
    12贡金鑫,仲伟秋,赵国落.工程结构可靠性基本理论的发展与应用(2).建筑结构学报[J]. 2002, 23(5): 2-9
    13贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(3).建筑结构学报[J]. 2002, 23(6): 2-9
    14吕震宙,冯蕴雯.结构可靠性问题研究的若干进展.力学进展[J]. 2000,30(1):21-28
    15董聪,杨庆雄.现代结构系统可靠性分析理论发展概况及若干应用.力学进展[J]. 1993, 23(2): 206-213
    16董聪,夏人伟.现代结构系统可靠性评估理论研究进展.力学进展. 1995, 25(4):537-547
    17董聪.结构系统可靠性分析的统一理论.土木工程学报. 2001, 34(3): 35-46
    18 Anil K. Chopra. Dynamics of Structures Theory and applications to Earthquake Engineering (Second Edition)[M]. University of California at Berkeley
    19潘文. Push-over方法的理论与应用[D].西安建筑科技大学. 2004
    20吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].同济大学出版社.1997
    21徐培福,黄小坤.高层建筑混凝土结构技术规程理解与应用[M].中国建筑工业出版社.2002
    22爵士大厦超限高层建筑抗震设防审查送审文件[R]. 2006
    23程光煜.基于能量抗震设计及其在钢支撑框架结构中的应用[D].清华大学. 2007
    24 Housner G. Limit Design of Structures to Resist Earthquakes [C]. Proceedings of the First World Conference on Earthquake Engineering, Berkeley, CA, 1956, 18(1):51-56
    25 Harada Y., Akiyama H. Seismic Design of Flexible-Stiff Mixed Frame with Energy Concentration. Engineering Structures [J]. 1998, 20(12):1039-1044
    26 Bruneau M., and Wang N. Some Aspects of Energy Methods for the Inelastic Seismic Response of Ductile SDOF Structures, Engineering Structures [J]. 1996, 18(1): 1-12.
    27 Luis D. Decanini, Fabrizio Mollaioli. Formulation of Elastic Earthquake Input Energy Spectra [J]. Earthquake Engineering and Structural Dynamics, 1998, 27:1503-1522
    28 Dutta A., and Mander J.B. Capacity Design and Fatigue Analysis of Confined Concrete Columns [R]. 1998, MCEER–98–0007:23-44
    29肖明葵,刘波,白绍良.抗震结构总输入能量及其影响因素分析[J].重庆建筑大学学报, 1996, 18(2):21-33
    30肖明葵.基于性能的抗震结构位移及能量反应分析方法研究[D].重庆大学博士学位论文. 2004
    31白绍良,黄宗明,肖明葵.结构抗震设计的能量分析方法综述[J].建筑结构, 1997, 24(4):54-58
    32周云,徐彤,周福霖.抗震与建筑结构的能量分析方法研究与应用[J].地震工程与工程振动, 1999, 19(4):133-139
    33欧进萍,何政,吴斌.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动, 1999, 19(1):21-30
    34经杰,叶列平,钱稼茹.不均匀剪切型层模型结构基于能量概念的弹塑性地震位移反应分析[J].土木工程学报. 2003, 36(12)
    35胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究[J].建筑结构学报. 2000, 21(1)
    36熊仲明,史庆轩,李菊芳.框架结构基于能量地震反应分析及设计方法的理论研究[J].世界地震工程. 2005, 21(2)
    37公茂盛,谢礼立.绝对和相对输入能量谱对比及延性系数的影响研究[J].地震学报. 2005, 27(6):666-676
    38刘哲峰,沈蒲生.地震动输入能量谱的研究[J].工程抗震与加固改造. 2006, 28(4):1-5
    39 McKevitt W.E., Anderson D.L., and Cherry S. Hysteretic Energy Spectra in Seismic Design[C]. Proceedings of the 2nd World Conference on Earthquake Engineering. 1980, 487-494.
    40 Léger P., and Dussault S., 1992, Seismic-Energy Dissipation in MDOF Structures[J]. Journal of Structural Engineering, ASCE, 1992, 118:1251-1269.
    41 Nakashima M., Saburi K., and Tsuji B. Energy Input and Dissipation Behavior of Structures with Hysteretic Dampers[J]. Earthquake Engineering and Structural Dynamics, 1996,19(1):77-90.
    42 Soong T.T., and Dargush, G. F. Passive Energy Dissipation Systems in Structural Engineering[M], John Wiley and Son Ltd, 1997, ISBN: 0471968218.
    43 Goel R. K. Energy Based Approach to Earthquake Response of Asymmetric System[C]. Proceedings of Structural Congress, 1997
    44 Dutta A. and Mander J.B. Capacity design and fatigue analysis of confined concrete columns[R], 1998, Report No. MCEER–98–0007:1-12
    45 Ye L. and Otani S. Maximum Seismic Displacement of Inelastic SystemsBased on Inelastic Systems Based on Energy Concept[J], Earthquake Engineering and Structural Dynamics, 1999(28):1483-1499.
    46 Payam Khashaee. Energy-based seismic design and damage assessment for structures[D]. A Dissertation Presented to the Graduate Faculty of School ofEngineering Southern Methodist University 2004
    47朱俊峰.基于位移的钢筋混凝土结构失效相关性分析及应用[D].北京工业大学博士论文. 2007
    48建筑结构可靠度设计统一标准GB50068-2001[S].中国建筑工业出版社.2001
    49董聪.现代结构系统可靠性理论与应用[M].清华大学出版社. 2001
    50 Ma H F, Ang H-S. Reliability analysis of redundant ductile structural systems[R]. Civil Engineering Studies Structural Research Series No.494.I 11:University of Illinois Urbana,1981
    51 Moses F. System reliability developments in structural engineering[J]. Structural Safety, 1982,1(1):3-13
    52 Thoft-Christensen P, Murostu Y. Apppliction of Structure Systems Reliability Theory[M]. Berlin: Springer-Verlag, 1986
    53 Melchers R E. Structural Reliability Theory[M]. Berlin: Springer-Verlag, 1986
    54 Corotis R B, Nafday A M. Structural system reliability using linear programming and simulation[J]. Journal of Structural Engineering,1989, 115(10):2435-2447
    55 Feng Y S. The Theory of structural redundancy and its effect on structural design[J]. Computers and Structures, 1988, 28(1):15-24
    56董聪,杨庆雄.冗余桁架结构系统可靠性分析理论与方法[J].计算结构力学及其应用, 1992, 9(4):393-398
    57安伟光,蔡荫林,陈卫东.随机结构系统可靠性分析与优化设计[M].哈尔滨工程大学出版社, 2005
    58贡金鑫,赵国藩,赵尚传.高层建筑结构柱荷载折减系数的概率分析[J].建筑结构学报, 2001, 22(1):48-52
    59吴世伟.结构可靠度分析[M].人民交通出版社, 1990:196-244
    60赵国落,金伟良,贡金鑫.结构可靠度理论[M].中国建筑工业出版社, 2000:65-79
    61李清富,高健磊,乐金朝,李宗坤.工程结构可靠性原理[M].黄河水利出版社1999:45-157
    62董聪.现代结构系统可靠性理论及其应用[M].科学出版社, 2001:62-260
    63 A. S. Ang, M. Amiin. Reliability of Structures and Structural Systems[J]. Journal of theEngineering Mechanics Division, ASCE. 1968, 94(EM2): 671-691
    64 F. Moses. Reliability of Structural Systems[J]. Journal of the Structural Division, ASCE.1974,100(ST9):1813-1820
    65 F. Moses. Structural System Reliability and Optimization[J]. Computers and Structures.1986,22(4):637-647
    66 R. Rashedi, F. Moses. Application of Linear Programming to Structural SystemReliability[J]. Computers and Structures. 1986, 24(3): 375-384
    67 Y. S. Feng, F. Moses. Optimum Design, Redundancy and Reliability of StructuralSystems[J]. Computers and Structures. 1986, 24(2): 239-251
    68. Y. S. Feng. Structural System Reliability Combining the Constraint of Damage Tolerance Design[J]. Computers and Structures. 1988, 30(6): 1341-1346
    69 K. Ramachandran. Safety margins Correlations in System Reliability[J]. Computers and Structures. 1989,31(5): 747-750
    70 Y S. Feng. A Method for Computing Structural System Reliability with High Accuracy[J]. Computers and Structures. 1989, 33(1):1-5
    71 Y. C. Zhang. High-order Reliability Bounds for Series Systems and Application toStructural Systems[J]. Computers and Structures. 1993, 46(2): 381-386
    72 L. Zhu. A Cell Technique for Computing the Failure Probabilities of Structural Systems[J]. Computers and Structures. 1993, 46(6): 1001-1005
    73 B. F. Song, W. Jiang. An Equivalent Linear Method for Structural System Reliability with Nonlinear Safety Margins[J]. Computers and Structures. 1995, 55(6): 1095-1100
    74 D. Wang, M. R. Chowdhury, A. Haldar. System Reliability Evaluation Considering Strength and Serviceability Requirements[J]. Computers and Structures. 1997, 62(5):883-896
    75 S. Mahadevan, P. Raghothamachar. Adaptive Simulation for System Reliability Analysisof Large Structures[J]. Computers and Structures. 2000, 77(6): 725-734
    76 K. Imai, D. M. Frangopol. Geometrically Nonlinear Finite Element Reliability Analysisof Structural Systems[J]. Computers and Structures.2000, 77(6): 677-691
    77 D. M. Frangopol, K. Imai. Geometrically Nonlinear Finite Element Reliability Analysisof Structural Systems[J]. Computers and Structures. 2000, 77(6): 693-709
    78 M. Hohenbichler, R. Rackwitz First-order Concepts in System Reliability[J]. Structural Safety. 1982, 1(3):177-188
    79 K. C. Chou, C. McIntosh, B. Corotis. Observations on Structural System Reliability and the Role of Modal Correlations[J]. Structural Safety. 1982, 1(3): 189-198
    80 K. Dolinski. First-order Second-moment Approximation in Reliability of Structural Systems: Critical Review and Alternative Approach[J]. Structural Safety. 1982, 1(3):211-231
    83 O. Ditlevsen, P Bjerager. Methods of Structural Systems Reliability[J]. Structural Safety.1986,3(3-4):195-229
    84 N. Shiraishi, H. Furuta. System Reliability Analysis of Existing Structures[J]. Structural Safety. 1990, 7(2-4): 291-294
    85 R. M. Bennett. Structural Analysis M ethods for System Reliability[J]. Structural Safety.1990, 7(2-4):109-114
    86 T. V. Galambos. Systems Reliability and Structural Design[J]. Structural Safety. 1990,7(2):101-108
    87 F. Moses. New Directions and Research Needs in System Reliability Research[J]. Structural Safety. 1990, 7(2-4): 93-100
    88 Cui Weicheng, D. I. Blockley. On the Bounds for Structural System Reliability[J]. Structural Safety. 1991, 9(4): 247-259
    89 G L. Greig. An Assessment of High-order Bounds for Structural Reliability[J]. Structural Safety. 1992, 11(3-4): 173-189
    90 Y. M ori, B. R. Ellingwood. Time-dependent System Reliability Analysis by AdaptiveImportance Sampling[J]. Structural Safety. 1993, 12(1): 59-73
    91 S. Hendawi, D. M. Frangopol. System Reliability and Redundancy in Structural Designand Evaluation[J]. Structural Safety. 1994, 16(1-2):47-71
    92 R. E. M elchers. Structural System Reliability Assessment Using Directional Simulation[J]. Structural Safety. 1994, 16(1-2): 23-27
    93 A. Borri, E. Speranzini. Structural Reliability Analysis Using a Standard Deterministic Finite Element Code[J]. Structural Safety. 1997, 19(4): 361-382
    94 A. Dey, S. M ahadevan. Ductile Structural System Reliability Analysis Using Adaptive Importance Sampling[J]. Structural Safety. 1998, 20(2):137-154
    95 P. M aincon. A First Order Reliability M ethod for Series Systems[J]. Structural Safety. 2000, 22(1): 5-26
    96 N. Liu, W. H. Tang. System Reliability Evaluation of Nonlinear Continuum Structures-a Probabilistic FEM Approach[J]. Finite Elements in Analysis and Design. 2004, 40(5-6):595-610
    97秦权,林道锦,梅刚.结构可靠度随机有限元-理论及工程应用[M].清华大学出版社, 2006
    98武清玺.结构可靠性分析及随机有限元法-理论、方法、工程应用及程序设计[M].机械工业出版社, 2005
    99 Armen. Der Kiureghian, Terje Haukaas. Finite element reliability and sensitivity methods for performance-based earthquake engineering[R]. Pacific earthaquake engineering research center college of engineering. University of California Berkeley,2004
    100 Chou C C, Uang C M. Establishing absorbed energy spectra an attenuation approach[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(10):1441-1455.
    101 Manfredi G. Evaluation of seismic energy demand [J]. Earthquake Engineering and Structural Dynamics, 1995:24, 1195-1213
    102 Manfredi G. Evaluation of seismic energy demand[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(4):485-499.
    103 Chai Y H and Fajfar P. A procedure for estimating input energy spectra for seismic design [J]. Journal of Earthquake Engineering, 2000:4, 539-561
    104 ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings[S]. Red Wood City, California: Applied Technology Council, 1996
    105 FEMA-274. NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings[S]. Washington, D.C.:Applied Technology Council, 1997
    106 FEMA-450. NEHRP Recommended Provisions and Commentary for Seismic Regulations for New Buildings and Other Sructures[S]. Washington D.C.: Building Seismic Safety Council, 2004
    107罗文斌.钢筋混凝土框架基于位移的抗震设计原理及方法[D].清华大学博士学位论文, 2002
    108李应斌.钢筋混凝土结构基于性能的抗震设计理论与应用研究[D].西安建筑科技大学博士学位论文], 2004
    109 Vidic T, Fajfar P. Behavior Factors Taking into Account Cumulative Damage[C]. In: Proceedings of Tenth European Conference on Earthquake Engineering. Vienna: 1994:959-964
    110 Zahrah T F, Hall W J. Earthquake energy absorption in SDOF structure[J]. Journal of Earthquake Engineering, 1984,110(8):1717-1772
    111陈永祁,龚思礼.结构在地震动时延性和累积塑性耗能的双重破坏准则[J].建筑结构学报, 1986,1:35-48
    112史庆轩.钢筋混凝土结构基于性能的抗震设计理论与应用研究[M].西安建筑科技大学博士学位论文2002
    113王振宇,刘晶波.建筑结构地震损伤评估的研究进展[J],世界地震工程, 2001, 17(3):43-48
    114刘伯权,刘鸣,白绍良.钢筋混凝土柱的破坏与能量吸收[J].地震工程与工程振动, 1998, 14(1):17-21
    115王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报, 2004, 37(11):41-49
    116汪梦甫,糜永红.基于能力理论的钢筋混凝土框架-剪力墙结构非线性地震反应分析[J].工程抗震与加固改造, 2004, 2:15-18
    117杜修力,尹之潜. RC框架结构地震倒塌反应分析[J].哈尔滨工程大学学报, 1992, 25(3):7-13
    118 P.Darwin, C.K.Nmai. Energy Dissipation in RC Beams Under Uyclic Load[J]. Structural Engineering, ASCE, 1986, 112(8):1829-1846
    119魏新磊,周云,于敬海.基于结构能量分析的抗震设计新方法的研究[J].世界地震工程. 2003, 19(3):62-67
    120李作华.高层钢筋混凝土结构损伤模型及地震损伤描述[D].哈尔滨工业大学博士学位论文, 2009
    121欧进萍.多层非线性抗震钢结构的模糊动力可靠性分析与设计[J].地震工程与工程振动, 1990, 10(4):27-37
    122胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究[J].建筑结构学报, 2000, 21(1):71-76
    123朱建华,沈蒲生.基于能量原理的钢筋混凝土框架结构层间弹塑性位移求解[J].工程抗震与加固改造, 2005, 26(5):1-4
    124史庆轩,熊仲明,李菊芳.框架结构滞回耗能在结构层间分布的计算分,析[J].西安建筑科技大学学报(自然科学版), 2005 37(2):174-188
    125 Chaponan M C. On the Use of Elastic Input Energy for Seismic Hazard Analysis[J]. Earthquake Spectra. 1999, 15(4):607-635
    126 Leger P. Dussalt S. Seismic Energy Dissipation in MDOF Structures[J]. Journal of Structure Engineering. ASCE, 1992,118(5):1251-1269
    127 Goel R K, Chopra A K. Extension of Modal Pushover Analysis to Compute Member Forces[J]. Earthquake Spectra, 2005, 21(1):125-139
    128 Krawinkler H. Seneviralna G D. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation[J]. Engineering Structures, 1998, 20(4):452-464
    129 Gupta B, Kumnath S K. Adaptive Spectra Based Pushover Procedure for Seismic Evaluation of Structures[J]. Earthquake Spectra, 2000,16(2):367-391
    130 Krawinkler H Medina R, Alavi B. Seismic Drift and Ductility Demands and Their Dependence on Ground Motions[J]. Engineering Structures, 2003, 25(5):637-653.
    131 Liu D, Kanao I, Nashashima M. Test on Complete Failure of Steel Columns Subjected to Cyclic Loading[C]. In: Proceedings of the Conference on Behavior of Steel Structures in Seismic Area. Naples, Italy:2003:169-174
    132 Qian J, Yu H, Yan F, et al. Experimental Study on Full Scale Steel Beam-to-Column Moment Connections[J]. Earthquake Engineering and Engineering Vibration, 2005,4(2):311-323
    133王强.基于离散单元法的钢筋混凝土框架结构非线性与地震倒塌反应分析[D].同济大学博士论文2005
    134汪明栋.钢筋混凝土异形柱框架抗震性能试验研究与弹塑性分析[D].天津大硕士论文, 2006
    135白桂南.钢筋混凝土异形柱框架结构试验及抗震性能研究[D].河北工业大学硕士论文, 2006
    136周卫明.不同屈服点钢筋混凝土结构耗能铰的试验研究[D].扬州大学硕士学位论文, 2008
    137袁晓静.钢筋混凝土柔性墩柱的抗震性能试验研究[D].苏州科技学院硕士学位论文, 2004
    138张荣钢.筋混凝土异形柱抗震性能的试验研究[D].同济大学硕士学位论文, 2008
    139曲福来.钢筋混凝土不等肢异形柱抗震性能试验研究[D].大连理工大学硕士学位论文, 2008
    140艾庆华.钢筋混凝土桥墩抗震性态数值评价与试验研究[D].大连理工大学硕士学位论文, 2008
    141彭晓彤.半刚性连接钢框架内填钢筋混凝土剪力墙结构体系的滞回性能及抗震设计对策,大连理工大学硕士学位论文, 2005
    142汪锦林钢筋混凝土带翼缘剪力墙抗震抗剪性能试验研究[D].重庆大学硕士学位论文, 2007
    143吴定燕.双向单排配筋混凝土低矮剪力墙抗震性能试验与分析[D].北京工业大学硕士学位论文, 2008
    144孙超.双向单排配筋带洞口混凝土剪力墙抗震性能试验与分析[D]北京工业大学硕士学位论文, 2008
    145周广强.高层建筑钢筋混凝土剪力墙滞回关系及性能研究[D].同济大学硕士学位论文, 2004
    146祖亚丽.轻骨料混凝土剪力墙抗震性能的试验研究与有限元分析[D].河北工业大学硕士学位论文, 2007
    147渠运国.高强钢筋-轻骨料混凝土剪力墙抗震性能试验研究[D].河北工业大学硕士学位论文, 2007
    148 Priestley M. J.N. Performance Based Seismic Design [C]. Proceedings of the12 World Conference on Earthquake Engineering (CD, No.2831), New Zealand, 2000
    149 Chandler A.M, Mendis. Performance of Reinforced Concrete Frames Using Force and Displacement Based Seismic Assessment Methods [J]. Engineering Structuers, 2000, 22:352-363
    150张来仪译.用于新建结构合理极限状态设计的位移设计法[J].地下空间,1999, 19(2):156-165
    151 Kowalsky M J. RC Structural Walls Designed According to UBC and Displacement-Based Methods[J]. Journal of Structural Engineering, 2001,12 7(5):506-516
    152张巍,孟少平.混凝土结构基于位移的抗震能力设计[J].工程抗震, 2002, (3):5-9
    153钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报,1999, 20(3):42-49
    154 T.鲍雷, M.J.N.普里斯特利.钢筋混凝土和砌体结构的抗震设计.戴瑞同,陈世鸣等翻译.北京:中国工业出版社,1999
    155叶列平,康胜,欧阳彦峰等.双重抗震结构体系[J].建筑结构学报, 2000, 30(4):2-47
    156范立础,卓卫东.桥梁延性抗震设计[M].人民交通出版社, 2001
    157傅金华.建筑抗震设计及实例[M].中国建筑工业出版社, 2008
    158李桂青.抗震结构计算理论和方法[M].地震出版社, 1985
    159李杰,李国强.地震工程学导论[M].地震出版社, 1992
    160李桂青,李秋胜.结构动力可靠性理论及其应用[M].地震出版社, 1993
    161 Melchers, R E. Structural reliability analysis and prediction[M]. Ellis Horwood Limited, 1987
    162 Elishakoff I, Lyon R H. Random vibration status and recent developments[M]. Elsevier Science Publishers,1986
    163庄表中,王行新.随机振动概论[M].地震出版社, 1982
    164陈英俊,甘幼琛,于希哲.结构随机振动[M].人民交通出版社, 1993
    165 Davenport A G. The Spectrum of Horizontal Gustiness Near the Ground on Highwinds[J]. Royal Meteorol Soc, 1961,87:194-211
    166 Baber T T, Noori M N. Random Vibration of Degrading Pinching Systems[J]. Journal of Engineering Mechanical, ASCE, 1985, 111(8):1011-1027
    167 Wen Y K. Methods of Random Vibration for Inelastic Structures[J]. Application of Mechanical and Revision 1989, 42(2):39-52
    168欧进萍,王光远.结构随机振动[M].高等教育出版社, 1999
    169方同,王真妮.随机振动时域模态分析的若干新发展[J].振动工程学报, 1981, 1(2)
    170刘季,闫维明.土与结构相互作用地震反应的非经典振型分析反应谱方法[J].地震工程与工程振动, 1987, 7(2)
    171 Caughey T K. Derivation and Application of Fokker-Planck Equation to Discrete Dynamic Systems Subjected to White Random Excitation. Journal of Acoust Soc Am. 1963, 35:1683-1692
    172 Caughey T K. Nonlinear Theory of Random Vibrations[M]. Advances in Applied Mechanics, 1971,11
    173李桂青,李秋胜.结构动力可靠性理论及其应用[M].地震出版社, 1993
    174欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动, 1991, 11(3)
    175 Der Kiureghian, A. and Taylor, R. L. Numerical Methods in Structural Reliability in Proceedings[C], Fourth International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Florence, Italy, June 1983: 769-784
    176 A. Der Kiureghian. Finite Element Methods in Structural Safety Studies in Proceedings[C], ASCE Symposium on Structural Safety Studies, Denver, CO, April-May 1985: 40-52.
    177 A. Der Kiureghian. Finite Element Based Reliability Analysis of Frame Structures in Proceedings[C], Fourth International Conference on Structural Safety and Reliability, Kobe, Japan, May 1985, (1): 395-404.
    178 A. Der kiureghian and Jyh-Bin Ke. The stochastic finite element method in structural reliability[J]. Probabilistic Engineering Mechanics. 1988, 3(2): 83-91.
    179 GID8.0.9 Reference Manual
    180柯秋鸿.空间杆系结构稳定性分析系统开发[D].广东工业大学硕士学位论文, 2006
    181马宏旺,陈晓宝.钢筋混凝土框架结构强柱弱梁设计的概率分析[J].上海交通大学学报, 2005, 39(5): 723-726.
    182蔡健,周靖,方小丹.柱端弯矩增大系数取值对RC框架结构抗震性能影响的评估[J].土木工程学报, 2007, 40(1):6-14.
    183易伟建,张颖.混凝土框架结构抗震设计的弯矩增大系数[J].建筑科学与工程学报, 2006, 23(2): 46-51.
    184袁贤讯,易伟建.钢筋混凝土框架“强柱弱梁”及轴压比限值的概率分析[J].重庆建筑大学学报, 2000, 22(3): 64-68.
    185杨红.基于细化杆模型的钢筋混凝土抗震框架非线性动力反应规律研究[D].重庆建筑大学博士学位论文2000.
    186 Dooley k L, Bracci JM. Seismic Evaluation of Column-to-Beam Strength Ratios in Reinforced Concrete Frames[J]. ACI Structural Journal, 2001, 98(6): 843-851.
    187 Onot, ZhaoY G. Ito. Takuya. Probabilistic Evaluation of Column over Design Factors for Frames [J]. Journal of Structural Engineering, 2000, 126(5): 605-611.
    188高小旺,魏琏,韦承基.现行抗震规范可靠度水平的校准[J].土木工程学报. 1987, 20(2): 11-19
    189李国强.基于概率可靠度进行结构抗展设计的若干理论问题[J].建筑结构学报. 2000, 21( 1) :1 2-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700