用户名: 密码: 验证码:
超硬铝合金7075微弧氧化陶瓷层的微结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝及其合金具有质轻、比强度高、韧性好及易加工等优点,但其硬度低及耐磨性差等缺点又限制了它的应用。在铝及其合金表面施以陶瓷化技术可以赋予其表面拥有特殊的优良性能。微弧氧化技术是近年来兴起的在铝、镁、钛及其合金表面进行处理的新工艺。通过微弧放电在铝及其合金表面原位生长出一层陶瓷质膜层,该膜层具有硬度高、耐磨性好、与基体结合力好等优点,在机械、电子、纺织、航空航天等领域具有广泛的应用。
     影响铝合金微弧氧化陶瓷层性能的因素主要有:电解液参数、电参数以及基体材料中的合金元素等。本文采用正交实验法,优化出了7075铝合金在铝酸钠、硅酸钠、硼酸钠和磷酸钠四个电解液体系下进行微弧氧化的最优配方;在最优配方的基础上,采用单因素分析法,以陶瓷层厚度、显微硬度及微观形貌作为实验指标,对电流密度、占空比、频率及氧化时间等电参数依次进行了优化;并对在不同氧化时间条件下制备出的陶瓷层的耐蚀性、耐磨性及力学性能进行了表征,对基体材料中合金元素在微弧氧化过程中的影响也进行了相应的探究。实验过程中得出的结论如下:
     采用正交实验法,优化出了7075铝合金分别在铝酸钠、硅酸钠、硼酸钠、磷酸钠电解液体系下进行微弧氧化的最优配方为:
     铝酸钠体系:铝酸钠9g/L,氢氧化钠1g/L,三乙醇胺6ml/L
     硅酸钠体系:硅酸钠8g/L,氢氧化钠1g/L,三乙醇胺6ml/L
     硼酸钠体系:硼酸钠15g/L,氢氧化钠1g/L,三乙醇胺6ml/L
     磷酸钠体系:磷酸钠12g/L,氢氧化钠1g/L,三乙醇胺6ml/L
     对四体系下制得的陶瓷膜层进行厚度、硬度、表面及截面形貌表征,综合考虑,在铝酸钠体系下制得的陶瓷膜层质量最好。故选用优化出的铝酸钠体系,采用单因素分析法,详细研究了阳极电流密度及阴/阳电流密度比、正/负占空比、频率及氧化时间对膜层特性的影响,确定出最佳工艺参数为:阳极电流密度ja=10A/dm2,阴/阳极电流密度比jc/ja=0.7,正占空比(+)=15%,负占空比(-)=10%,频率f=300Hz,氧化时间t=45min。
     通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)对最优工艺参数下制备出的陶瓷层微观形貌及相结构进行表征。结果表明,微弧氧化膜层表面呈“火山口”状凸起,孔径1~3μm;膜层与基体之间呈微区范围内的锯齿状冶金结合,厚度可达31.1μm,连续致密,显微硬度高达1080;膜层主要由γ-Al2O3组成,而-Al2O3含量较低。
     对在不同氧化时间下制取的陶瓷层的性能进行表征,结果表明,陶瓷层的耐蚀性和耐磨性较基体均有较大幅度的提高,在优化出的工艺参数下制备出的陶瓷层经历240h盐雾实验后未出现腐蚀,其腐蚀电位(-0.589V)较基体(-0.772V)有183mV的提高,且其腐蚀电流密度(1.281×10-9A/cm2)也较基体(8.053×10-5A/cm2)降低了4个数量级。同时,陶瓷层的耐磨性提高了3个数量级,而力学性能损失幅度并不大。
     为探究Cu、Mn、Mg、Si、Zn等主要合金元素对微弧氧化陶瓷层的厚度、显微硬度、微观形貌、相结构及组成的影响,本文熔炼成一系列不同Cu、Mn、Mg、Si、Zn含量的铝合金在相同工艺参数下对其进行微弧氧化处理,研究结果表明:不同基体材料所制备出的陶瓷层表面呈凹凸不平,有大量孔洞及片状堆积,均由γ-Al2O3及少量-Al2O3组成。Cu元素及Si元素可促进-Al2O3的形成,但当其含量过高时体现为抑制作用;Mg元素在ω(Mg)<0.8%时,促进等离子体电解氧化的进行,当0.8%<ω(Mg)<2.5%时又体现为极大的阻碍作用,随着Mg含量进一步提高,又开始促进等离子体电解氧化的进行,但效果不明显;Zn元素整体表现为对高温氧化铝相的形成有强烈阻碍作用,其含量越高,阻碍作用越明显。
Aluminum and its alloys are widely applied due to its advantages such as lightweight, highspecific strength, good toughness and formability, but some shortcomings such as low hardnessand poor corrosion resistance and abrasive resistance limit its application. Special and excellentperformances can be obtained after ceramic technology on surface of aluminum and its alloys.Technology of micro-arc oxidation (MAO) is an emerging surface treatment process onaluminum, magnesium, titanium and their alloys. In-situ ceramic coatings formed by micro-arcdischarge have high hardness, good corrosion resistance, good abrasive resistance and excellentadhesion to substrate. Therefore, the technology is widely used in the field of machinery,electron, spinning and aerospace.
     Electrolyte parameters, electrical parameters, alloying elements in matrix material are keyfactors which influence the performance of ceramic coatings on aluminum alloys. Orthogonalexperiment was used in this paper to optimize the best electrolyte parameters to preparemicro-arc ceramic coatings on aluminum alloy7075in electrolytic systems of sodiumaluminate, sodium silicate, sodium borate and sodium phosphate. Based on the best electrolyteparameters above, electrical parameters such as current density, duty cycle, frequency, andoxidation time were optimized by using single factor analysis under experimental index ofthickness, micro-hardness and microstructure of ceramic coatings. Corrosion resistance,abrasive resistance and mechanical properties were characterized of ceramic coatings preparedin different oxidation time, influences of alloying elements in substrate during the process ofmicro-arc oxidation were analyzed. Conclusions obtained during the experiment were listedbelow:
     By orthogonal experiment, the best electrolyte parameters to prepare micro-arc ceramiccoatings on aluminum alloy7075in electrolytic systems of sodium aluminate, sodium silicate,sodium borate and sodium phosphate were:
     Sodium aluminate: sodium aluminate9g/L, sodium hydroxide1g/L, trethanolamine6ml/L
     Sodium silicate: sodium silicate8g/L, sodium hydroxide1g/L, trethanolamine6ml/L
     Sodium borate: sodium borate15g/L, sodium hydroxide1g/L, trethanolamine6ml/L
     Sodium phosphate: sodium phosphate12g/L, odium hydroxide1g/L, trethanolamine6ml/L
     Thickness, micro-hardness, surface and cross-section morphology of ceramic coatingsprepared in the electrolyte above were tested and analyzed, sodium aluminate system waschosen for its best ceramic coatings quality. By using the best electrolyte parameters and singlefactor analysis, effects of anodic current density and cathode/anodic current density ratio,posive/negative duty cycle, frequency and oxidation time on coating properties were discussedin detail. The optimum electrical parameters were proposed as follows: anodic current densityof10A/dm2, cathode/anodic current density ratio of0.7, positive duty cycle of15%, negative duty cycle of10%, frequency of300Hz, oxidation time of45min.
     The microstructure and morphology of ceramic coatings were observed by using scanningelectron microscope (SEM) and X-ray diffraction (XRD). The results showed that,embossments like “volcanic vent” were presented on the surface of MAO coatings prepared inthe optimal technological parameters with diameters of micro-holes between1and3μm. Inaddition, metallurgical bonding mode like zigzag was observed between coating and substrate,coatings were continuous and compact with thickness of31.1μm and micro-hardness ofHV1080. Coatings were mainly composed of γ-Al2O3and little-Al2O3.
     Properties of ceramic coatings prepared in different oxidation time were characterized,results showed that, corrosion resistance and abrasive resistance were improved significantly.Corrosion hadn’t occurred on ceramic coatings prepared under the best technical parametersafter salt spray test of240hours, its corrosion potential(-0.589V) was higher thansubstrate(-0.772V), and its corrosion current density (1.281×10-9A/cm2) had decreased4ordersthan substrate(1.281×10-9A/cm2). At the same time, the abrasive resistance had improved by3orders while the mechanical properties just lost little.
     In order to research the influences of alloying elements such as Cu, Mn, Mg, Si and Zn onthickness, micro-hardness, microstructure and phase composition, a series of aluminum alloyswhich contained different content of alloying elements were smelted, and micro-arc oxidationwas carried out under the same technical parameters, results showed that, the phase of ceramiccoatings prepared on different substrates were composed of γ-Al2O3and little-Al2O3. elementCu and Si can promote the formation of-Al2O3, while suppression was reflected when theircontent was too high. Auxo-action was presented when mass percent of element Mg below0.8,while inhibitional effect was presented when mass percent of element Mg between0.8and2.5,besides, element Mg promote the process of micro-arc oxidation with unconspicuous effect.Element Zn had strong inhibition effect on the formation of high temperature phase of alumina,and the effect became stronger with the content of Zn increasing.
引文
[1]张圣麟.铝合金表面处理技术[M].北京:化学工业出版社,2008.
    [2] B. Lonnyuk, I.Apachitei, J. Duszczyk. The effect of oxide coatings on fatigue properties of7475-T6alummum alloy[J]. Surface and Coatings Technology.2007,201(21):8688~8694.
    [3]李云凯,周张健.陶瓷及其复合材料[M].北京:北京理工大学出版社,1994:1.
    [4] Wenbin Xue,Xiaoling Wu,Xijin Li,et al.Anti-corrosion film on2024/SiC aluminummatrix composite fabricated by microarc oxidation in silicate electrolyte [J].Journal ofAlloys and Compounds,2006,425:302-306.
    [5]刘兆晶,左洪波,来术军,等.铝合金表面陶瓷膜层形成机理[J].内蒙古工业大学学报,2000,10(6):859-863.
    [6]刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010,20(9):1705-1715.
    [7]林高用.高性能7X75系铝合金厚板加工技术相关基础研究[D].中南大学,2006.
    [8]李红英,董显娟.高强高韧铝合金研究现状及展望[J].湖南有色金属,2002,18(5):33-34.
    [9]朱祖芳.铝合金阳极氧化与表面处理技术[M].北京:化学工业出版社,2004:1.
    [10]周鼎华.铝合金表面处理技术新进展[J].热处理技术与装备,2006,27(4):10-15.
    [11]孙国平,杨向明.改善铸铝基体性能的热喷涂技术[J].铁道机车车辆人,1997(5):228-229.
    [12]张高会,黄国青,徐鹏,等.铝及铝合金表面处理研究进展[J].中国计量学院学报,2010,21(2):174-178.
    [13]蒋永锋,李均明,蒋百灵,等.铝合金微弧氧化陶瓷层形成因素的分析[J].表面技术,2001,30(2):37-39.
    [14]刘伟华.热循环作用下铝合金阳极氧化膜的开裂行为与机理研究[D].北京化工大学博士学位论文,2008.
    [15] J.M. Wheelera, b,*, J.A. Curranb, c, S. Shresthac. Microstructure and multi-scale mechanicalbehavior of hard anodized and plasma electrolytic oxidation (PEO) coatings on aluminumalloy5052[J]. Surface&Coatings Technology,2012,207:480–488.
    [16] L. Rama Krishna,A. Sudha Purnima,G. Sundararajan.A comparative study of tribologicalbehavior of microarc oxidation and hard-anodized coatings [J]. Science Direct,2006,261:1095-1101.
    [17] Ugur Malayoglu,Kadir C. Tekin,Ufuk Malayoglu,et al. An investigation into themechanical and tribological properties of plasma electrolytic oxidation and hard-anodizedcoatings on6082aluminum alloy [J].Materials Science and Engineering A,2011,528:7451–7460.
    [18] WirtzG,PBrownSD,KrivenWM,Ceramic Coating by Anodic SPakr Deposition[J]. MaterMuafprocess1991,6(l):87-1154.
    [19] K. N. Dittrich,et al. Structure and Properties of ANOF layers[J]. Crystal and Technol.1984,19(1):93~99.
    [20] Voevodin A, Yerokhin A L, Lyubimov V. Characterization of wear protective Al-Si-Ocoatings formed on Al-based alloys by micro-arc discharge treatment[J]. Surface andCoatings Technology.1996,86~87:516~521.
    [21] Yerokhin A L, Nie X, Leyland A. Plasma electrolysis for surface engineering[J]. Surface andCoatings Technology.1999,122:73~93.
    [22] Wang Y K, Sheng L, Xiong R Z. Study of Ceramic Coatings Formed by Microarc Oxidationon Al Matrix Composite Surface[J]. Surface Engineering.1999,15(2):112~113.
    [23] Santosh Prasad Sah,Etsushi Tsuji,Yoshitaka Aoki,et al.Cathodic pulse breakdown ofanodic films on aluminium in alkaline silicate electrolyte–Understanding the role ofcathodic half-cycle in AC plasma electrolytic oxidation [J].Corrosion Science,2012,55:90–96.
    [24]徐晋勇,王斌,高原.铝及铝合金等离子体微弧氧化技术的研究[J].机械,2006,33(9):1-4.
    [25]宋润滨,左洪波,吉泽升.轻合金等离子体增强电化学表面陶瓷化进展[J].轻合金加工技术,2003,31(2):8-11.
    [26]蔡宗英,张莉霞,邢献然,等.微弧氧化技术制备陶瓷膜研究进展[J].湿法冶金,2004,23(3):128-132.
    [27] Xuetong Sun,Zhaohua Jiang,Shigang Xin,et a1.Composition and mechanical propertiesof hard Ceramic coating containing a-A12O3producedby microarc oxidation on Ti-6Al-4Valloy [J].Thin Solid Films,2005,471(1):194-199.
    [28] GUN, BETZ H. Neue unter such ungen per die elektrolytische ventilwirking[J].ZPhysik.1932,78:196~202.
    [29] Van. T. B, Brown. S. D,Wirtz. G. P.Mechanism of anode spark deposition [J].AmericanCeramic Society Bulletin,1977,56(6):563-566.
    [30] Irtz. G. P,Brown. S. D,Kriven. W. M.Ceramics coatings by anodic spark deposition [J].Materials and Manufacturing Processes,1991,6(1):87-115.
    [31] Florian Patcas,Waldemar Krysmann,Dieter H nicke,et al.Preparation of structuredegg-shell catalysts for selective oxidation by ANOF technique [J].Catalysis Today,2001,69:379-383.
    [32]张文华,胡正前,马晋,等.俄罗斯微弧氧化技术研究进展[J].轻合金加工技术,2004,32(1):25-29.
    [33]黄瑞芬,罗建民,常丽萍,等.铝合金微弧氧化技术的研究及其应用[J].内蒙古科技与经济,2006,13:40-42.
    [34] Wenbin Xue, Chao Wang, Ruyi Chen. Structure and properties characterization of ceramiccoatings produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution[J].Materials Letters.2002,435~441.
    [35] Yang Guangliang, Lu Xianyi, Bai Yizhen, Cui Haifeng, Jin Zengsun. The effects of currentdensity on the phase composition and microstructure properties of micro-arc oxidationcoating[J]. Journal of Alloys and Compounds.2002,345:196~200.
    [36]刘文亮.铝合金在不同溶液中的微弧氧化膜层性能研究[[J].电镀与精饰,1999,21(4):9-11.
    [37]张新平,熊守美,许庆彦,等.微弧氧化工艺参数对覆盖层厚度的影响规律模型[J].材料保护,2004,37(8):19-20.
    [38]薛文斌,邓志威,张通和,等.铸造镁合金微弧氧化机理[J].稀有金属材料与工程,1999,28(6):1-7.
    [39] L.Wang, X.Nie. Silicon Effects on Formation of EPO Oxide Coatings on AluminumAlloys[J]. Thin Solid Films.2006,494:211~218.
    [40] L.O. Snizhko, A.L. Yerokhin, A. Pilkington,et al. Anodic processes in plasma electrolyticoxidation of aluminium in alkaline solutions [J]. Electrochimica Acta,2004,49:2085-2095.
    [41] Boinet, S. Verdier, S. Maximovitch, F. Dalard. Plasma electrolytic oxidation of AM60magnesium alloy: Monitoring by acoustic emission technique. Electrochemical properties ofcoatings[J]. Surface and Coatings Technology.2005,199:141~149.
    [42] V. I. Belevantsev, O. P. Terleeva, G. A. Markov,et al.Micro-plasma electrochemical processreview [J]. Zashch Met (in Russian),1998,34(5):469-475.
    [43]吴汉华.铝、钛合金微弧氧化陶瓷膜的制备表征及其特性研究[D].吉林大学博士学位论文,2004:55-57.
    [44] G.C.Wood,C.Pearson. The theory of avalanche breakdown in solid dielectrics[J]. Corros. Sci,1967,7(2):119-125.
    [45] Ashok K. Vijh.Sparking voltages and side reactions during anodization of valve metals ofelectron tunnelling[J].Corrosion Science,1971,11(6):411-417.
    [46] Ikonpisov.S. Theory of electrical break down during formation of barrier anodicfilms[J].1977,22(10):1077-1082.
    [47] J. M. Albella, I. Montero, J. M. Martinez-Duart. Electro Induction and Avalanche during theAnodic Oxidation of Tantalum [J]. Fleetrochow. Sol.1984,131(5):1101-1104.
    [48]姜兆华,辛世刚王福平,等.(NaPO3)6-NaA1O2体系铝合金微弧氧化研究[J].材料工程,2000,(7):40-42.
    [49] E. Matykina, R. Arrabal, P. skeldon, et al. AC PEO of aluminum with porous aluminaprecursor films[J]. Surface&Coatings Technology,2010,205:1668-1678.
    [50] Krysmann W, Kurze P, Dittrich K H, Schneider H G. Process Characteristics and Parametersof Anodic Oxidation by Spark Dis2charge(ANOF)[J]. Cryst Res Technol,1984,19(7):973-979.
    [51] T. B. Van, S. D. Brown, G. P. Wirtz. Mechanism of Anodic Spark Deposition.Am.Ceram [J].Soc.Bull.1977,56(5):563~566.
    [52]潘明强.微弧氧化膜层形成及其表面粗糙度的研究[D].哈尔滨工业大学博士学位论文,2009.
    [53]张黔.表面强化技术基础[M].武汉:华中理工大学出版社,1996,165.
    [54] Jun Tian, Zhuang-zi Luo, Shang-kui Qi,et al. Structure and anti-wear behavior of micro-arcoxidized coatings on Aluminum Alloy [J]. Surface and coatings Technology,2002,154(1):1–7.
    [55] Y.M. Wang H. Tiana, X.E. Shen, et al. An elevated temperature infrared emissivity ceramiccoating formed on2024aluminium alloy by microarc oxidation [J]. Ceramics International,2013,39:2869–2875.
    [56]贺永胜,赵志龙,刘一洋,等.铝合金微弧氧化热力学机理及影响因素的分析[J].电镀与环保,2005,25(6):38-40.
    [57]赵志龙,刘一洋,贺永胜.铝合金微弧熔凝A12O3形核及转变热力学分析[J].电镀与环保,2006,26(2):33-35.
    [58]白文昌,孙景林,王祝堂.微弧电解氧化新进展[J].轻合金加工技术,2009,37(2):5-9.
    [59]李均明.铝合金微弧氧化陶瓷层的形成机制及其磨损性能[D].西安理工大学博士学位论文,2008.
    [60]薛文斌,邓志威,来永春,et al.有色金属表面微弧氧化技术评述[J].金属热处理,2000,l(1):1-3.
    [61] H. H. Wu, Z. S. Jin, B. Y. Long, et al.Characterization of Microarc Oxidation Process onAluminium Alloy[J]. Chin. Phys. Lett.2003,20(10):1815-1819.
    [62]徐丽,陈跃良,郁大照,等.LY12铝合金微弧氧化后疲劳特性研究[J].新技术新工艺,2006,(11):28-30.
    [63]庞留洋.铝合金微弧氧化技术在军品零部件上的应用[J].新技术新工艺,2009,2:29-31.
    [64]来永春,施修龄,华铭.铝合金表面等离子微弧氧化处理技术[J].电镀与涂饰,2003,22(3):1-3.
    [65]刘耀辉,李颂.微弧氧化技术国内外研究进展[J].材料保护,2005,38(6):36-40.
    [66]段关文,高晓菊,满红,等.微弧氧化研究进展[J].兵器材料科学与工程,2010,33(5):102-106.
    [67] Elola A.S., Otero T.F., Porro A., Evaluation of the pitting of aluminum exposed theatmosphere [J]. Corrosion,1992,48(10):854-863.
    [68] Liepina L, Kadek V. Conditions for disruption of the primary film during corrosion ofaluminum in neutral solutions [J]. Corrosion Science,1966,6(3-4):177-181.
    [69]张欣宇,方明,吕江川,等.电解液参数对铝合金微弧氧化的影响[J].材料保护,2002,35(8):39-40.
    [70]彭家志,陈砺,严宗诚,等.等离子体电解氧化电解液配方研究进展[J].中国陶瓷,2009,45(10):12-15.
    [71] Bakovets V.N. et al.Zashch. Met.1986,22(3):440.
    [72] M. Vladimi. Mikrolich bogen oxidation[J]. Ober flchen technik,1995,49(8):606-610.
    [73] Y.K.Wang, L.Sheng, R.E.Xiong, et al. Effects of additives in electrolyte on characteristic ofceramic coatings formed by micro-arc oxidation [J]. Surface Engineering.1999,15(2):109~111.
    [74] G.A.Markov,A.L.Slonova,O.P.Terleeva. Chemical composion, structure and morphology ofmicro plasma coating [J]. Zaschita Metallov.1997,33(3):289~294.
    [75]杨建,李元东,马颖,等.NaOH对铝合金A356微弧氧化膜形成及其耐蚀性的影响[J].中国表面工程,2008,21(5):49-53.
    [76] C. Martinia,, L. Ceschinia, F. Tarterinia, et al.PEO layers obtained from mixedaluminate–phosphate baths on Ti–6Al–4V: Dry sliding behaviour and influence of a PTFEtopcoat [J].Wear,269(2010)747–756.
    [77] Zhijiang Wang, LinaWu, Wei Cai, et al. Effects of fluoride on the structure and properties ofmicroarc oxidation coating on aluminium alloy[J]. Journal of Alloys and compounds,2010,505:188-193.
    [78]王永康,郑宏晔,李炳生,等. NaF添加剂对铝合金等离子电解氧化陶瓷膜形成的影响[J].电镀与涂饰,2003,22(4):8-10.
    [79]阎峰云,张文群,范松岩,等. LY12铝合金微弧氧化配方的优化[J].新技术新工艺,2007,12:86-87.
    [80]欧爱良,余刚,胡波年,等.三乙醇胺在镁合金阳极氧化中的作用[J].化工学报,2009,60(8):2118-2123.
    [81]蒋百灵,白力静,蒋永锋,等.铝合金微弧氧化技术[J].西安理工大学学报,2000,16(2):138-142.
    [82]付翀,郑晶,李尧.电参数对铝合金微弧氧化陶瓷层结构特性的影响[J].西安理工大学学报,2008,22(4):490-509.
    [83]孙志华,国大鹏,刘明,等.工艺参数对2A12铝合金微弧氧化陶瓷层生长的影响[J].航空材料学报,2009,29(6):59-65.
    [84]张聚国,杨华.铝合金表面微弧氧化工艺条件的研究[J].表面技术,2009,38(1):48-50.
    [85] H. H. Wu, Z. S. Jin, B. Y. Long, et al. Characterization of Microarc Oxidation Process onAluminium Alloy[J]. Chin. Phys. Lett.2003,20(10):1815-1819.
    [86] A.V. Timoshenko, V. Yu. Magurova. Investigation of Plasma Electrolytic OxidationProcesses of Magnesium Alloy MA2-1under Pulse Polarisation Modes[J]. Surface andCoatings Technology.2005,v199,n2-3:135-140.
    [87] R.H.U. Khan,A. Yerokhin,X. Li, et al.Surface characterisation of DC plasma electrolyticoxidation treated6082aluminium alloy: Effect of current density and electrolyteconcentration [J].Surface&coatings Technology2010,205:1679—1688.
    [88]张荣军,郝建民.阳极电流密度对铝合金微弧氧化陶瓷膜的影响[J].轻合金加工技术,2008,36(2):34-55.
    [89] Wu Hanhua, Wang Jianbo, Long Beiyu, et al.Ultra-hard ceramic coatings fabricated throughmicro arc oxidation on aluminium alloy[J].Applied Surface Science,2005,252:1545-1552.
    [90]魏同波,张学俊,王博,等.电流密度对铝合金微弧氧化膜的生长及结合力的影响[J].材料保护,2004,37(4):4-6.
    [91]张聚国,杨华.铝合金表面微弧氧化工艺条件的研究[J].表面技术,2009,38(1):48-50.
    [92]徐晓丹,佟金伟.电流密度对铝合金微弧氧化陶瓷膜性能的影响[J].电镀与精饰,2010,32(7):1-5.
    [93]吴汉华,汪剑波,龙北玉,等.电流密度对铝合金微弧氧化膜物理化学特性的影响[J].物理学报,2005,54(12):5743-5748.
    [94]翁海峰,陈秋龙,蔡殉,等.脉冲占空比对纯铝微弧氧化膜的影响[J]表面技术[J],2005,34(5):59—62.
    [95]陈映川,苗景国,陈秋荣.占空比对铝合金等离子体电解氧化陶瓷层质量的影响[J].轻合金加工技术,2012,40(9):76-79.
    [96] Xue W,Wang C,Chen R,et al.Structure and properties characterization of coatingsproduced on Ti-6A1-4V alloy by micro-arc oxidation in aluminum[J].Mater Let,2002,52:435-441.
    [97]李颂,刘耀辉,庞磊.电源频率对铸铝合金微弧氧化陶瓷层的影响[J].材料科学与工艺,2008,16(6):287-289.
    [98]吴振东,姜兆华,姚忠平等.反应时间对LY12铝合金微弧氧化膜层组织及性能的影响[J].无机材料学报,2007,22(3):555-559.
    [99] Yong Han, Seong-Hyeon Hong,Kewei Xu,Structure and in vitro bioactivity of titania-basedfilms by micro-arc oxidation[J]. Surface&coatings Technology,168(2003)249-258.
    [100]Vladimi M. Mikrolich Bogen Oxidation[J]. J Ober Flchen Technik,1995,49(8):606—610.
    [101]S.I. Bulyshev, V. A. Fedorov. The kinetic of coating formation in microarc oxidationprocess[J]. Fiz Khim obrob Mater,1993,17(6):93-95.
    [102]姜兆华,辛世刚,王福平,等.铝合金在水玻璃-KOH-NaAlO2体系中的微弧氧化[J].中国有色金属学报,2000,10(4):519-524.
    [103]刘荣明,郭锋,娅娅,等.铝合金微弧氧化磷酸盐体系电解液研究及陶瓷层分析[J].表面技术,2007,36(2):4-5.
    [104]H.F.Guo, M.Z.An. Growth of ceramic coatings On AZ91D magnesium alloy by micro-arcoxidation in aluminate-fluoride solutions and evaluation of corrosion resistance [J].AppliedSurface Science.2005,246(2):229—238.
    [105]徐俊,胡正前,马晋.电解液参数对铝合金微弧氧化膜层质量的影响[J].电镀与涂饰,2006,25(10):43-49.
    [106]全伟.铝合金表面微弧氧化陶瓷膜制备工艺试验设计[D].武汉理工大学,硕士论文,2010.
    [107]Albella J M, Montero I. Electron injection sand avalanche during the anoxic oxidation oftantalum[J].J Electrochem Soc,1984,131(6):1101-1104.
    [108]Montero I, Albella J M, Martinez-Duart J M. Anodization and Breakdown Model of Ta2O5films [J]. J Electrochem Soc,1985,132(4):814-818.
    [109]于凤荣,吴汉华,龙北玉,等.处理液浓度对铝合金微弧氧化陶瓷膜成膜速率和硬度的影响[J].吉林大学学报(理学版),2005,43(6):825-829.
    [110]朱静.铝合金微弧氧化陶瓷层生长过程及耐磨性能的研究[D].西北理工大学,2006.
    [111]Wenbin Xue,Chao Wang,Hua Tian,et al.Corrosion behaviors and galvanic studies ofmicroarc oxidation films on Al-Zn-Mg-Cu alloy[J].Surface&Coatings Technology,2007,201:8695-8701.
    [112]胡冬生,张大童.7A04铝合金微弧氧化膜的制备及其抗热震性研究[J].特种铸造及有色合金,2013,33(1):76-80.
    [113]赵喜林.应用数理统计[M].武汉大学出版社.
    [114]王虹斌.微弧氧化技术及其在海洋环境中的应用[M].国防工业出版社2010.
    [115]陈启元,曾文明,张平民,等.几种铝化合物的热力学性质[J].金属学报,1995,32(1):6-14.
    [116]张文华,胡正前,马晋,等.俄罗斯微弧氧化技术研究进展[J].轻合金加工技术,2004,32(1):25-29.
    [117]NykyforchyHM, KlapkivMD, posuvailoVM. Properties of Synthesised Oxide CeramicCoatings in Electrolyte Plasma on Aluminium Alloys[J]. Surafce and Coatings Technology1998,(100-101):219-221.
    [118]H. F. Guo, M. Z. An. Growth of Ceramic Coatings on AZ91D Magnesium Alloys byMicro-arc Oxidation in Aluminate-fluoride Solutions and Evaluation of CorrosionResistance[J]. Applied Surface Science,2005,v246(6),n1-3:229-238.
    [119]WangYM,Jiang BL,Lei TQ. Dependence of Growth Feautres of Microarc OxidationCoatings of Titanium alloy on Control Modes of Altenrate Pulse[J]. Materials Letters.2004,58:1907-1911.
    [120]Y. M. Wang, D. C. Jia, L. X. Guo, et al.Effect of Discharge Pulsating on Microarc OxidationCoatings Formed on Ti6Al4V Alloy[J]. Materials Chemistry and Physics,2005,90(10):128-133.
    [121]Sundararajan.G, Rama Krishna L. Mechanisms Underlying the Formation of Thick AluminaCoatings through the MAO Coating Technology[J]. Surface&Coatings Technology.2003,169:269.
    [122]严志军,朱新河,程东,等.影响铝合金微弧氧化成膜效率的因素分析[J].材料保护,2007,33(4):113-117.
    [123]Erokhine, Aleksey, Voevodin, et al. Method for forming coatings by electrolyte dischargeand coatings formed thereby [P]. US Patent Specification5720866, June14,1996.
    [124]辛铁柱.铝合金表面微弧氧化陶瓷膜生成及机理的研究[D].哈尔滨工业大学,2006.
    [125]钟涛生,李小红,蒋百灵.6061铝合金微弧氧化陶瓷层生长速度[J].应用化学,2009,26(6):692-696.
    [126]A. V. Timoshenko, Y. V. Magurova. Micro plasma oxidation of Al-Cu alloys[J]. ZashchMet(in Russian),1995,31(5):523-529.
    [127]H. F. Guo, M. Z. An. Growth of Ceramic Coatings on AZ91D Magnesium Alloys byMicro-arc Oxidation in Aluminate-fluoride Solutions and Evaluation of CorrosionResistance[J]. Applied Surface Science,2005,v246(6),n1-3:229-238.
    [128]张欣盟,田修波,巩春志,等.LYl2铝合金微弧氧化膜三维组织结构及占空比影响研究[J].稀有金属材料与工程,2010,39(S1):369-373.
    [129]孟庆国,吴汉华,龙北玉,等.处理频率对TC4钛合金微弧氧化膜特性的影响[J].吉林大学学报,2007,45(6):1011-1014.
    [130]赵豪民,江俊灵.铝合金微弧氧化陶瓷膜性能及其影响因素探讨[J].2005,38(7):61-63.
    [131]杜军,陈东初,李文芳,等.铝合金微弧氧化陶瓷膜的微观结构和耐蚀性[J].华南理工大学学报(自然科学版),2007,35(3):6-10.
    [132]A. L. Yerokhin, L. O. Snizhko and N. L. Gurevina, et al. Spatial characteristics of dischargephenomena in plasma electrolytic oxidation of aluminium alloy[J]. Surface&CoatingsTechnology,2004,177-178:779-783.
    [133]朱宁.氧化锆、氧化铝陶瓷的耐腐蚀特性[J].陶瓷科学与艺术.2005,2:30~33.
    [134]陈宏,郝建民.负脉冲对铝合金微弧氧化膜耐蚀性影响的研究[J].材料保护,2007,40(9):17-18.
    [135]陈飞,周海,万汉城,等.铝合金表面微弧氧化陶瓷层摩擦学性能的研究[J].热加工工艺,2006,35(24):40-42.
    [136]薛文斌,杜建成,吴晓玲,等.LY12合金表面微弧放电沉积陶瓷膜的抗磨损性[J].北京师范大学学报(自然科学版),2005,41(4):897-901.
    [137]蒋百灵,朱静,白力静.铝合金微弧氧化陶瓷层在润滑条件下的抗磨性能研究[J].摩擦学学报,2004,24(3):220-223.
    [138]国大鹏,孙志华,刘明,等.LYl2铝合金微弧氧化膜的生长过程[J].材料保护,2009,42(10):10-16.
    [139]Wang YM,Jiang BL,Lei TQ. Dependence of Growth Feautres of Microarc OxidationCoatings of Titanium alloy on Control Modes of Altenrate Pulse [J]. Materials Letters.2004,58:1907-1911.
    [140]NieX.,Leyl A,Song HW, et al. Thickness Effects on the Mechanical Properties of Micro-arcDischarge oxide Coatings on Aluminium Alloys[J]. Surface&Coatings Technology,1999:1055-1060.
    [141]Bockris J.O.M.etc. On the mechanism of the passivity of aluminum and aluminum alloys[J].Journal of electrochemical Society,1993,349(1-2):375-414.
    [142]左禹.非晶态NiCrFeSiB合金蚀孔萌生期间的电流波动[J].中国腐蚀与防护学报,1995,15(1):28-34.
    [143]赵旭辉.铝阳极氧化膜的电化学阻抗特征研究[D].北京化工大学,2005.
    [144]李均明,朱静,白力静,等.铝合金微弧氧化陶瓷层的磨损特性[J].材料保护,2005,38(1):27-29.
    [145]李红霞,宋仁国,赵坚,等.微弧氧化时间对铝合金陶瓷涂层结构和耐磨性的影响[J].材料保护,2008,41(12):65-67.
    [146]索相波,邱骥,张建辉.7A52铝合金表面微弧氧化陶瓷层摩擦学特性[J].中国表面工程,2009,22(4):61-65.
    [147]鲍爱莲,刘万辉.铝合金表面微弧氧化陶瓷层耐磨性[J].表面技术,2007,36(6):48-49.
    [148]魏同波,田军,阎逢元,等.LY12铝合金微弧氧化陶瓷层的结构和性能[J].材料研究学报,2004,18(2):161-166.
    [149]吴振东.铝合金表面原位生长陶瓷膜及摩擦磨损与耐蚀研究[D].哈尔滨工业大学,2007.
    [150]腾敏,李垚,赫晓东,等.等离子体微弧氧化表面处理LY12铝合金的高温拉伸性能[J].宇航材料工艺,2004,(5):50-52.
    [151]Wenbin Xue, Chao Wang, Yongliang Li, et al. Effect of microarc discharge surface treatmenton the tensile properties of Al-Cu-Mg alloys[J]. Materials Letters,2002,56:737-743.
    [152]李颂.镁合金微弧氧化膜的制备、表征及其性能研究[D].吉林大学,2007.
    [153]张后全,唐春安,宋力,等.布孔方式对孔洞材料宏观力学性能影响的研究[J].应用力学学报,2006,23(1):62-67.
    [154]Arrabal R, Matykina E, Hashimoto T, et al. Characterization of AC PEO Coatings onMagnesium Alloys[J]. Surface and Coatings Technology,2009,203(16):2207-2220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700