用户名: 密码: 验证码:
菠菜对海水胁迫响应的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋面积占地球表面积的70%,蓄水量达1.34×1018m3,约为地球水资源的96.8%,利用海水进行作物生产,是解决人类食物问题的有效途径。菠菜(Spinacia oleranceaL.)是一种中等耐盐作物,其耐盐临界值为2ds·m-1,利用海水栽培菠菜的可行性较大。本文以2个耐性性不同的菠菜品种为试材,采用水培方法,研究了菠菜对海水胁迫响应的生理机制。主要结果如下:
     在14个供试菠菜品种中,‘荷兰3号’对海水胁迫的耐性最强,而‘圆叶菠菜’最敏感;40%的海水浓度是鉴定菠菜耐海水能力的适宜浓度。用含40%海水的营养液栽培菠菜,菠菜的综合品质没有明显变化。
     海水胁迫对‘荷兰3号’单株干重影响不大,而显著降低‘圆叶菠菜’的单株干重;并使2个品种植株的叶片和根系丙二醛(MDA)含量增加,质膜透性增大,叶片光合色素含量降低,但‘荷兰3号’的变化幅度(叶片MDA除外)小于‘圆叶菠菜’。海水胁迫下,短期内2个品种由于气孔限制引起叶片胞间C02浓度(Ci)降低,净光合速率(Pn)下降;长期胁迫下,‘荷兰3号’Pn恢复到对照水平,而‘圆叶菠菜’同化力下降,Pn降低。叶绿素荧光动力学分析表明,海水胁迫对‘荷兰3号’光化学猝灭系数(qP)影响不大,实际光化学效率(ΦPSⅡ)明显升高,而使‘圆叶菠菜’qP和ΦPSⅡ下降;‘荷兰3号’初始荧光(F0)的下降幅度和非光化学猝灭系数(qN)上升幅度比‘圆叶菠菜’大;2个菠菜品种的最大光化学效率(Fv/Fm)均下降,但‘荷兰3号’光抑制程度(1-qP/qN)的升高幅度比圆叶菠菜小。这些结果说明,海水胁迫下,2个耐性不同的菠菜品种植株都产生了光合作用的光抑制和光氧化伤害,使膜质过氧化和叶绿素(Chl)含量降低,但海水胁迫对耐性强的品种影响较小
     海水胁迫下,菠菜植株的表观量子效率(AQY)和饱和光强下的Pn均显著下降,天线耗散能量(D)的比率和非光化学瘁灭系数(NPQ)上升;NPQ和叶黄素脱环氧化状态(DES)的动态变化、日变化随海水胁迫时间的延长及光合有效辐射(PAR)的变化而呈现先升高后降低的趋势,并且二者之间具有多项式回归关系;抗坏血酸(AsA)处理显著提高了菠菜叶片的NPQ和DES,而二硫苏糖醇(DTT)处理却使其显著降低;且海水敏感品种‘圆叶菠菜’叶片的AQY和饱和光强下Pn的降低幅度大于耐海水品种‘荷兰3号’,而D. NPQ和DES的升高幅度小于后者。这些结果说明,海水胁迫下菠菜植株受到了光合作用的光抑制,非辐射能量耗散增强,叶黄素循环是其热耗散的主要途径;耐海水品种‘荷兰3号’由于叶黄素循环活性较高,能够将较多的过剩光能耗散,有效降低了过剩光能对光合器官的损害。
     海水胁迫下,2个菠菜品种叶绿体内超氧阴离子自由基(O2-)、过氧化氢(H2O2)等ROS大量积累,MDA含量升高,膜系统受到了损伤;耐海水品种‘荷兰3号’叶绿体内清除ROS主要依赖于超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR),对ROS的清除能力较强,并且氧化型谷胱甘肽(GSSG)还原为还原型谷胱甘肽(GSH)运转正常,维持了叶绿体内合适的氧化还原环境;而海水敏感品种‘圆叶菠菜’叶绿体清除ROS主要依赖SOD和过氧化物酶(POD),清除能力有限,从而造成ROS大量积累,对叶绿体的伤害较大,并且叶绿体内GSH/GSSG显著下降,适宜的氧化还原环境被破坏,耐性降低。
     海水胁迫下,菠菜叶绿体内ROS积累,ROS通过降低胆色素原脱氨酶(PBGD)活性,使Chl生物合成步骤的胆色素原(PBG)向尿卟啉原Ⅲ(UroⅢ)的转化受阻,从而导致菠菜叶片Chl含量降低。海水胁迫下,耐海水品种‘荷兰3号’由于叶黄素循环活性较高,可以将较多的过剩光能以非辐射能量的方式耗散,降低了光系统Ⅱ(PSⅡ)反应中心由激发态能量诱发的ROS对Chl合成的阻抑作用,并且对叶绿素酶(Chlase)活性没有明显影响;而海水敏感品种‘圆叶菠菜’叶黄素循环活性较低,ROS对Chl合成的阻抑作用较大,并且Chlase活性显著升高,加速了Chl降解,进一步降低了Chl含量,表明较高的叶黄素循环活性通过降低叶绿体内ROS水平来减轻对Chl合成的阻抑程度,并防止了Chlase活性升高,从而使Chl含量维持在较高的水平。
     海水胁迫下,光氧化剂甲基紫精(MV)进一步使2个菠菜品种叶绿体内O2-产生速率加快、H2O2含量提高、膜质过氧化加重,活性氧清除剂AsA明显降低了菠菜叶绿体内ROS水平,缓解了由MV造成的严重的膜质过氧化伤害。海水胁迫下,2个菠菜品种叶片叶绿素b (Chlb)、叶绿素a(Chla)及其合成前体物质原叶绿素酸(Pchl)、镁原卟啉Ⅸ(Mg-ProtoⅨ)、原卟啉Ⅸ(ProtoⅨ)和尿卟啉原Ⅲ(UroⅢ)含量明显降低,而胆色素原(PBG)和6-氨基酮戊酸(ALA)积累,Chl合成受到阻碍,并且‘圆叶菠菜,的受阻程度大于‘荷兰3号’;MV进一步加剧了这种受阻程度,而AsA部分缓解了由海水胁迫和MV造成的阻碍作用。上述结果说明,由海水胁迫诱导的菠菜叶绿体内ROS与Chl代谢密切相关,不仅通过叶绿体膜的氧化伤害使Chl降解,而且使Chl合成的PBG向UroⅢ转化步骤受阻。耐海水品种‘荷兰3号’叶绿体清除ROS主要通过SOD和AsA-GSH循环系统,清除能力较强,减轻了ROS对叶绿体膜的氧化损伤和Chl合成的受阻程度,并且海水胁迫对其Chlase活性的影响较小;而海水敏感品种‘圆叶菠菜’叶绿体清除ROS主要依赖于SOD和POD,对ROS的清除能力有限,从而导致了ROS大量积累,叶绿体膜的氧化损伤和Chl合成的受阻程度严重,并且海水胁迫显著提高了Chlase活性,加剧了Chl降解。
     海水胁迫下,菠菜植株体内的离子平衡被打破;可溶性糖、游离氨基酸和Cl-对2个菠菜品种植株渗透调节的相对贡献较大。耐海水品种‘荷兰3号’植株体内可溶性糖含量大量积累;根系和叶柄向叶片选择性运输较高含量的K+、Ca2+、Mg2+和SO42-而运输的Na+和Cl-较少;植株体内蛋白质分解和游离氨基酸积累量较低;甜菜碱和脯氨酸对维持根系和叶片渗透平衡中发挥了重要作用;质膜H+-ATPase和液泡膜H+-ATPase活性、叶绿体Ca2+-ATPase和Mg2+-ATPase活性维持较高水平,离子外排和区域化能力较强。而海水敏感品种‘圆叶菠菜’植株体内蛋白质分解,离子选择性吸收和运输比率较低,植株体内积累了大量的游离氨基酸、Na+和Cl-,并且胞内离子外排和区域化能力低。上述结果说明,根系和叶柄向叶片选择性运输较高含量的K+、Ca2+、Mg2+和SO42,是提高耐海水能力的离子选择性吸收策略;在应对海水诱导的渗透胁迫中,提高植株可溶性糖、甜菜碱和脯氨酸含量并降低可溶性蛋白降解和游离氨基酸含量,是菠菜提高耐性的有机渗透调节物质积累策略;而较强的离子外排和区域化能力是胞内离子环境调节策略。
Water resources in the ocean correspond to the capacity to be about 1.34×1018 m3 which is equivalent to 96.8% of total water of the earth. However, the freshwater on land has an inclination to be lacking. Now, researchers have attempted to cultivate crops by irrigation using seawater for food supply. Spinach (Spinacia olerancea L.) plants are a middle salt tolerant crop, which critical salt concentration is 2 d-S m-1. Therefore, it is supposed to be possible to cultivate spinach plants by using seawater. The physiological response to seawater stress was investigated using two cultivars plants cultured in the Hoagland's nutrients solution with or without seawater (40%). Main research results were as follows:
     Spinach cultivar such as Helan No.3 was the greatest tolerant to seawater and cv. Yuanye was greatest sensitivity amony fourteen compared cultivars. The appropriate concentration identified was 10% of seawater. And the integrative quality of spinach plants was not enfluenced by nutrient solution with 40% seawater.
     Dry weight per plant of cv. Helan No.3 was not obviously affected by seawater, but cv. Yuanye spinach was decreased remarkably. During exposure to stress of seawater, malondialdehyde (MDA) content and membrane permeability were both increased, but photo-pigment of leaves was reduced, and theirs change range of cv. Helan No.3 was little than cv. Yuanye spinach (except MDA content of leaves). Stomata limitation of two spinach cultivars induced decrease of intercellular CO2 concentration (Ci) and net photosynthetic rate (Pn) in short term on stress of seawater, however, in long term on stress of seawater, Pn of cv. Helan No.3 resumed to control level, but Pn of cv. Yuanye spinach continued to decrease as a result of assimilation decreased. The analyse of chlorohyll fluorescence kinetica parameters shows that there was little effect on photochemical quenching (qP) of cv.Helan No.3 but quantum yield of PSⅡphotochemisty rate (ΦPSⅡ) increased obviously under seawater stress, that of Yuanye spinach declined when exposure to stress seawater; Decrease amplitude and increase range of cv. Helan No.3 were greater than that of cv. Yuanye spinach; Maximal photochemical efficiency (Fv/Fm) of two spinach cultivars were declined, but the increase of photo-inhibition degree (1-qP/qN) of cv. Yuanye spinach was higher than cv. Helan No.3 under seawater stress. These results suggest that two spinach cultivars were injured by photo-inhibition and photo-oxidation on seawater stress, that lead lipid to peroxidize and chlorophyll (Chl) to decompose; however, tolerance cultivars such as cv. Helan No.3 applied more light energy to photochemical reaction, and caloric dissipation ability was strong, which was depended on xanthophylls cycle; degree of photo-inhibition was lower, reactive oxygen species (ROS), which was excited by excess light energy, were less destroyed membrane system and photopigment to maintained a higher level of Pn, there for, seawater stress had little effect on growth.
     Apparent quanta yield (AQY) and Pn on saturation photo intensity were remarkably decreased but the allocation of dissipation energy (D) by antenna and non-fluorescence quenching coefficient (NPQ) were increased by the stress of seawater; daily and dynamic movements of NPQ and xanthophyll de-epoxidation state (DES) were presented trends to increased at first and then decreased with extend of stress time and photosynthetic active radiation (PAR) increased during exposure to seawater stress, furthermore, there were played some multinomial regress relationship between NPQ and DES; when treated with ascorbic acid (AsA), NPQ and DES were remarkably increased but decreased by 1, 4-dithiothreitol (DTT); during exposure to seawater stress, AQY and Pn under saturation photo intensity of Yuanye spinach was decrease more than that of cv. Helan No.3, and the increase of D, NPQ and DES were less than that of cv. Helan No.3. These results suggested that photo-inhibition was produced and non-radiant energy was enhanced, and xanthophyll cycle was major approach to thermal dissipation; cv. Helan No.3 has more high activity of de-epoxidation as a result of dissipating excessive energy to decease injury of photosynthesis organs.
     The production rate of superoxide radical (O2-), content of hydrogen peroxide (H2O2) and MDA in chloroplasts of two spinach cultivars were remarkably increased by seawater with higher rate in cv. Yuanye; In seawater tolerant cultivar (cv. Helan No.3), the ROS elimination is mainly depended on superoxide dismutase (SOD) and ascorbic acid-reduced glutathione recycle system (AsA-GSH), which could alleviate oxidation injury of ROS to chloroplast membrane, and the conversion of glutathione (GSSG) into reduced glutathione (GSH) was maintained to keep correct oxidation and deoxidation circumstance in chloroplasts of spinach leaves during exposure to seawater; while in seawater sensitive cultivar (cv. Yuanye), it is mainly depended on SOD and peroxidase (POD), which has limited ability to eliminate ROS and lead to accumulate mass ROS to severe oxidation injury of chloroplast membrane, and the ratio of GSH/GSSG in chloroplasts was significant decreased by seawater, leading to disturbing of oxidation and deoxidation circumstance in chloroplasts, as a result of declination of seawater tolerance.
     Spinach plants with seawater were induced to oxidize metabolic substances and to accumulate ROS in chloroplasts of two cultivars to lower the activity of porphobilinogen deaminase (PBGD). Namely, the conversion of porphobilinogen (PBG) into uroporphyrinogenⅢ(UroⅢ) concerning in chlorophyll biosynthetic processes was inhibited by supplying seawater. In Helan No.3 spinach plants with seawater, higher activity of xanthophyll cycle in the leaves played a role of regulation to suppress more excess light energy in order to lower the levels of ROS in chloroplasts. Therefore, the chlorophyll biosynthesis in Helan No.3 leaves with seawater showed quite a weak inhibition and the activity of chlorophllase (Chlase) was not affected by seawater stress. However, more accumulation of ROS in chloroplasts of Yuanye leaves due to the lower activity of xanthophyll cycle severely inhibited the chlorophyll biosynthetic process and remarkably enhanced the activity of Chlase which aggravates the decomposition of chlorophyll. These results suggest that higher activity of xanthophyll cycle regulates to keep chlorophyll metabolic process by decreasing levels of ROS in chloroplasts of spinach plants cultured in the nutrient solution with seawater (40%).
     The supplement of methyl viologen (MV), the photo-oxidant, enhanced the production rate of O2-, the content of H2O2 and MDA in chloroplast of two spinach cultivars, while the addition of AsA, the eliminator for ROS, decreased ROS level and alleviated oxidization of plasmolemma. The content of chlorophyll b (Chlb), chlorophyll a (Chla) and precursor of Chl such as protochlorophyll (Pchl), Mg-protoporphyrinⅨ(Mg-ProtoⅨ), protoporphyrinⅨ(ProtoⅨ) and uroorphyrinogenⅢ(UroⅢ) was remarkably decreased, but the content of porphobilinogen (PBG) andδ-aminolevulinic acid (ALA) was increased by the stress of seawater, which lead to inhibition for Chl synthesis, and the inhibition was aggravated by MV and eliminated by AsA. Chlorophyllase (Chlase) activity in the leaves of cv. Yuanye was improved while it was not influenced in the leaves of Helan No.3 under seawater stress. The Chlase activity in the leaves of cv. Yuanye was more greatly affected by MV treatment than that of Helan No.3, however, Chlase activity of two cultivars was not influenced by AsA. These results suggest that ROS is closely related to Chl metabolism, which not only injure plasmolemma but also inhibit the process of transformation of PBG to UroⅢas a result of Chl decomposition. In seawater tolerant cultivar (cv. Helan No.3), the ROS elimination is mainly depended on SOD and AsA-GSH system, which could alleviate oxidation injury of ROS to chloroplast membrane and inhibition of Chl synthesis, and Chlase activity was less influenced by seawater stress; while in seawater sensitive cultivar (cv. Yuanye), it is mainly depended on SOD and POD, which has limited ability to eliminate ROS and lead to accumulate mass ROS to severe oxidation injury of chloroplast membrane and inhibition of Chl synthesis, and Chlase activity was significantly improved by seawater stress, which enhanced Chl decomposition.
     Ionic homeostasis in spinach plants was disturbed by the stress of seawater. Relative contribution of osmolytes such as soluble sugar, free amino acid and Cl- to osmotic adjustment was greater than that of others. In cv. Helan No.3 (tolerant cultivar), soluble sugar was mass accumulated during exposure to seawater, and the selective transport of K+, Ca2+, Mg2+ and SO42- from roots and petioles to leaves was more than that of Na+ and Cl-. Besides, decomposition of proteins and accumulation of free amino acids in seawater stressed plants of cv. Helan No.3 were lower than that in cv. Yuanye; under seawater stress, betaine and proline played a very important role in osmotic balance of roots and leaves, respectively. Plasma membrane H+ -adenosine-5'-triphosphate (H+-ATPase) and tonoplast H+-ATPase were remarkably enhanced, which effectively propelled excess ions to exclude out of cytoplasm and compartmentalized in vacuole, and the activity of Ca2+ -ATPase and Mg2+ -ATPase in chloroplasts were greater than that in cv. Yuanye under seawater stress, which help to propel excess Ca2+ and Mg2+ in cytoplasm transport into chloroplasts, therefore, the levels of Ca2+ and Mg2+ in cytoplasm was stabilized. However, decomposition of protein in leaves of cv. Yuanye (sensitive cultivar) was enhanced by seawater, and the selective transport of ions was lower, these resulted in accumulation of free amino acids, Na+ and Cl- by seawater. During seawater stress, lower ionic exclusion and compartmentalization of cv. Yuanye resulted in mass ionic accumulation in cytoplasm under seawater stress. Therefore, the damage to cells and chloroplasts of cv. Yuanye was more than that of cv. Helan No.3. In summary, greater ability of absorption to K+, Ca2+, Mg2+ and SO42- in leaves and compartmentalization to Na+ and Cl- in the roots and petioles to maintain higher ratio of K/Na, Mg/Na, Ca/Na and SO42-/Cl- and to protect the leaves from excessive Na+ and Cl- toxicity was strategy of ionic selective transportation and absorption against seawater stress; the higher efficiency of the compatible solute accumulation, lower decomposition of proteins and production of free amino acids can be considered as some factors responsible for its tolerance to seawater stress; and higher abilities of ionic exclusion and compartmentalization were regulatory strategy of intracellular ions cellular level against seawater stress.
引文
1. 白宝璋,徐克章,沈军队.植物生理.北京:中国农业技术出版社,1996.
    2. 陈建勋,王晓峰.植物生理学试验指导.广州:华南理工大学出版社,2002.
    3. 陈贻竹,帕特森.低温对植物超氧物歧化酶、过氧化物酶和过氧化氢水平的影响.植物生理学报,1988,14:323-328.
    4. 陈淑芳,朱月林,刘友良,李式军.NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,2005,32(4):609-613.
    5. 陈京,周启贵,张启堂.PEG处理对甘薯叶片渗透调节物质的影响.西南师范大学学报(自然科学版),1995,20(1):73-77.
    6. 陈少良,李金克,毕望富.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化.植物学通报,2001,18(5):587-596.
    7. 董高峰,陈贻竹,蒋跃明.植物叶黄素循环和非辐射能量耗散.植物生理学通讯,1999,35(2):141-144.
    8. 樊怀福,郭世荣,李娟,杜长霞,黄保健.外源一氧化氮对盐胁迫下黄瓜幼苗生长和渗透调节物质含量的影响.生态学杂志,2007,26(12):2045-2050.
    9. 甘志军,王晓云,邹琦.小麦叶绿素酶生化动力学特性研究.西北植物学报,2003,23(5):750-754.
    10.龚建华.灰色系统理论在蔬菜新品种综合评估与审定中的应用.中国蔬菜,2000,l:6-10.
    11.宫维嘉,金赞敏,王长海.海水胁迫下库拉索芦荟南盐1号抗氧化酶活力的变化.江苏农业科学,2006,(6):348-350.
    12.龚继明,陈受宜.离了平衡及其相关信号传导在细胞耐盐性中的作用.生物工程进展.1999,19:2-8.
    13.关军锋.钙对苹果细胞膜透性、保护酶活性和活性氧清除剂含量的影响.植物学通报,1999,16(1):72-74.
    14.郭盛磊,阎秀峰,白冰,于爽.氮对落叶松幼苗光合作用的影响.生态学报,2005,25(6):1291-1298.
    15.何春燕,黄敏华,李惠萍.比色法测定啤酒中的草酸含量.啤酒科技,2006,11:13-15.
    16.胡长敏,赵丽辉,丁蕴铮,袁星.新鲜蔬菜和水果中亚硝酸盐测定方法研究.环境化学,2000,19(2):181-186.
    17.惠红霞,许兴,李守明.宁夏干旱地区盐胁迫下枸杞光合生理特性及耐盐性研究.中国农学通报,2002,18(5):29-34.
    18.贾庚祥.BADH基因转化番茄提高耐盐性的研究.中国科学院硕士学位论文,北京,2002.
    19.姜闯道,高辉远,邹琦.类囊体膜pH梯度在光抑制中的保护机理.植物生理学通讯,2000,38(4):307-312.
    20.蒋明义,杨文英,徐江,陈巧云.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用.植物学报,1994,36(4):289-295.
    21.寇伟锋,刘兆普,陈铭达,郑青松,赵耕毛,郑宏伟.不同浓度海水对油葵光合作用和叶绿素荧光参数的影响.西北植物学报,2006,26(1):73-77.
    22.李景平,杨鑫光,傅华等.阿拉善荒漠区3种旱生植物体内主要渗透调节物质的含量和分配特征.草业科学,2005,22(9):35-38.
    23.李春香,李德全,王玮.不同抗旱性玉米、小麦根叶对水分胁迫的生理反应及渗透调节的研究.中国植物生理学会植物环境生理学术讨论会论文汇编(昆明),1999,92.
    24.李合生.植物生理生化试验原理和技术.北京:高等教育出版社,2000.
    25.李银心.抗盐、耐海水蔬菜的生物技术培育与海水无土栽培应用.中国科学院博士学位论文,北京,2001.
    26.梁勇,卜崇兴,郭世荣,随学超.不同浓度海水对水培生菜生长和品质的影响.江苏农业科学,2007,(3):95-97.
    27.梁峥,赵原,汤岚,骆爱玲.甜菜碱对呼吸酶的保护效应.植物学报,1994,36(12):947-951.
    28.林克惠.施肥对农产品品质的影响.云南农业大学学报,1994,11(2):114-120.
    29.刘春辉,王长海,常秀莲,刘兆普.不同浓度海水灌溉对库拉索芦荟中微量元素的影响.食品与发酵工业,2004,30(5):1-3.
    30.刘录祥,孙其信,王士芸.灰色系统理论应用于作物新品种综合评估初探.中国农业科学,1989,22(3):22-27.
    31.刘丹.水分胁迫下小麦幼苗呼吸及渗透调节物质积累的变化.云南农业大学学报,1990,5(1):30-37.
    32.刘兆普,沈其荣,尹金来.滨海盐土农业.北京:中国农业科技出版社,1998:1-3.
    33.刘洪展,郑风荣.海水胁迫下外源生长素对小麦萌发期根系特性的影响.中国生态农业学报,2007,15(2):205-206.
    34.刘祖祺,张石城.植物抗性生理.北京:中国农业出版社,1994.
    35.刘友良,毛才良,汪良驹.植物耐盐性研究进展.植物生理学通讯,1987,23(1):1-7.
    36.刘友良,汪良驹.植物对盐胁的响应和其耐盐性.In:余叔文,汤章城(eds).植物生理和分子生物学.北京:科学出版社,1998,752-769.
    37.罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验.大豆科学,2001,20(3):177-182.
    38.吕志俭.应用模糊数学评价食品的感官质量.食品科学,1986,3:1-5.
    39.马春平,崔国文.10个紫花苜蓿品种耐盐性的比较研究.种子,2006,25(7):50-53.
    40.米海莉,许兴,李树华.土壤水分胁迫对2种沙漠植物叶绿素、可溶性糖、淀粉含量和C/N比的影响.西北植物学报,2004,24(10):1816-1821.
    41.彭倩,周青.La(Ⅲ)对UV-B辐射胁迫下大豆叶绿素合成与降解影响的机理.中国农业气象,2007,28(3):285-288.
    42.秦天才,阮捷,王腊娇.镉对植物光合作用的影响.环境科学与技术,2000(增刊):33-35.
    43.尚庆茂,宋士清,张志刚.外源BR诱导黄瓜(Cucumi sativusL.)幼苗的抗盐性.中国农业科学,2006,39(9):1872-1877.
    44.沈文飚,徐朗莱,叶茂炳,张荣铣.外源抗坏血酸和过氧化氢对小麦离体叶片衰老的调节.植物生理学通讯,1997,33(5):338-340.
    45.时红,孙新忠,范建华,张永波编.水质分析方法与技术.北京:地震出版社,2001,194-195.
    46.石德成,盛颜敏,赵可夫.盐碱混合胁迫对Lvymus chinensis幼苗生长的影响.草业学报,1998,7(1):36-41.
    47.史庆华,朱祝军,Khalida A A,钱琼秋.等渗的Ca(NO3)2和NaCl对番茄光合作用的影响.植物营养与肥料学报,2004,10(2):188-191.
    48.孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验.作物学报,2001,27(6):794-801.
    49.孙艳,樊爱丽,徐伟君.高温胁迫下草酸对黄瓜叶片光合器官和叶黄素循环的影响.中国农业科学,2005,38(9):1774-1779.
    50.唐蕾.银杏叶生长过程中的叶绿素酶活性变化.植物生理学通讯,2000,38(6):561-563.
    51.汤春芳,刘云国,曾光明,李程峰,徐卫华.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响.植物生理与分子生物学学报,2004,30(4):469-474.
    52.唐奇志,刘兆普,陈铭达,陆国兴.海水处理对向日葵幼苗生长及叶片一些生理特性的影响.植物学通报,2004,21(6):667-672.
    53.汤章城.植物对渗透胁迫和淹水胁迫的适应机制.见:余叔文.植物生理与分子生物学.北京:科学出版社,1999,739-775.
    54.唐晓敏,王文全,张红瑞,李卫东.不同浓度NaCl处理对甘草叶片生理特性的影响.中国农学通报,2008,24(1):229-232.
    55.王宝山,赵可夫.小麦叶片中Na和K的提取方法.植物生理学通讯,1995,31(1):50-52.
    56.王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响.南京农业大学学报,2002,25(4):11-14.
    57.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,16(6):55-57.
    58.王爱国,罗广华,邵从本.大豆种子超氧化物歧化酶的研究.植物生理学报,1983,9(1):78-83.
    59.王保莉,郭蔼光,汪沛洪.小麦突变体返白系返白阶段叶绿素代谢的变化.植物学报,1996,38(7):557-562.
    60.汪天, 李娟,郭世荣,高洪波,王素平.外源多胺对低氧胁迫下黄瓜幼苗根系生长及H+-ATP酶和H+-焦磷酸酶活性的影响.植物生理与分子生物学学报,2005,31(6):637-642
    61.王弋博,李勃,未丽,杨亚军,李三相,王建平.外源甜菜碱对两种玉米耐盐性影响的研究.兰州大学学报(自然科学版),2005,41(5):34-37.
    62.吴传钧,刘键一,甘国辉.现代经济地理学.南京:江苏教育出版社,1997,102-102.
    63.徐坤,邹琦,郑国生.生姜叶片在强光下的光呼吸和叶黄素循环.园艺学报,2002,29(1):47-51.
    64.徐宝国,陶淑娟,刘晶莹,李惠芝.槲叶中化学成分抑制-水草酸钙结晶作用的研究.山东医药工业,2003,22(6):5-6.
    65.徐质斌.山东海水灌溉农业的发展前景.发展论坛,2000,1:24-25.
    66.徐培洲,李云,袁澍,张红宇,彭海,林宏辉,汪旭东,吴先军.叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究.中国农业科学,2006,39(7):1299-1305.
    67.薛延丰,刘兆普.钙离子对海盐和NaCl胁迫下菊芋幼苗生理特征的响应.水土保持学报,2006,20(3):177-181.
    68.杨广东,朱祝军.不同光照条件下缺镁对黄瓜生长及活性氧清除系统的影响.园艺学报,2002,28(5):430-434.
    69.杨勇,蒋德安,孙骏威,黄宗安,金松恒.不同供镁水平对水稻叶片叶绿素荧光特性和能量耗散的影响.植物营养与肥料学报,2005,11(1):79-86.
    70.杨明杰,林咸永,肖永娥.Cd对不同种类植物生长和养分积累的影响.应用生态学报,1998,9(1):89-94.
    71.杨晓泉,姜孝成,傅家瑞.花生种子耐脱水力的形成与可溶性糖累积的关系.植物生理学报,1998,24(2):165-170.
    72.叶蕙,刘伟,陈巧玲,陈建勋.衰老叶片中叶绿素的降解.西北植物学报,2002,22(2):437-443.
    73.殷晓军,赵彦修,张慧.甜菜碱的生物合成和相关基因.植物生理学通讯,2002,38(3):299-304.
    74.於丙军,罗庆云,刘友良.盐胁迫对甜菜生长和离子分配的影响.作物学报,2001,27(6):776-780.
    75.於丙军,章文华.NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响.西北植物学报,1997,17(4):439-442.
    76.袁祖华,蔡雁平.盐胁迫下嫁接黄瓜幼苗有机渗透调节物质含量及膜脂过氧化水平研究.湖南农业大学学报(自然科学版),2007,33(2):180-182.
    77.张福锁.植物营养—生态生理学和遗传学.北京:中国科学技术出版社,1993.208.
    78.张乃华,高辉远,邹琦.ca2+缓解NaCl胁迫引起的玉米光合能力下降的作用.植物生态学报,2005,29(2):324-330.
    79.张虹,程耀.综合评判方法在蔬菜品质评价中的应用.东北农学院学报,1988,19(2):209-213.
    80.张金林,陈托兄,王锁民.几种沙漠植物氨基酸和脯氨酸分布特性.中国沙漠,2004,24(4):493-499.
    81.张建华,刘风荣,陈火英.野生番茄和栽培番茄的耐盐差异性比较研究.上海交通大学学报(农业科学版),2006,24(6):533-536.
    82.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448.
    83.赵世杰,孟庆伟,许长成,韩红岩,邹琦.植物组织中叶黄素循环组分的高效液相色谱分析法.植物生理学通讯,1995,31(6):438-442.
    84.赵锁劳,窦延玲.小麦耐盐性鉴定指标及其分析评价.西北农业大学学报,1998,26(6):80-85.
    85.赵福庚,束怀瑞.NaCl处理下大麦根系质膜微囊结合多胺与Na+/H+逆向运输的关系.植物生理与分子生物学学报,2002,28(5):333-338
    86.赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16(5):540-546.
    87.赵可夫.植物抗盐生理.北京:科学出版社,1993.
    88.赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999.
    89.朱新广,张其德.NaCl对光合作用影响的研究进展.植物学通报,1999,16(4):332-338.
    90.中国科学院上海植物生理所编.现代植物生理学试验指南.北京:科学出版社,1999:315-316.
    91. Abdelilah C, Ezzedine EF. Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Biologies,2005,328:23-31.
    92. Adams P, Thomas JC, Vernon DM, Bohnert HJ, Jensen RG. Distinct cellular and organismic responses to salt stress. Plant and Cell Physiology,1992,33(8):1215-1223.
    93. Alamgir ANM, Ali MY. Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPAase activity of rice (Oryza sativa L.). Bangladesh Journal of Botany,1999,28: 145-149.
    94. Albert R, Popp M. Zur Rolle der loslichen Kohlenhydrate in Halophyten des Neusiderse-Gebietes (Osterreich). Oecologia Plantasum,1978,13:27-42.
    95. Allakhverdiev SI. Salt stress inhibits the repair of photodamaged photosystem Ⅱ by suppressing the
    transcription and translation of psbA genes in Synechocystis. Plant Physiology,2002,130: 1443-1453.
    96. Allakhverdiev SI, Murata N. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem Ⅱ in Synechocystis sp PCC 6803. Biochimica Biophysica Acta,2004,1657:23-32.
    97. Allakhverdiev SI. Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem Ⅱ in Synechocystis. Plant Physiology,2005,137:263-273.
    98. Allahverdiyeva Y. Modulation of photosynthetic electron transport in the absence of terminal electron acceptors:characterization of the rbcL deletion mutant of tobacco. Biochimica Biophysica Acta,2005,1709:69-83.
    99. Al-Taweel K. A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leases to strong light. Plant Physiology,2007,145:258-265.
    100. Anderson JM, Park YI, Chow WS. Unifying model for the photo-inactivation of photo-system Ⅱ in vavo under steady-state photosynthesis. Photosynthesis Research,1998,56:1-13.
    101. Anderson JM, Chow WS. Structural and functional dynamics of plant photosystem Ⅱ. Philos. Transactions of the Royal Society of Lond. B Biology Science,2002,357:1421-1430.
    102. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidativestress, and signal transduction. Annual Review of Plant Physiology,2004,55:373-399.
    103. Apse MP, Blumwald E. Engineering salt tolerance in plants. Current Opinon Biotechnology,2002, 13:146-150.
    104. Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science,1999,285:1256-1258.
    105. Aro EM. Dynamics of photosystem Ⅱ:a proteomic approach to thylakoid protein complexes. Journal of Experimental Botany,2005,56:347-356.
    106. Aro EM, McCaffery S, Anderson JM. Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiology,1993,103:835-843.
    107. Aronson J A. Haloph:A data base of salt tolerance plants of the world. Tucson. University of Arizona:1989.
    108. Asada K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50: 601-639.
    109. Asada K, Badger MR. Photoreduction of 18O2 and H218O with concomitant evolution of 16O2 in intact spinach chloroplasts:evidence for scavenging of hydrogen peroxide by peroxidase. Plant Cell Physiology,1984,25:1169-1179.
    110. Asada K, Neubauer C, Heber U. Methyl viologen-dependent cyclic electron transport in spinach chloroplasts in the absence of oxygen. Plant and Cell Physiology,1990,31:557-564.
    111. Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis. In:Klye DJ, Osmond CB, Arntzen CJ, ed. Photoinhibition. Amsterdam:Elsevier,1987,227-287.
    112. Ashour NI, Serag MS, Abd El-Haleem AK, Mekki BB. Forage production from three grass species under saline irrigation in Egypt. Journal of Arid Environments,1997,37:299-307.
    113. Ashraf M, Fatima H. Responses of some salt tolerant and salt sensitive lines of safflower (Carthamus tinctorius L.). Acta Physiology Plantarum,1995,17:61-71.
    114. Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany,2007,59:206-216.
    115. Ashraf M, Leary JWO. Changes in soluble proteins in spring wheat stressed with sodium chloride. Biology Plant,1999,42:113-117.
    116. Ashraf M, O'Leary JW. Distribution of cations in leaves of salt-tolerant and salt-sensitive lines of sunflower under saline conditions. Journal of Plant Nutrition,1995,18:2379-2388.
    117. Ashraf M, Harris PJC. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 2004,166:3-16
    118. Ashraf M, Waheed A. Responses of some local/exotic accessions of lentil (Lens culinaris Medic) to salt stress. Journal of Agronomy Soil Science,1993,170:103-112.
    119. Baba T, Fujiyama H. Differences in short-term responses of rice and tomato to sodium salinization and supplemental potassium and calcium. Soil Science Plant Nutrition,2003,49(5):669-675.
    120. Baffert C. Two new terpyridine dimanganese complexes:a manganese (Ⅲ, Ⅲ) complex with a single unsupported oxo bridge and a manganese (Ⅲ, Ⅳ) complex with a dioxo bridge. Synthesis, structure, and redox properties. Inorganic Chemicals,2002,41:1404-1411.
    121. Barber J, Andersson B. Too much of a good thing:light can be bad for photosynthesis. Trends Biochemistry Science,1992,17:61-66.
    122. Beale SI:Enzymes of chlorophyll biosynthesis. Photosynthesis Research,1999,60:43-73.
    123. Beale SI:Green genes gleaned. Trends in Plant Science,2005,10:309-312.
    124. Benavides MP, Marconi PL, Gallego SM, Comba ME, Tomaro ML. Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum. Austrilian Journal of Plant Physiology,2000,27:273-278.
    125. Bendall DS, Manasse RS. Cyclic photophosphorylation and electron transport. Biochimica et Biophysica Acta,1995,1229:23-28.
    126. Benjamin J. Mechanisms involved in salt tolerance by plant. Hand-book of plant and crop stress. Arizona:Mohammad Pessarakli,1997,97-123.
    127. Benjamin M, Jill D. Enteromorpha clathrata:A potential seawater-irrigated crop. Bioresource Technology,1995,2:225-260.
    128. Bethke PC, Drew MC. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiology,1992, 99:219-226.
    129. Bjokman O, Demmig-Adams B. Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In:Schulze, ED & MM Caldwell eds. Ecophysiology of photosynthesis. Berlin:Springer-Verlag.1993,17-47.
    130. Block MA, Tewari AK, Albrieux C, Marechal E, Joyard J. The plant S-adenosyl-L-methionine: Mg-protoporphyrin Ⅸ methyltransferase is located in both envelope and thylakoid chloroplast membranes. Europe Journal ofBiochem,2002,269:240-248.
    131. Blokhina OB, Virolainen E, Fagerstedt KV, Hoikkala A, Wahala K, Chirkova TV. Antioxidant status of anoxia-tolerant and-intolerant plant species under anoxia and reaeration. Physiologia Plantarum, 2000,109:396-403.
    132. Bogorad L. Porphyrin synthesis. In:Methods in enzymology. New York:New York Academic Press, 1962,885-891; 885-895.
    133. Bohnert HJ, Jensen RG. Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology,1996,14:89-97
    134. Bouvier F, Harlingue A, Hugueney P, Marin E, Marion-Poll A, Camara B. Xanthophyll biosynthesis: cloning, expression, functional reconstitution and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper(Capsicum annuum). The Journal of Biological Chemistry,1996,271(46): 28861-28867.
    135. Bowler C, Montagu MV, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116.
    136. Briskin DP, Pooler RJ. Role of magnesium in plasma membrane ATPase of red beet. Plant Physiology,1983,71:969-971.
    137. Brooks A, Farquhar GD. Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase oxygenase and the rate of respiration in the light:estimates from gas-exchange measurements on spinach. Planta,1985,165:397-406.
    138. Brown SB, Houghton JD, Hendry GAF. Chlorophyll breakdown. In:Scheer H (ed) Chlorophylls, CRC Press, Boca Raton, Florida,1991,465-489.
    139. Cai JP, Li SJ, Xiao JP. Measurement of the activity ATPase in plant chloroplast. Plant Physiology Communications,1980,2:33-36.
    140. Cakmak I. Activity of ascorbate-dependent H2O2 scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. Journal of Experiment Botany,1994,45:1259-1266.
    141. Cakmak I, Hengeler C, Marschner H. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphrus, potassium and magnesium defciency. Journal of Experimental Botany,1994,45:1245-1250.
    142. Carrasco P, Carbonell J. Changes in the level of peptidase activities in pea ovaries during senescence and fruit set induced by gibberellic acid. Plant Physiology,1990,92:1070-1074.
    143. Catalan L, Balzarini M, Talesnik E, Sereno R, Karlin U. Effects of salinity on germination and seedling growth of Prosopisflexuosa (D.C.). Forest Ecology and Management,1994,63:347-357.
    144. Cha-um S, Slipaibulwatana K. Water relation, photosynthetic ability and growth of Thaijasmine rice (Oryza saliva L. ssp indica cv. KDML 105) to salt stress by application of exogenous glycinebetaine and choline. Journal of Agronomy and Crop Science,2006,192 (1):25-36.
    145. Cheeseman JM. Mechanism of salinity tolerance in plants. Plant Physiology,1988,87:547-550.
    146. Chen Q, Liu YL. Effect of glutathion on active oxygen scavenging system in leaves of Barley seedlings under salt stress. Acta Agronomica Sinica,2000,26 (3):365-371.
    147. Cheng DM, Fan SH, Liu XL, Chen GY, Deng ZY, Guo AG. Purification and sequence analysis of cDNA coding region for Porphobilinogen deaminase from a stage albinism line of Wheat. Chinese Journal of Biochemistry and Molecular Biology,2006,22(12):973-978.
    148. Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Science,2005,45(2):437-448.
    149. Cornah JE, Roper JM, Pal Singh D, Smith AG. Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem Journal,2002,362:423-432.
    150. Crafts-Brandner SJ, Salvucci ME. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. The Proceedings of the National Academy of Sciences Online (USA),2000,97:13430-13435.
    151. Critchley O. D1 protein turnover:response to photodamage or regulatory mechanism? In:Baker NR, Bowyer JR (Eds) Photoinhibition of Photosynthesis. Oxford:Bios Scentific Publishers,1994,1-19.
    152. Dahlin C, Sundqvist C, Timko MP. The in vitro assembly of the NADPH-protochlorophyllide oxidoreductase in pea chloroplasts. Plant Molecular Biology,1995,29:317-330.
    153. De K, Tausz M. The role of glutathione in plant reaction and adaptation to air pollutants. Grill D, Tausz M, De Kok LJ. Significance of Glutathione to Plant Adaptation to the Environment. Dordrecht:Kluwer Academic Publishers,2001,185-201.
    154. Danon A, Miersch O, Felix G, Camp RG, Apel K. Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. The Plant Journal,2005,41:68-80.
    155. Demmig-Adams B. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiology,1998,39:474-82.
    156. Demmig-Adams B. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum,1996,98:253-264.
    157. Demmig-Adams B, Adams WW. Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular,1992,43:599-626.
    158. Demmig-Adams B, Adams WW. Photosynthesis:harvesting sunlight safely. Nature,1996,384: 557-560.
    159. Demiral T, Tiirkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany,2005,53:247-257.
    160. Dieter P. Calmodulin and calmodulin-mediated progress in plants. Plant, Cell and Environment, 1986,7:371-380.
    161. Donald RO. When there is too much light. Plant Physiology,2001,125:29-32.
    162. Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology,2004,56:1-14.
    163. Ellman GL. Tissue sulfhydryl groups. Archives of Biochemistry & Biophysics,1959,82:70-77.
    164. Ershov PV, Reshetova OS, Trofimova MS. Activity of ion transporters and salt tolerance in barley. Russian Journal of Plant Physiology,2005,52 (6):765-773.
    165. Eskling M, Arvidsson PO, Akerlind HE. The xanthophyll cycle, its regulation and components. Plant Physiology,1997,100:806-816.
    166. Fang Z, Bouwkam PJC, Solomos T. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. Journal of Experimental Botany,1998,49:503-510.
    167. Feller U. Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiology.1998,116:539-546.
    168. Fernandez-lopez JA, Almela L, Almansa MS, Lopez-Poca JM. Partial purification and properties of chlorophyllase from chlorotic Citrus limon leaves. Phytochemistry,1992,31:447-449.
    169. Fiedor L, Rosenbach Belkin V, Scherz A. The chlorophylls and chlorophyllase possible implication degradation. Journal of Biological Chemistry,1992,267:22043-22047.
    170. Flowers TJ. Ion relations of plants under drought and salinity. Australian Journal of Plant Physiology,1986,13:75-91.
    171. Flowers TJ, Yeo AR. Ion relation of salt tolerance. In:Baker D D, Hall J L (eds). Solute Transport in Cells and Tissue. New York,1998.
    172. Foryer CH, Descourvieres P, Kunert KJ. Protection against oxygen radicals:an important defense mechanism studied in transgenic plants. Plant Cell Environment,1994,17:507-523.
    173. Foyer CH, Dujardyn M, Lemonie Y. Responses of photosynthesis and the xanthophyll and ascorbate-glutathione cycles to changes in irriadiance, photoinhibition and recovery. Plant Physiology and Biochemistry,1989,27:751-760.
    174. Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic acid metabolism. Planta,1976,133:21-25.
    175. Foryer CH, Noetor G. Leaves in the dark see the light. Science,2000,284:5414-5416.
    176. Frank HA, Bautista JA, Josue JS. Mechanism of non-phyotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry,2000, 39(11):2831-2837.
    177. Friedman R, Altman A. The effect of salt stress on poyamie bioynthsis and content in mung bean plants and in halophytes. Physiologia Plantarum,1989,76:295-302.
    178. Gadallah MAA. Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biology of Plants,1999,42:249-257.
    179. Genty BE, Briantais MJ, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemistry Biophysics Acta.1989, 990:87-92.
    180. Ghadiri H, Dordipour I, Bybordi M. Potential use of Caspian Sea water for supplementary irrigation in Northern Iran. Agricultural Water Management,2006,79:209-224.
    181. Gilmore AM. Mechanistic asepects of xanthophyll cycle dependent photo-protection in higher plant chloroplasts and leaves. Plant Physiology,1997,99(1):197-209.
    182. Gilmore AM. Xanthophyll cycle-dependent no photochemical quenching in photo systemll: Mechanistic in sights gained from Arabidopsis thaliana L. mutants that lack violaxanthin de-epoxidase activity and/or lutein. Photosynthesis Research,2001,67:89-101.
    183.Gillham DJ, Dodge AD. Hydrogen-peroxide-scavenging systems within pea chloroplasts Aquantitative study. Planta,1986,167:246-251.
    184. Gombos Z. The recovery of photosynthesis from low temperature photoinhibition is accelerated by the unsaturation of membrane lipids:a mechanism of chilling tolerance. The Proceedings of the National Academy of Sciences Online (USA),1994,91:8787-8791.
    185. Gopal K, Pattanayak GK, Biswal AK, Reddy VS, Tripathy BC. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllidea oxygenase over expressing tobacco plants. Biochemistry and Biophysical Research Community,2005,326:466-471.
    186. Gorham J, Huhes LL, Wyn Jones RG. Chemical composition of salt-marsh plants from Yuys Mon (Anglesey):The concept of physiotypes. Plant Cell and Environment,1980,3:309-318.
    187. Greenway H, Munns R. Mechanism of salt tolerance in non-halophytes. Annual Review of Plant Physiology,1980,31:149-190.
    188. Greer DH. Photoinhibition of photosynthesis in intact bean leaves:role of light and temperature, and requirement for chloroplast-protein synthesis during recovery. Planta,1986,168:253-260.
    189. Grennan AK, Ort DR. Cool temperatures interfere with Dl synthesis in tomato by causing ribosomal pausing. Photosynthesis Research,2007,94:375-385.
    190. Grossman AR, Lohr M, Im CS. Chlamydomonas reinhardtii in the landscape of pigments. Annual Review of Genetics,2004,38:119-173.
    191.Hager A, Holocher K. Localization of the xanthophylls-cycle enzyme violaxanthin deepoxidase within the thylakoid lumen and abolition of its mobility by a light-dependent PH decrease. Planta, 1994,192:581-589.
    192. Hakala M. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem Ⅱ. Biochimca Biophysica Acta,2005,1706:68-80.
    193. Hakala M. Photoinhibition of manganese enzymes:insights into the mechanism of photosystem Ⅱ photoinhibition. Journal of Experimental Botany,2006,57:1809-1816.
    194. Halliwell B. Oxygen-derived species and herbicide action. Plant Physiology,1984,15:21-24.
    195. Hanson AD, May AM. Betaine synthesis in chenopods:Localization in chlorplasts. The Proceedings of the National Academy of Sciences Online (USA),1985,82(1):3678-3695.
    196. Hanson AD, Scott NA. Betaine synthesis from radioactive precursors in attached, water-stressed barley leaves. Plant Physiology,1980,66:342-348.
    197. Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Hortensteiner S, Gidoni D, Gal-On A, Goldschnidt EE, Eyal Y. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. The Plant Cell,2007,19:1007-1022.
    198. Hartel H, Lokstein H. Relationship between quenching of maximum and dark level chlorophyll fluorescence in vivo:dependence on photo-systemll antenna size. Biochemical & Biophysical Acta,1995,1228:91-95.
    199. Hasegawa PM, Bressan RA, Zhu JK. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499
    200. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts, kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry & Biophysics,1968,125:189-198.
    201. Heber U, Walker D. Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiology,1992,100:1621-1626.
    202. Hodges DM, Andrews CJ, Johnson DA, Hamilton RI. Antioxidant enzyme responses to chilling stress in diffierentially sensitive inbred maize lines. Journal of Experimental Botany,1997,48: 1105-1113.
    203. Hodgins R, van Huystee RB. Rapid simultaneous estimation of protoporphyrin and Mg-protophyrins in higher plants. Journal of Plant Physiology,1986,125:311-323.
    204. Hong SS, Xu DQ. Difference in response of chlorophyll fluorescence parameters to strong light between wheat and soybean leaves. Chinese Science Bulletin,1997,42:684-689.
    205. Hortensteiner S. The loss of green color during chlorophyll degradation a prerequisite to prevent cell death? Planta,2004,219:191-194.
    206. Horton P, Hague A. Studies on the induction of chlorophyll fluorescence in barley protoplasts. IV: Resolution of non-photochemical quenching. Bichimicaet et Biophysica Acta,1988,932:107-115.
    207. Horton P, Ruban A, Walter RG. Regulation of light harvesting in green plants:indication by nonphotochemical quenching of chlorophyll fluorescence. Physiologia Plantarum,1994,106: 415-421.
    208. Horton P, Ruban AV, Walters RG. Regulation of light harvesting in green plants. Annual Review Plant Physiology and Plant Molecular and Biology,1996,47:655-684.
    209. Huber SC, Maury W. Effects of Magnesium on intact chloroplasts. Plant Physiology,1980,65: 350-354.
    210. Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science,1988,240:1302-1309.
    211. Iyengar ERR, Reddy MP. Photosynthesis in highly salttolerant plants. In:Pesserkali M. (Ed.), Hand book of photosynthesis. Marshal Dekar, Baten Rose, USA,1996,897-909
    212. Jacob-Wilk D, Holland D, Goldschmidt EE. Chlorophyll breakdown by erioroohyllase:isolation and functional expression of the Chlase 1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant Journal,1999,20(60):653-661.
    213. Jegerschold C. Light-dependent degradation of the D1 protein in photosystem Ⅱ is accelerated after inhibition of the water splitting reaction. Biochemistry,1990,29:6179-6186.
    214. Jia HS, Li DQ, Han YQ. Advances in studies on photoinhibition in photosynthesis of higher plants. Chinese Bulletin of Botany,2000,17(3):218-224.
    215. Jiang MY, Yang WY, Xu J, Chen QY. Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress. Acta Botanica Sinica,1994,36:289-295.
    216. Jin YY, Woo ML, Jong GW. Quality improvement of major kimchi vegetables through plant breeding and biotechnology. Acta Horticulturae,1999,483:48-56.
    217. Kar RK, Choudhuri MA. Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of Hydrilla verticillata. Physiologia Plantarum,1987,70:729-734.
    218. Kennedy BF, De Fillippis LF. Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevillea arenaria. Journal of Plant Physiology,1999,155: 746-754.
    219. Kenneth KT. Crop salt tolerance. In:Agricultural Salinity Assessment and Management. New York: Society of Civil Engineers,1996,262-264.
    220. Khan MSA, Hamid A, Salahuddin ABM. Effect of NaCl on growth, photosynthesis and mineral ions accumulation of different types of rice (Oryza sativa L.). Journal of Agronomy and Crop Science,1997,179:149-161.
    221. Khan MA, Ungar, IA, Showalter AM. Effects of salinity on growth, ion content, and osmotic relations in Halopyrum mocoronatum (L.) Stapf. Journal of Plant Nutrition,1999,22:191-204.
    222. Khan MA. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta. Pakistan Aquatical Botany,2001,70:259-268.
    223. Khatun S, Flowers TJ. Effects of salinity on seed set in rice. Plant Cell Environment,1995,18: 61-67.
    224. Khavarinejad RA, Chaparzadeh N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica,1998,35:461-466.
    225. Kojima K. Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem Ⅱ. Molecular Microbiology,2007,65:936-947.
    226. Koyro HW. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany,2006,56:136-146.
    227. Kropat J, Oster U, Rudiger W, Beck CF. Chlorophyll precursors are signals of chloroplast origin involved in light induction of nuclear heat-shock genes. Proceedings of the National Academy of Science,1997,94:14168-14172.
    228. Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis:the basics. Annual Review of Plant Physiology and Plant Molecular,1988,42:313-319.
    229. Kumar AM, Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiology,2000,122:49-55.
    230. LaemmLi UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature,1970,227:680.
    231. Larche W. Physiological plant ecology. Ecophysiology and stress physiology of functional groups. New York/Berlin/Heidelberg:Springer-Verlag,1995,321-327.
    232. Li Hong. Research progress of ATPase. Journal of Biology,1996,1:9-12.
    233. Li L, Yu SW. Studies on the mechanism of NO2 injury to the Spinach. Journal of Plant Physiology and Molecular Biology,1988,14(3):263-268.
    234. Liang YC, Hu F, Yang MC. Antioxidative defenses and water deficit-induced oxidative damage in rice(Oryza sativa L.) growing on non-flooded paddy soils with ground mulching. Plant and Soil, 2003,257:407-416.
    235. Liu H, Hao LN. Al3+ effects on the activity of Ca2+-ATP in rice chloroplast and contacts with calmodulin. Acta Botanica Sinica,1990,32(7):528-532.
    236. Lohr M, Im CS, Grossman AR. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiology,2005,138:490-515.
    237. Long SP, Humphries S. Photoinhibition of photosynthesis in nature. Annual Review Physiology and Plant Molecular Biology,1994,45:633-662.
    238. Long SP. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology,1994,45:633-662.
    239. Long XH, Liu ZP, Zheng QS, Xu WJ. Effects of seawater with different concentrations on growth and physiological and biochemical characteristics of Helianthus tuberosus seedlings. Acta Ecologica Sinica,2005,25(8):1881-1889.
    240. Lopez-Aguilar R, Orduo-Cruz A, Lucero-Arce A, Murillo-Amador B, Troyo-Dieguez E. Response to salinity of three grain legumes for potential cultivation in arid areas. Soil Science and Plant Nutrition,2003,49(3):329-336.
    241. Loupassaki MH, Chartzoulakis K, Digalaki N. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium and sodium in leaves, shoots and roots of six olive cultivars. Journal of Plant Nutrition,2002,25(11):2457-2482.
    242. Luttus S, Kinet JM, Bouharmont J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice(Oryza sativa L.) cultivars differing in salinity tolerance. Plant Growth Regulation,1996,19:207-218.
    243. Margaret H. The breakdown of chlorophyll by chlorophyllase. Journal of Biochemistry,1961.78: 359.
    244. Maria LD, Flavia NI, Cristina S. The role of lipoic acid in the regulation of the redox status of wheat irrigated with 20% sea water. Plant Physiology and Biochemistry,2004,42:329-334.
    245. Marschner H. Mineral nutrition of higher plants. London:Academic Press Inc,1986,235-243.
    246. Marschner H, Cakmak I. Hight light intensity enhances chlorosis and necrosis in leaves of zinc, potassium and magnesium deficient bean (Phaseolus vulgaris) plants. Plant Physiology,1989,134: 308-315.
    247. Naoki Nishnriuar, Jinghua Zhnag, Mitsuru Abo. Apploeation of cpaillay relecortphoersis to the smuiltaneonus determination of betaine in plnats. Analytical sciences,2001,17:103-106.
    248. Masuda T, Tanaka A, Melis A. Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Molecular Biology,2003,51:757-771.
    249. Mathis JN, Burkey KO. Light intensity regulates the accumulation of the major light-harvesting chlorophyll-protein in greening seedlings. Plant Physiology,1989,90(2):560-566.
    250. Matile P, Schellenberg M. The cleavage of pheophorbide is located in the envelope of barley gerontoplasts. Plant Physiology and Biochemistry,1996,34:55-59.
    251. Mattoo AK. Regulation of protein metabolism:coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kilodalton protein of the chloroplast membranes. Proceedings of National Academy Sciences,1984,81:1380-1384.
    252. Mccord JM, Fridovich J. Superoxide dismutase:an enzymic function for erythrocuprein (Hemocaprein). Journal of Biological Chemistry,1969,224:6049-6055.
    253. Mead JF. Freeradical mechanism of lipid damage, a consequence for cellular membranes. In: Proyor WA (ed). Free radicals in Biology. New York:Academic Press,1976,185-210.
    254. Melis A. Photosystem-Ⅱ damage and repair cycle in chloroplasts:what modulates the rate of photodamage in vivo? Trends in Plant Science,1999,4:130-135.
    255. Mengel K. Principles of Plant Nutrition.1982,3th:545-548.
    256. Muller-Moule P, Conklin PL, Niyogi KK. Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiology,2002,128:970-977.
    257. Miller AJ, Vogg G, Sanders D. Depletion of cytosolic free calcium induced by photosynthesis. Nature,1987,326:397-400.
    258. Minorsky PV. A heuristic hypothesis of chilling injury in plants:a role for calcium as the primary physiological transducer of injury. Plant Cell Environment,1985,8:75-94.
    259. Mitsuya S, Takeoka Y, Miyake H. Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. Journal of Plant Physioloyg,2000,157:661-667.
    260. Mittova V, Tal M, Volokita M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell and Environment,2003,26:845-856.
    261. Morgan JM. Osmotic adjustment in the spikelets and leaves of wheat. Journal of Experimental Botany,1980,31:655-665.
    262. Muller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. Plant Physiology,2001,125:1558-1566.
    263. Munne BS, Alegre L. Interplay between ascorbic acid and lipophilic antioxidant defences in chloroplasts of water-stressed Arabidopsis plants. FEBS Letters,2002,524:145-148.
    264. Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T.Cyclic electron flow around PSI is essential for photosynthesis. Nature,2004,429:579-582.
    265. Munns R. Physiologicalprocesses limiting plantgrowth in saline soils:Some dogmas and hypotheses. Plant, Cell & Environment,1993,16:15-24.
    266. Munns R, Bracely CJ. Barlow EWR. Solute accumulation in the apex and leaves of wheat during water stress. Australian Journal of Plant physiology,1979,6:379-389.
    267. Murata N. Effects of monovalent cations on light energy distribution between two pigment systems of photosynthesis in isolated spinach chloroplasts. Biochimica et Biophysica Acta,1971,226: 422-432.
    268. Murata N. Photoinhibition of photosystem Ⅱ under environmental stress. Biochimica et Biophysica Acta,2007,1767:414-421.
    269. Nagata N, Satoh S, Tanaka R, Tanaka A. Domain structures of chlorophyllide a oxygenase of green plants and Prochlorothrix hollandica in relation to catalytic functions. Planta,2004,218:1019-1025.
    270. Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. Plant Cell,2005,17:233-240.
    271.Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology,1981,22:867-880.
    272. Neubauer C, Yamamoto HY. Membrane barriers and mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts. Photosynthesis Research, 1994,39:137-147.
    273. Nishiyama Y. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. The EMBO Journal.2001,20:5587-5594.
    274. Nishiyama Y. Singlet oxygen inhibits the repair of photosystem Ⅱ by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry,2004,43:11321-11330.
    275. Nishiyama Y. Inhibition of the repair of photosystem Ⅱ by oxidative stress in cyanobacteria. Photosynthesis Research,2005,84:1-7.
    276. Nishiyama Y. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem Ⅱ. Biochimica et Biophysica Acta,2006,1757:742-749.
    277. Niyoji KK. Photo Protection revisited:Genetic and Molecular approaches. Annual Review Plant Molecular Biology,1999,50:333-359.
    278. Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiology,1995,109:735-742.
    279. Ohnishi N. Two-step mechanism of photodamage to photosystem Ⅱ:step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. Biochemistry, 2005,44:8494-8499
    280. Oquist G, Chow WS. On the relationship between the quantum yield of photosystem Ⅱ electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2-dependent O2 evolution. Photosynthesis Research,1992,33:51-62.
    281. Ort DR, Baker NR. A photoprotective role for O2 as an alternative electron sink in photosynthesis? Current Opinion in Plant Biology,2002,5:193-198.
    282. Oster U, Tanaka R, Tanaka A, Ruedigger W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis CAO from Arabidopsis thaliana. Plant Journal,2000,21:305-310.
    283. Ouchane S, Steunou AS, Picaud M, Astier C. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria:a strategy adopted to bypass the repressive oxygen control system. Journal of Biological Chemistry,2004,279:6385-6394.
    284. Pan RS, Dilley RA. Influence of Ca2+ on the thylakoid lumen violaxanthin de-epoxidase activity through Ca2+ gating of H+ flux at the CFo H+ channel. Photosynthesis Research,2000,65:141-154.
    285. Parida A, Das AB, Das P. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology,2002,45:28-36.
    286. Parida AK, Das AB, Mittra B. Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica,2003,41:191-200.
    287. Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review. Ecotoxicology and Environmental Safety,2005,60:324-349
    288. Pattanayak GK, Biswal AK, Reddy VS, Tripathy BC. Lightdependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochemical Biophysical Research Communications,2005,326:466-471.
    289. Paul B, Luke AJ. Neill O. Effects of oxidants and antioxidants on nuclear factor kB activation in three different cell lines:evidence against a universal hypothesis involving oxygen radicals. Biochimica et Biophysica Acta,1995,1260:167-175.
    290. Pinta V, Picaud M, Reiss-Husson F, Astier C. Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin Ⅸ monomethylester. The Journal of Bacteriology, 2002,184:746-753.
    291. Pollard A, Wyn jones RG. Enzyme activities in concentrated solutions of glycine betaine and other solutes. Planta,1979,144:291-298.
    292. Porra RJ. Recent process in porphyrin and chlorophyll biosynthesis. Photochemistry and Photobiology,1997,65:492-516.
    293. Powles S. Photoinhibition of photosynthesis was induced by visible light. Annual Review Plant Physiology,1984,35:15-44.
    294. Qian QQ, Zai WS, Zhu ZHJ. Effects of exogenous Silicon on active oxygen scavenging systems in Chloroplasts of Cucumber (Cucumis sativus L.) seedlings under salt stress. Journal of Plant Physiology and Molecular Biology,2006,32(1):107-112.
    295. Qureshi RH, Rashid A, Ahmad N. In:Genetic Aspects of Plant Mineral Nutrition (Bassam N.E.etal. Eds). Netherlands:Kluwer Academic Publishers,1990,23(4):315-324.
    296. Rabie GH. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza,2005,15:225-230.
    297. Radmer RJ, Kok B. Photoreduction of O2 primes and replaces CO2 assimilation. Plant Physiology, 1976,58:336-340.
    298. Radmer R, Ollinger O. Light-driven uptake of oxygen, carbon dioxide, and bicarbonate by the green alga Scenedesmus. Plant Physiology.1980,65:723-729.
    299. Reinbothe S, Reinbothe C. The regulating of enzymes involved in chlorophyll biosynthesis. European Journal of Biochemistry,1996,237:323-343.
    300. Rhodes D, Hanson AD. Quaternary ammonium and tertiary sulfonium compounds in higher-plants.
    Annual Review of Plant Physiology and Plant Molecular Biology,1993,44:357-384.
    301.Rickauer M, Tanner W. Effects of Ca2+ on amino acid transport and accumulation in roots of Phaseolus vulgaris. Plant Physiology,1986,82:41-46.
    302. Riminton C. Spectral absorption coefficient of some porphyrins in the soretband region. Biochemical Journal,1960,75:620-623.
    303. Robinson SP, Jones GP. Accumulation of glycine betaine in chloroplasts provides osmotic adjustment during salt stress. Australian Journal of Plant Physiology,1986,13:659.
    304. Romero AR, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science,2001,160:265-272.
    305. Ruan HH, Shen WB, Xu LL. Nitric oxide modulates the activities of plasma membrane ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress. Acta Botanica Sinica,2004,46(4):415-422.
    306. Rubio F, Gassmann W, Schroeder JI. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science,1995,270:1660-1663.
    307. Ruediger W. Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynthesis Research, 2002,74:187-193.
    308. Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M. Xantha-1 encodes a membrane subunit of the aerobic Mgprotoporphyrin Ⅸ monomethyl ester cyclase involved in chlorophyll biosynthesis. The Proceedings of the National Academy of Sciences Online (US),2005,102:5886-5891.
    309. Sakamato A, Murata N. The use of bacterial choline oxidase, a glycine betaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiology,2001,125:180-188.
    310. Santa-Cruz A, Acosta M, Rus A, Bolarin MC. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiology and Biochemistry,1999,37(1):65-71.
    311. Santos CV. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientica Horticulture,2004,103:93-99.
    312. Sarvikas P. Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Plant Cell Physiology,2006,47:391-400.
    313. Satoh S, Ikeuchi M, Mimuro M, Tanaka A. Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in photosystem Ⅰ through flexibility of the proteins. Journal of Biological Chemistry,2001,276:4293-4297.
    314. Shannon MC, Grieve CM. Tolerance of vegetable crops to salinity. Scientia Horticulturae,1999,78: 5-38.
    315. Schafer C, Schmid V, Roos M. Characterization of high-light induced increases in xanthophyll cycle pigment and lutein contents in photoautotrophic cell cultures. Journal of Photochemistry and Photobiology,1994,22:67-75.
    316. Scotts AZNMR. Sectroscopy as a probe for the enzyme catalysed reactions. Further observation of preuroporphyrinogen, a substrate for Uroporphyrinogen Cosynthetase. Journal of the Chemical Society, Chemical Communications,1980,384-387.
    317. Serraj R, Sinclair TR. Osmolyte accumulation:can it really help increase crop yield under drought conditions? Plant Cell Environment,2002,25:333-341.
    318. Serrano R, Mulet JM, Rios G. A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany,1999,50:1023-1036.
    319. Shafqat F, Farooqe A. A new allopolyploid wheat for stressed lands and poverty alleviation. Field Crops Research,2007,100:369-373.
    320. Shah K, Kumar RG, Verma A, Dubey RS.Effect of cadmium on lipid peroxidation, superoxide anion generation and activitivies of antioxidant enzymes in growing rice seedlings. Plant Science, 2001,161:1135-1144.
    321. Shen LM, David M, Joyce GF. Influence of drought on the concentration and distribution of 2,4-diaminaobutyric acid and other free amino acids in tissues of flat pea(Lathyrus sylvestris L.). Environmental and Experimental Botany,1990,30:497-504.
    322. Shimazaki KI, Sakaki T, Kondo N. Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO2 fumigated leaves of spinach. Plant Cell Physiology,1980,21:1193-1204.
    323. Shoolingirr JPM. Porphobilinogen deaminase and uroporphyrinogenⅢ synthase:structure, molecular biology, and mechanism. Journal of Bioenergetics and Biomembranes,1995,27(2): 181-195.
    324. Silberbush M. Potassium influx to roots of two sorghum genotypes grown under saline conditions. Journal Plant Nutrition,2001,24:1035-1045.
    325. Slefermann D, Yamamoto HY. Light induced deepexition of vioxanthin in lettuce chlroplasts. Bioehimica et Biophysica Aeta,1974,357,144-150.
    326. Song SQ, Lei YB, Tian XR. Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russian Journal of Plant Physiology,2005,52(6):793-800.
    327. Sophis B, Ulrich K, Gerd A. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiology.1998,116:651-658.
    328. Speer M, Kaiser. Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiology,1991,97:990-997.
    329. Spychalla JP, Desborough SL. Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiology,1990,94:1214-1218.
    330. Srivastava A, Beale SI. Glutamyl-tRNA reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. The Journal of Bacteriology,2005, 187:4444-4450.
    331. Steward GR, Lee GA. The role of proline accumulation in halophytes. Planta,1974,120:279-289.
    332. Sultana I, Keda T, Kashem MA. Effect of seawater on photosynthesis and dry matter accumulation in developing rice grains. Photosynthestica,2002,40(1):115-119.
    333. Suzuki T, Kunieda T, Murai F, Morioka S, Shioi Y. Mg-dechelation activity in radish cotyledons with artificial and native substrates, Mg-chlorophyllina and chlorophyllidea. Plant Physiology and Biochemistry,2005,43:459-464.
    334. Syed MA. Nutrient uptake by plants under stress conditions. In:Mohammad Pessarakli. Handbook of Plant and Crop Stress. New York:Marcel Dekker, Inc.1999,285-313.
    335. Takahashi S. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiology,2004,45:251-255.
    336. Takahashi S, Murata N. Interruption of the Calvin cycle inhibits the repair of photosystem Ⅱ from photodamage. Biochimica et Biophysica Acta,2005,1708:352-361.
    337. Takahashi S, Murata N. Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem Ⅱ. Biochimica et Biophysica Acta,2006, 1757:198-205.
    338. Takahashi S. Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem Ⅱ by suppression of repair process and not acceleration of damage process in Arabidopsis thaliana. Plant Physiology,2007,144:487-494.
    339. Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends in Plant Science,2008,13(4):178-183.
    340. Takamiya KI, Tsuchiya T, Ohta H. Degradation pathway(s) of chlorophyll:what has gene cloning revealed? Trends in Plant Science,2000,5:426-431.
    341. Tanaka A, Tanaka R. Chlorophyll metabolism. Current opinion in plant biology,2006,9:248-255.
    342. Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences,1998,95:12719-12723.
    343.Takeda K, Otaubo T,Konda N. Participation of hydrogen peroxide in the inactivation of Calvin-cycle GSH enzyme irr so2-furmugated spinach leaves. Plant and Cell Physiology,1982,23: 1009-1018.
    344. Tanaka R, Tanaka A. Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana. Photosynthesis Research,2005,85:327-340.
    345. Tanaka R, Koshino Y, Sawa S, Ishiguro S, Okada K, Tanaka A. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystem Ⅱ in Arabidopsis thaliana. Plant Journal,2001,26:365-373.
    346. Tanaka R, Hirashima M, Satoh S, Tanaka A. The Arabidopsisaccelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a:inhibition of the pheophorbide a oxygenase activity does not lead to the'stay-green' phenotype in Arabidopsis. Plant Cell Physiology,2003,44: 1266-1274.
    347. Torres BC, Bingham FE. Salt tolerance of NO3- and NaCl on Mexican wheat. Ⅰ. Effect of mineral nutrition, growth, and grain production for four wheats. Soil Science Society of America Proceedings,1973,37:711-715.
    348. Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE. Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. The Proceedings of the National Academy of Sciences Online (US),2003,100:16119-16124.
    349. Tyystjarvi E. Slow degradation of the D1 protein is related to the susceptibility of low-light-grown pumpkin plants to photoinhibition. Plant Physiology,1992,100:1310-1317.
    350. Tyystjarvi E, Aro EM. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. The Proceedings of the National Academy of Sciences Online (US),1996,93:2213-2218.
    351. Tyystjarvi E. Photoinhibition of photosystem Ⅱ and photodamage of the oxygen evolving manganese cluster. Coordination Chemistry Reviews,2008,252:361-376.
    352. Uchida A, Andre TJ, Takashi H. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science,2002,163:515-523.
    353. Ujwal ML, McCormac AC, Goulding A, Kumar AM, Soll D,Terry MJ. Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana:expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. Plant Molecular Biology,2005,50:83-91.
    354. Vaidyanathan H, Sivakumar P, Chakrabarty R. Scavenging of reactive oxygen species in NaCl stressed rice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Science,2003,165:1411-1418
    355. VanToai TT, Bolles CS. Post anoxic injury in soybean(Glycine max) seedlings. Plant Physiology, 1991,97:588-592
    356. Vasileuskaya Z, Oster U, Beck CF. Mg-protoporphyrin Ⅸ and heme control HEMA, the gene encoding the first specific step of tetrapyrrole biosynthesis, in Chlamydomonas reinhardtii. Eukaryot Cell,2005,4:1620-1628.
    357. Vavilin DV, Vermaas WF. Regulation of the tetrapyrrole biosynthetic pathway leading to heme and chlorophyll in plants and cyanobacteria. Physiologia Plantarum,2005,115:9-24.
    358. Veljovic-Jovanovic SD, Pignocchi C, Noctor G. Low ascorbic acid in the vtc-1 mutant of arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiology,2001,127:426-435.
    359. Vezitskii A. ChloroPhylla formation inetiolated rye seedlings as dependent on the coneentration of infiltrated chlorophyllide. Russian Journal of Plant Physiology,2000,47:499-503.
    360. Wada H. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. The Proceedings of the National Academy of Sciences Online (US),1994,91: 4273-4277.
    361. Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science,2004,306:1183-1185.
    362. Wang Y. Change in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. The Journal of Horticultural Science and Biotechnology,2000,75:623-627.
    363. Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science Biotechnology,2000,75:623-627.
    364. Watad AA, Reinhold L, Lerner HR. Comparison between a stable NaCl-selected Nicotiana cell line and wild type. Plant Physiology,1983,73:624-629.
    365. Watanabe N, Che FS, Iwano M, Takayama S, Yoshida S, Isogai A. Dual targeting of spinach protoporphyrinogen oxidase Ⅱ to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. Journal of Biological Chemistry,2001,276:20474-20481.
    366. Willmer CM, Mansfield TA. A critical examination of the use of detached epidermis in studies of stomatal physiology. The New Phytologist,1969,68:363-375.
    367. Willows RD. Biosynthesis of chlorophylls from protoporphyrin Ⅸ. Natural Product Reports,2003, 20:327-341.
    368. Wingler A. Photorespiration:metabolic pathways and their role in stress protection. Philosophical. Transactions of the Royal Society,2000,355:1517-1529.
    369. Wise RR, Nay lor AW. Chilling enhanced photo-oxidation. Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiology,1987, 83:278-282.
    370. Wu SJ, Ding L, Zhu JK. SOS1, a genetic locus essential for salt-tolerance and potassium acquisition. Plant Cell,1996,8:617.
    371. Wyn J RG. Salt Tolerance in Physiological Process Limiting Plant Productivity (ed.CE.Johnson). Butter-worths. London,1980.
    372. Xu CC, Kuang T, Li L. D1 Protein turnover and carotene synthesis in relation to zeaxanthin epoxidation in rice leaves during recovery from low temperature photo inhibition. Angst Journal of Plant Physiology,2000,27:239-244.
    373. Yamasato A, Nagata N, Tanaka R, Tanaka A. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell,2005,17:1585-1597.
    374. Yamoto HY. Biochemistry of the violaxanthin cycle in higher plants. Pure Apply Chemistry,1979, 51:639-648.
    375. Yancey PH, Clark MB, Hands SC, Bowlus RD, Somero GN. Living with water stress:evaluation of osmolyte systems. Science,1982,217:1214-1222.
    376. Yang SH, Gao JF. Influence of active oxygen and free radicals on plant senescence. Acta Botanica Boreali-Occidentalia Sinica,2001,21(2):215-220.
    377. Yang X. Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem Ⅱ in tobacco plants. Planta,2007,225:719-733.
    378. Yeo A. Molecular biology of salt tolerance in the context of whole-plant physiology. Journal of Experimental Botany,1998,49:915-929.
    379. Yu M, Hu CHX, Wang YH. Effects of Molybdenum on the precursors of Chlorophyll biosynthesis in winter wheat cultivars under low temperature. Scientia Agricultura Sinica,2006,39(4):702-708.
    380. Yuzo S, Yasuo T, Keishi S. Enzymatic degradation of chlorophyll in chenopodium album. Plant and Cell Physiology,1991,32:87-93.
    381. Zielinsk RE, Price CA. Relative requirements for magnesium of protein and chlorophyll synthesis in Euglena gracili. Plant Physiology,1978,61:624-625.
    382. Zhifang G, Loescher WH. Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant Cell and Environment,2003,26:275-283.
    383. Zhu HJ, Wang RG, CHen SH L. Genotypic differences between Populus euphratica and P. Popularis in antioxidative ability and salt tolerance under NaCl stress. Acta Ecologica Sinica,2007, 27(10):4113-4121.
    384. Zhu JK. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,2003,6: 441-445.
    385. Zou BJ, Mo RC. Distribution of soil zinc, iron, copper and manganese fractions and its relationship with plant availability. Pedosphere,1995,5(1):35-44.
    386. Zsiros O. Very strong UV-A light temporally separates the photoinhibition of photosystem Ⅱ into light-induced inactivation and repair. Biochimica et Biophysica Acta,2006,1757:123-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700