用户名: 密码: 验证码:
镁锂基合金腐蚀特性及其表面涂层制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁锂合金作为目前最轻的金属结构材料,密度仅为1.35-1.65g/cm3,除了具有超轻质特性外,镁锂合金还具有高比强度、高比刚度、电磁屏蔽性能好和导热导电性能好等优点,因此,镁锂合金被认为是目前在航空航天、武器装备、电子器材、交通装备、体育用品器材等领域具有广泛应用前景的先进材料之一。然而,由于镁锂合金中主体元素镁和锂均是非常活泼的元素,使得此合金的活性较高,耐腐蚀性能较差,这已成为制约镁锂合金在相关领域获得广泛应用的关键难题之一。
     本论文在研究三种常见相组成镁锂合金的腐蚀特性的基础上,分别采用熔盐置换扩散法和微弧氧化法在镁锂合金表面制备铝金属涂层和微弧氧化陶瓷膜,分别优化了表面处理工艺,并对熔盐置换扩散法制备铝金属涂层的热力学和动力学进行了分析,研究微弧氧化表面处理过程中分别利用铝酸钠和铝溶胶作为电解液添加剂对微弧氧化膜的影响。具体研究内容和获得的相关研究结果如下:
     对于三种具有典型组织的镁锂合金(LAZ532、LAZ832、LAZ1432)分别进行了显微组织、耐腐蚀性能和高温氧化行为等方面的对比研究。采用金相照片、XRD等对三种合金进行显微分析表明,LAZ532由(Mg)和AlLi相组成,AlLi相呈层片状并以网状分布于(Mg)基体晶界上,有少量分布于晶内;LAZ832由(Mg)、(Li)和AlLi相组成,AlLi相呈颗粒状分布于β(Li)相内;LAZ1432由(Li)和AlLi相组成,AlLi相呈块状分布于粗大的(Li)相基体中;采用析氢测试、失重测试、电化学极化曲线测试等方式对三种合金的腐蚀特性进行表征表明,三种镁锂合金的耐腐蚀性能均较差,并且合金的抗腐蚀能力随着锂含量的增加而降低,即耐腐蚀能力的顺序为:LAZ532>LAZ832>LAZ1432,三种合金的腐蚀电流密度基本各相差一个数量级;把三种镁锂合金在25-225℃条件下经0-24小时高温氧化,并对氧化后合金表面进行显微观察、腐蚀失重测试和电化学测试,结果表明,LAZ1432合金氧化最严重,LAZ832其次,LAZ532合金氧化程度最轻。在这些合金中存在的各种物相中,β(Li)相最易被氧化,AlLi相其次,(Mg)相最不易被氧化。经过高温氧化后的三组合金试样的耐腐蚀性能相比对应裸样具有一定的提升,但是随着时间的推移,合金表面的氧化膜会被破坏,腐蚀速度会有所增加。LAZ1432表面氧化膜存在孔洞,其腐蚀速率明显高于其它合金成分的腐蚀试样。
     采用熔盐置换扩散法对LAZ532镁锂合金进行表面合金化涂层制备,制备过程在等摩尔熔盐体系(AlCl3:NaCl=1:1)中进行处理,温度范围300~400℃,处理时间2~8h。在合金表面获得了富铝的合金化层,厚度在10μm左右,合金化层与基体为冶金结合。合金化层主要以Mg17Al12(γ相)组成,还有少量的镁、锂、铝之间的固溶体。经过处理的合金的耐腐蚀性能均有一定程度的提高,其中350℃+8h处理条件下获得的合金化涂层耐腐蚀能最好,自腐蚀电位提高0.2V,自腐蚀电流降低一个数量级,连续的γ相阻碍了合金基体的进一步腐蚀。对涂层形成的热力学和动力学进行理论分析表明,合金化层的形成包括置换、扩散、相变三个过程。
     为获得镁锂合金表面陶瓷涂层,对LAZ832镁锂合金进行了微弧氧化处理,优化了硅酸盐电解液体系中微弧氧化的工艺条件,并初步研究了向电解液中添加铝酸钠或铝溶胶作为添加剂时对膜层的影响。研究表明,在硅酸盐电解液体系中优化的工艺条件为:九水硅酸钠4g;氢氧化钠5g;十水四硼酸钠3g;蒸馏水1L;正向占空比:20%;电流大小:0.3A。在此工艺下制备的涂层使腐蚀电流密度降低了大约两个数量级;铝酸钠添加剂的引入可降低电解液的电导率,使得氧化膜表面微孔的数目明显减少,膜厚增加,膜的电阻率提高,但对耐腐蚀性能提高并没有益处。当加入铝溶胶后微弧氧化膜表面单位面积内微孔的数目及孔径明显减少,随着铝溶胶的增加,电阻也有所增加,微弧氧化膜的耐腐蚀性能也有所提高,极化电阻也逐渐变大。当铝溶胶的添加量为7ml/600ml时,微弧氧化膜的耐腐蚀性能最好。
As the lightest structural materials, Mg-Li alloys possess low densities of1.35-1.65g/cm3. Besides the superlight property, Mg-Li alloys have some other advantages, such ashigh specific strength, high specific stiffness, good property of electromagnetic shielding,good heat-conductivity and electricity-conductivity, etc. Therefore, Mg-Li alloy is deemed asone of prospective advanced materials having wide applications in the fields of aerospace,weapon equipment, electric equipment, traffic equipment, and sports equipment, etc. However,Mg and Li, which are the two main elements in Mg-Li alloys, are both very active. Thismakes Mg-Li base alloys very active with poor corrosion resistance, which becomes the keyproblem restricting the wide application of Mg-Li alloys.
     In this dissertation, the corrosion characteristics of three common Mg-Li base alloys withdifferent phase compositon are studied. Then two surface treatment methods, molten saltsubstitution and diffusion and micro-arc oxidation, are used to prepare coatings on Mg-Libase alloys. Besides the parameters optimizations for these two methods, the thermodynamicsand dynamics of the aluminum diffusion during the process of molten salt substitution anddiffusion are studied. The effects of the additives, sodium aluminate and alumina sol. on theprocess of micro-arc oxidation are also studied. The research content and the results are asfollow:
     The microstructure, corrosion resistance and high temperature oxidization behavior ofthree common Mg-Li base alloys, LAZ532, LAZ832and LAZ1432, are researched. OM andXRD analysis show that, LAZ532is composed of (Mg) and AlLi. AlLi phase mainly existsat the grain boundary of (Mg) in the form of reticulation, and a small amount of it exists atthe inner of (Mg) grains. In LAZ832, there are (Mg),(Li) and AlLi. AlLi exists in the
     (Li) in the form of particle. In LAZ1432, there are (Li) and AlLi. AlLi phase exists in thelarge scale (Li) in the form of block. Hydrogen evolution, weight loss, electrochemicalpotentiodynamic polarization, et al. are used to evalute the corrosion characteristics of thethree Mg-Li base alloys. Results show that the three Mg-Li base alloys all possess poorcorrosion resistance. With the increase of Li content, the corrosion resistance becomes poorerand poorer. The sequence of the corrosion resistant capability of the three alloys is: LAZ532>LAZ832>LAZ1432. The corrosive electric current density difference among thethree alloys is about one order of magnitude. The high temperature oxidations of the threealloys were carried at25-225℃for0-24hours. Results show that, as for the oxidationresistance, LAZ532is best, LAZ832is the second, and LAZ1432is the poorest. Comparingthe phases in the three alloys,(Mg) phase possesses the best oxidation resistance, AlLi phaseis the second, and β(Li) phase is the poorest. After hight temperature oxidation, the corrosionresistances of the three alloys are all better than those of the alloys before oxidaiton. However,with the increase of corrosion time, the oxide film will be destroyed, making the corrosionrate increase. Among the three alloys, the corrosion rate of LAZ1432after high temperatureoxidation is obviously higher than those of LAZ532and LAZ832, because of many cavitiesexisting in the oxide film of LAZ1432.
     Molten salt substitution and diffusion treatment was used to prepare metallic coat onLAZ532. The opitimized parameters are listed as follow: molten salt composition(AlCl3:NaCl=1:1, mol. ratio), temperature (300~400℃), treatment time (2-8h). Under theseexperimental parameters, a good Al-riched alloy layer with a thickness of about10μm can beprepared on the surface of LAZ532. The bonding between the alloy layer and LAZ532ismetallurgical bonding. The alloy layer is mainly composed of Mg17Al12, and small amount ofsolid solution with the elements of Mg, Li and Al. Temperature and treatment time are twoimportant parameters affecting the formation of diffusion layer.350℃+8his goog parameters.After treatment, the corrosion resistance of the alloy is improved obviously. The corrosionpotential increases by0.2V, and the corrosion current deceases by one order of magnitude.The corrosion resistance improvement can be attributed to the continuous Mg17Al12, whichcan hinder the matrix alloy from further corrosion. The formation of alloy layer includes threeprocesses, substitution, diffusion and phase transformation.
     To botain a ceramic coat on Mg-Li alloy, micro-arc oxidization treatment was carried inthe silicate electrolyte. The effects of the additives of sodium aluminate and alumina sol onthe film were also researched. The optimization parameters are listed as follow:Na2SiO3·9H2O4g, NaOH5g, Na2B4O7·10H2O3g, distilled water1L, positive duty rate20%,electric current0.3A. After the micro-arc oxidization treatment with these parameters, thecorrosion current of the alloy decreases by two orders of magnitude compared with the alloywithout surface treatment. When the sodium aluminate is added in silicate electrolyte, the electric conductivity of the electrolyte will decrease, and the amount of micro-pores on theoxidation film will decrease obviously. With the increase of sodium aluminate content, thethickness and electric resistivity of film both increase, although the corrosion resistance of theoxidation film does not improve obviously. When the sodium aluminate content is2g/L, thecorrosion resistance of the corresponding oxidation film is the best. When alumina sol isadded into electrolyte, the amount and size of pores on the micro-arc oxidation film bothdecrease obviously. With the increase of alumina sol content, electric resistivity of the filmincreases, and the corrosion resistance of the film is also improved. When the alumina solcontent is7ml/600ml, the corrosion resistance of the corresponding film is the best.
引文
[1]陈振华.镁合金[M].北京:化学工业出版社,2004:1-3,10
    [2] D.H. StJohn. Overview of current international magnesium research and recent CASTCRD developments[J]. Advanced Materials Research,2007,29-30:3-8页
    [3]《稀有金属知识》编写组.锂、铷、铳.北京:冶金工业出版社,1974
    [4] H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, M. Niemeyer. Alloydevelopment, processing and applications in magnesium lithium alloys[J]. MaterialsTransactions,2001,42(7):1160-1166P
    [5]张密林,F.M. Elkin.镁锂超轻合金[M].北京:科学出版社,2010
    [6]李玉明.镁的腐蚀与防护及其应用[J].科技信息(科学教研),2007,17:280-281页
    [7]陈守平,张军,方英民,梁毅.动力电池组特性分析与均衡管理[J].电池工业,2003,8(6):265-271页
    [8]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006
    [9]李红斌,姚广春,刘宜汉,吉海滨.超轻Mg-Li-Al系变形镁合金冷轧及热处理后的组织和性能[J].功能材料,2005,35(4):525-528页
    [10] H.F. Sun, C.J. Li, W.B. Fang. Corrosion behavior of extrusion-drawn pure Mg wireimmersed in simulated body fluid[J]. Transactions of Nonferrous Metals Society ofChina,2011,21: s258-s261P
    [11] Y.C. Xin, T. Hu, P.K. Chu. Degradation behaviour of pure magnesium in simulated bodyfluids with different concentrations of HCO3-[J]. Corrosion Science,2011,53:1522-1528P
    [12] Y.W. Song, D.Y. Shan, R.S. Chen, E.H. Han. Corrosion resistance of Mg–8.8Li alloycompared with AZ91[J]. Corrosion Engineering, Science and Technology,2011,46(6):719-723.
    [13] J.H. Nordlien, K. Nisanciouglu, S. Ono, N. Masuko. Morphology and structure ofwater-formed oxides on ternary Mg-Al alloys[J]. Journal of the Electrochemical Society,1997,144:461-466P
    [14] Z.Q. Li, D.Y. Shan, R.S. Chen, W. Ke, E.H. Han. Corrosion behavior of WE54magnesium alloy in3.5%NaCl solution[J]. Transactions of Nonferrous Metal Society ofChina,2006,16: s1806-s1809P
    [15] R.T. Ruggeri, T.R. Beck. Analysis of mass transfer in filiform corrosion[J]. Corrosion,1983,39:452-465P
    [16] Y. Song, D. Shan, R. Chen, E.H. Han. Corrosion characterization of Mg-8Li alloy inNaCl solution[J]. Corrosion Science,2009,51:1087-1094P
    [17] Y. Song, D. Shan, R. Chen, F. Zhang, E.H. Han. Formation mechanism of phosphateconversion film on Mg-8.8Li alloy[J]. Corrosion Science,2009,51:62-69P
    [18] C.D. Yfantis, D.K. Yfantis, J. Anastassopoulou, T. Theophanides, M. Staiger. Proc. of the4th WSEAS Conference on Environment, Ecosystems and Development (EED06),;20–22November,2006, Venice, Italy, pp.186–189P
    [19]黄晓梅,张密林,张春红.纯Mg和Mg-15Li合金在弱碱性NaCl溶液中的腐蚀行为[J].腐蚀科学与防护技术,2008,20(4):243-246页
    [20]黄晓梅,张密林. Mg-15Li合金在碱性NaCl溶液中的腐蚀行为[J].腐蚀科学与防护技术,2008,20(4):257-259页
    [21]黄晓梅,张密林,张春红.镁锂合金碱性条件下腐蚀的EIS分析[J].材料科学与工艺,2008,16(3):384-388页
    [22] M.C. Lin, C.Y. Tsai, J.Y. Uan. Electrochemical behaviour and corrosion performance ofMg-Li-Al-Zn anodes[J]. Corrosion Science,2009,51:2463-2472P
    [23] J.Q. Li, Z.K. Qu, R.Z. Wu, M.L. Zhang, J.H. Zhang. Microstructure, mechanicalproperties and aging behaviors of as-extruded Mg-5Li-3Al-2Zn-1.5Cu alloy[J]. MaterialsScience and Engineering A,2011,528(10-11):3915-3920P
    [24] R.Z. Wu, Z.K. Qu, M.L. Zhang. Reviews on the influences of alloying elements on themicrostructure and mechanical properties of Mg-Li base alloys[J]. Reviews on AdvancedMaterials Science,2010,24:14-34P
    [25] B. Jiang, C.H. Zhang, T. Wang, Z.K. Qu, R.Z. Wu, M.L. Zhang. Creep behaviors ofMg-5Li-3Al-(0,1)Ca alloys[J]. Materials&Design,2012,34:863-866P
    [26] H. Haferkamp, F.W. Bach, P. Bohling, P. Juchmann. Production, processing andproperties of lithium-containing Mg-alloys, in: G.W. Lorimer (Ed.), Proceedings of theThird International Magnesium Conference, Institute of Materials, London, UK,1997,pp.177–192P
    [27] M. Sahoo, J.T.N. Atkinson. Magnesium-lithium-alloys-constitution and fabrication foruse in batteries[J]. Journal of Materials Science,1982,17:3564-3574P
    [28] M.A. Leeflang, J.S. Dzwonczyk, J. Zhou, J. Duszczyk. Long-term biodegradation andassociated hydrogen evolution of duplex-structured Mg-Li-Al-(RE) alloys and theirmechanical properties[J]. Materials Science and Engineering B,2011,176:1741-1745P
    [29] H. Hermawan, D. Dube, D. Mantovani. Degradable metallic biomaterials: Design anddevelopment of Fe-Mn alloys for stents[J]. Journal of Biomedical MaterialsResearch-Part A,2010,93:1-11P
    [30] Y.B. Ma, N. Li, D.Y. Li, M.L. Zhang, X.M. Huang. Performance of Mg-14Li-1Al-0.1Ceas anode for Mg-air battery[J]. Journal of Power Sources,2011,196:2346-2350P
    [31] Y.Z. Lv, Y. Xu, D.X. Cao. The electrochemical behaviors of Mg, Mg-Li-Al-Ce andMg-Li-Al-Ce-Y in sodium chloride solution[J]. Journal of Power Sources,2011,196:8809-8814P
    [32]高丽丽,张春红,张密林,黄晓梅. Mg-11Li-3Al-0.5RE合金在碱性NaCl溶液中的腐蚀特性[J].材料研究学报,2008,22(2):135-140页
    [33]高丽丽,张春红,黄晓梅,张密林. Mg-11Li-3Al-0.5RE合金在酸性NaCl溶液中腐蚀特性研究[J].表面技术,2008,37(2):4-7页
    [34] C.H. Zhang, X.M. Huang, M.L. Zhang, L.L. Gao, R.Z. Wu. Electrochemicalcharacterization of the corrosion of a Mg-Li Alloy[J]. Materials Letters,2008,62:2177-2180P
    [35] L.L. Gao, C.H. Zhang, M.L. Zhang, X.M. Huang. The corrosion of a novelMg-11Li-3Al-0.5RE alloy in alkaline NaCl solution[J]. Journal of Alloys andCompounds,2009,468:285-289P
    [36]马毅斌,李宁,黎德育,张密林,黄晓梅. Mg-14Li-1Al-0.1Ce合金在卤素溶液(NaX,X=F,Cl,Br和I)中腐蚀行为的研究[J].腐蚀科学与防护技术,2011,23(6):467-470页
    [37]马毅斌,李宁,黎德育,张密林,黄晓梅. Mg-14Li-1Al-0.1Ce合金在NaCl溶液中的腐蚀行为[J].腐蚀与防护,2012,33(2):115-119页
    [38] F.E. Heakal, A.M. Fekry, M.Z. Fatayerji. Influence of halides on the dissolution andpassivation behavior of AZ91D magnesium alloy in aqueous solutions[J]. ElectrochimicaActa,2009,54:1545-1549P
    [39] S. Verdierc, N. Laak, S. Delalande. The surface reactivity of a magnesium-aluminiumalloy in acidic fluoride solutions studied by electrochemical techniques and XPS[J].Apply Surface Science,2004,235:513-517P
    [40]黄晓梅,张春红,张密林.纯镁和镁锂合金在中性3.5%NaCl溶液中的腐蚀行为[J].航空材料学报,2008,28(3):71-76页
    [41]黄晓梅,王艳艳,刘飒.镁锂合金在模拟人体体液中的腐蚀[J].腐蚀与防护,2011,32(10):785-787页
    [42]黄晓梅,凌文亮,刘飒,王艳艳.镁锂合金在人体模拟汗液中的腐蚀行为[J].表面技术,2009,38(6):45-47页
    [43] S. Ono, Y. Suzuki, H. Asoh. Effect of anodizing condition on corrosion resistance ofMg-Li-Y alloy[J]. Journal of Japan Institute of Light Metals,2011,61(2):60-65P
    [44] G.X. Wang, M.L. Zhang, R.Z. Wu. Molybdate and molybdate/permanganate conversioncoatings on Mg-8.5Li alloy[J]. Applied Surface Science,2012,258:2648-2654P
    [45] C.X. Ma, Y. Lu, P.P. Sun, Y. Yuan, X.Y. Jing, M.L. Zhang. Characterization of plasmaelectrolytic oxidation coatings formed on Mg-Li alloy in an alkaline polyphosphateelectrolyte[J]. Surface&Coatings Technology,2011,206:287-294P
    [46] L.H. Yang, J.Q. Li, Y.Z. Zheng, W.W. Jiang, M.L. Zhang. Electroless Ni-P plating withmolybdate pretreatment on Mg–8Li alloy[J]. Journal of Alloys and Compounds,2009,467:562-566P
    [47] C.A. Huang, C.K. Lin, Y.H. Yeh. The corrosion and wear resistances of magnesium alloy(LZ91) electroplated with copper and followed by1μm-thick chromium deposits[J].Thin Solid Films,2011,519:4774-4780P
    [48] M. Tsujikawa, S.I. Adachi, Y. Abe, K. Nakata, M. Kamita. Corrosion protection of Mg-Lialloy by plasma thermal spraying of aluminum[J]. Plasma Processes and Polymers,2007,4(s1): s593-s596P
    [49] Y.Q. Chen, F.Y. Geo, H.Y. Peng, H.W. Jiang, L.C. Yin, D. Wang, H.L. Huang. Depositionof titanium nitride film on Mg-Li alloys by DC reactive magnetron sputtering[J].Advanced Materials Research,2011,204-210:1685-1690P
    [50] P.C. Wang, Y.T. Shih, M.C. Lin, H.C. Lin, M.J. Chen, K.M. Lin. Improvement of wearand cavitation–erosion by ALD-deposited LiAlxOy films on an Mg-10Li-0.5Zn alloy[J].Surface&Coatings Technology,2010,204:3707-3712P
    [51] C.A. Huang, Y.W. Liu, C.H. Chuang. The hardening mechanism of a chromium-carbondeposit electroplated from a trivalent chromium-based bath[J]. Thin Solid Films,2009,517:4902-4904P
    [52]盛楠,张春红,黄晓梅,高丽丽.常温下镁锂合金浸锌溶液及一次浸锌[J].腐蚀与防护,2008,29(12):752-755页
    [53]张春红,江溪,黄晓梅,高丽丽.镁锂合金双配位剂浸锌溶液的研究[J].电镀与涂饰,2009,28(8):33-36页
    [54]高福麟,高斌,高翔.镁锂合金表面镍磷合金化处理的研究[J].表面技术,2007,36(6):59-61页
    [55]黄晓梅,冯慧峤.镁—锂合金化学镀镍[J].电镀与环保,2010,30(4):28-32页
    [56]闫洪.现代化学镀镍和复合镀新技术[M].北京:国防工业出版社,1999:1-3页
    [57]韩玉昌,周铁涛,刘培英. Mg-13Li-5Zn合金化学镀镍研究[J].材料保护,2006,39(10):38-41页
    [58] H.J. Luo, B.N. Song, Y.H. Liu, G.C. Yao. Electroless Ni-P plating on Mg-Li alloy bytwo-step method[J]. Transactions of Nonferrous Metal Society of China,2011,21:2225-2230P
    [59] L.H. Yang, J.Q. Li, Y.Z. Zheng, W.W. Jiang, M.L. Zhang. Electroless Ni-P plating withmolybdate pretreatment on Mg-8Li alloy[J]. Journal of Alloys and Compounds,2009,467:562-566.
    [60] M. Tsujikawa, S.I. Adachi, K. Nakata, M. Kamita, S. Oki. Plasma thermal deposition ofaluminum on Mg-Li work-hardened alloy[J]. Ceramic Transactions,2007,198:453-460P
    [61] S. Oki, M. Tsujikawa, T. Morishige, M. Kamita. Thin protective aluminum layer onMg-Li alloy by plasma spraying and cold rolling[J]. Plasma Processes and Polymers,2009,6: s954-s957P
    [62]徐用军,李康,姜兆化,姚忠平,张密林.镁锂合金表面陶瓷膜的制备工艺及耐蚀性能[J].材料科学与工艺,2010,18(1):133-136页
    [63]施玲玲,徐用军,李康,姚忠平,姜兆华. Mg-Li合金微弧氧化陶瓷的制备及其耐蚀性能[J].材料研究学报,2009,23(2):220-224页
    [64]景晓燕,袁艺,于方,宋来文,张密林,王涛,朱果逸.镁锂合金表面耐蚀微弧氧化膜的研究[J].稀有金属材料与工程,2009,38(7):1154-1157页
    [65] C.X. Ma, Y. Lu, P.P. Sun, Y. Yuan, X.Y. Jing, M.L. Zhang. Characterization of plasmaelectrolytic oxidation coatings formed on Mg–Li alloy in an alkaline polyphosphateelectrolyte[J]. Surface&Coating Technology,2011,206:287-294P
    [66] J.K. Yao, J.D. Shao, H.B. He, Z.X. Fan. Optical and electrical properties of TiOx thinfilms deposited by electron beam evaporation[J]. Vacuum,2007,81(9):1023-1028P
    [67] Y. Wang, Y. Qin, G.C. Li, Z.L. Cui, Z.K. Zhang. One-step synthesis and optical propertiesof blue titanium suboxide nanoparticles[J]. Journal of Crystal Growth,2005,284(3-4):402-406P
    [68] H.H. Lou, Q.Z. Cai, J. He, B.K. Wei..Preparation and properties of composite ceramiccoating containing Al2O3–ZrO2–Y2O3on AZ91D magnesium alloy by plasmaelectrolytic oxidation[J]. Current Applied Physics,2009,9:1341-1346P
    [69] E. Matykina, R. Arrabal, R. Monfort, P. Skeldon, G.E. Thompson. Incorporation ofzirconia into coatings formed by DC plasma electrolytic oxidation of aluminium innanoparticle suspensions[J]. Applied Surface Science,2008,255:2830-2838P
    [70] C.X. Ma, M.L. Zhang, Y. Yuan, X.Y. Jing, X.F. Bai. Tribological behavior of plasmaelectrolytic oxidation coatings on the surface of Mg–8Li–1Al alloy[J]. TribologyInternational,2012,47:62-68P
    [71] W.Y. Mu, Y. Han. Characterization and properties of the MgF2/ZrO2composite coatingson magnesium prepared by micro-arc oxidation[J]. Surface&Coatings Technology,2008,202:4278-4284P
    [72] J.Y. Liu, Y. Lu, X.Y. Jing, Y. Yuan, M. Zhang. Characterization of plasma electrolyticoxidation coatings formed on Mg–Li alloy in an alkaline silicate electrolyte containingsilica sol[J]. Materials and Corrosion,2009,60(11):865-870P
    [73] Z.J. Li, Y. Yuan, P.P. Sun, X.Y. Jing. Ceramic Coatings of LA141Alloy Formed byPlasma Electrolytic Oxidation for Corrosion Protection[J]. ACS Applied Materials&Interfaces,2011,(3):3682-3690P
    [74] P.P. Sun, Y. Lu, Y. Yuan, X.Y. Jing, M.L. Zhang. Preparation and characterization ofduplex PEO/MoC coatings on Mg–Li alloy[J]. Surface&Coatings Technology,2011,205:4500-4506P
    [75]李俊刚,吕迎,李慕勤,朱兆军,魏尊杰,孟祥才.镁锂合金表面处理技术研究现状及展望[J].材料保护,2011,44(7):38-43页
    [76] B. Liu, M.L. Zhang, R.Z. Wu. Influence of Ce on microstructure and mechanicalproperties of LA141alloys[J]. Transactions of Nonferrous Metall Society of China,2007,17: s376-s380P
    [77] B. Liu, M.L. Zhang, R.Z. Wu. Effects of Nd on microstructure and mechanical propertiesof as-cast LA141alloys[J]. Materials Science and Engineering A,2008,487:347-351P
    [78]李秋月,巫瑞智,张密林,刘旭贺.镁锂合金表面碳化物膜层制备及其耐腐蚀性能表征[J].应用科技,2010,37(3):62-64页
    [79]刘滨.超轻Mg-Li-Al-RE系合金组织和性能研究[D].哈尔滨:哈尔滨工程大学博士论文,2008
    [80] F. Czerwinski. The oxidation behaviour of an AZ91D magnesium alloy at hightemperatures[J]. Acta Materialia,2002,50:2639-2654P
    [81]许振明,徐孝勉.铝和镁的表面处理[M].上海:上海科学技术文献出版社,2005
    [82] G. Song,A. Atrens,M. Dargusch. Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science,1999,41:138~162P
    [83]张华.镁锂合金表面腐蚀防护研究[D].沈阳:东北大学,2008:38~40页
    [84]何美凤,刘磊,仵亚婷,田福英,胡文彬. AZ91D镁合金表面熔盐置换扩散涂层组织及耐腐蚀性能研究[J].材料工程,2010,4:86~88页
    [85] J.Q. Li, J.M. An, Z.K. Qu, R.Z. Wu, J.H. Zhang, M.L. Zhang. Effects of solution heattreatment on the microstructure and hardness of Mg-5Li-3Al-2Zn-2Cu alloy[J].Materials Science&Engineering A,2010,527:7138-7142P
    [86]何美凤,刘磊,仵亚婷,钟澄.镁合金表面AlCl3-NaCl熔盐置换扩渗铝涂层的热力学研究[J].材料导报,2010,24(11):13-15页
    [87]刘楚明,朱秀荣,周海涛.镁合金相图集[M].长沙:中南大学出版社,2006
    [88]印永嘉.物理化学简明手册[M].北京:高等教育出版社,1988
    [89]姚允斌.物理化学手册[M].上海:上海科学技术出版社,1985
    [90]黄继华.金属及合金中的扩散[M].北京:冶金工业出版社,1998:12~30页
    [91]张承侃. Al-Mg系合金相图计算[J].广东工学院学报,1988,5(2):25~27页
    [92]吉泽升,朱荣凯,李丹.传输原理[M].哈尔滨:哈尔滨工业大学出版社,2002:105~120页
    [93]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004:316~317页
    [94]于家斗.关于反应扩散速度的计算(二)[J].稀有金属合金加工,1980,(4):26~31页
    [95]何美凤.镁合金表面熔盐自发置换扩渗铝涂层制备及其耐腐蚀性能研究[D].上海:上海交通大学,2009:9~10,80~83页
    [96] G.X. Wang, M.L. Zhang, R.Z. Wu. Molybdate and molybdate/permanganate conversioncoatings on Mg-8.5Li alloy[J]. Applied Surface Science,2012,258:2648-2654P
    [97]姜伟,王桂香.镁合金微弧氧化工艺的研究进展[J].电镀与环保,2010,30(4):1-4页
    [98] R.Z. Wu, Z.K. Qu, M.L. Zhang. Effects of the addition of Y in Mg-8Li-(1,3)Al alloy[J].Materials Science and Engineering A,2009,516:96-99P
    [99] C.W. Yang, T.S. Lui, L.H. Chen, H.E. Hung. Tensile mechanical properties and failurebehaviors with the ductile-to-brittle transition of the + -type Mg-Li-Al-Zn alloy[J].Scripta Materialia,2009,61(12):1141-1144P
    [100] L.L. Shi, Y.J. Xu, K. Li, Z.P. Yao, S.Q. Wu. Effect of additives on structure andcorrosion resistance of ceramic coatings on Mg-Li alloy by micro-arc oxidation[J].Current Applied Physics,2010,10:719-723P
    [101] Y.J. Xu, K. Li, Z.P. Yao, Z.H. Jiang, M.L. Zhang. Micro-arc oxidation coatings onMg-Li alloys[J]. Rare Metals,2009,28(2):160-163P
    [102] H.P. Duan, C.W. Yan, F.H. Wang. Growth process of plasma electrolytic oxidation filmsformed on magnesium alloy AZ91D in silicate solution[J]. Electrochimica Acta,2007,52:5002-5009P
    [103] Q.Z. Cai, L.S. Wang, B.K. Wei, Q.X. Liu. Electrochemical performance of microarcoxidation films on AZ91D magnesium alloy in silicate and phosphate eletrolytes[J].Surface Coating Technology,2006,200:3727-3733P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700