用户名: 密码: 验证码:
基于气浮原理的多维力标定方法及系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维柔性触觉触感器标定时对加载方式有其特殊要求。以砝码加载为代表的开环加载标定方式操作较为繁琐,加载装置中的误差直接传递到加载力中,加载精度难以提高;采用六维力或三维力传感器实时测量标定力的闭环加载标定方式操作简便,加载精度不受加载装置误差的影响,但加载精度受制于六维力/三维力传感器的测量精度。
     基于六维力测量的柔性触觉传感器标定方案的关键技术难点在于六维力测量精度。鉴于现有的六维力传感器测量精度难以满足柔性触觉阵列传感器标定精度的要求,本文在研究柔性触觉阵列传感器的标定方法中,提出了一种旨在避免多维力测量时维间耦合、提高测量精度的气浮式测力思想:通过测量喷嘴——浮板机构中气流参数来测量浮板上的作用力的大小,在理论研究的基础上设计了一种可用于柔性触觉传感器标定的气浮式六维力测力平台样机,理论研究与实验结果表明,气浮式六维力测力平台具有很高的测量精度,从而使得基于六维力测量的柔性触觉阵列传感器标定方案得以实现。
     论文主要内容以及创新性工作有以下几个方面:(1)分析了柔性触觉传感器标定的特殊要求以及普通加载装置误差,针对高精度的柔性触觉阵列传感器,提出了基于气浮式六维力测量的柔性触觉阵列传感器标定方案;(2)对压力式喷嘴浮板机构的基本理论进行了较为系统的研究,建立了喷嘴-浮板机构数学模型,研制了喷嘴-浮板机构实验装置,实验验证了理论研究的正确性;(3)用FLUENT软件仿真分析了喷嘴节流孔直径、承压腔直径和深度、喷嘴外径以及不同气膜厚度和供气压力对喷嘴-浮板机构静特性的影响规律,并根据仿真数据对喷嘴结构尺寸提出了优化设计方案;(4)设计了一种气浮式六维力测力平台,研究得出了气浮式六维力测力平台的数学模型,研制了气浮式六维力测力平台样机;(5)提出了基于浮板重力加载的气浮式六维力测量平台标定方法,解决了气浮式六维力测量平台的标定难题。
     本文经过实验得出以下结论:气浮式测力平台测力时不存在维间耦合现象,符合理论预期;空间力测量的误差为:力的大小误差<0.2%,力的方向误差<0.5°,力的作用点误差≤±0.05毫米,满足柔性触觉阵列传感器标定的要求。
     气浮式测力方法及气浮式六维力传感器,其意义并不仅限于解决了柔性触觉传感器标定问题。作为一种新型测力方法,气浮测力在多维力测量领域具有独特应用前景,尤其是气浮式多维力测量方法在测量精度上的突破,对许多相关领域具有重要意义,本文研究的成果对各种气浮式多维力传感器的设计具有普遍应用价值。
Three-dimensional flexible tactile sensor has its own special requirements for loading method when it is calibrated. The open-loop load calibration method represented by weight load is more complicated to operate. The loading device error is directly delivered to the load force, which leading to the load accuracy is difficult to improve; it is easy to operate in real-time measurement of calibration force for closed-loop load calibration method by using six-axis force/three-axis force sensor, and the load accuracy is only subject to the accuracy of six-axis force/three-axis force sensor which isn't affected by the loading device error.
     The difficulty of flexible tactile sensor calibration based on six-axis force is the measurement accuracy of six-axis force. In view of the existing six-axis force sensor measurement accuracy is difficult to meet the calibration accuracy requirements of flexible tactile sensor array, this paper presents a flotation-type force measurement thought which designed to avoid coupling between the dimension and improve easurement accuracy in multi-axis measurements:the force on the floating plate could be measured by measuring the gas parameters of nozzle-floating plate mechanism, and designs a prototype of flotation-type six-axis force measurement platform that can calibrate the three-dimensional flexible tactile sensor. Theoretical studies and experimental results show that flotation-type six-axis force measurement platform has a high measurement accuracy, so the three-dimensional flexible tactile sensor calibration based on six-axis force can be achieved.
     The main content and innovative work of the paper is in the following areas:(1) the special requirement of flexible tactile sensor calibration and loading device error is analyzed, a program of flexible tactile sensor array calibration based on flotation-type six-axis force measurement is proposed in connection with high-precision flexible tactile sensor array;(2) a systematic study on the basic theory of the pressure nozzle-floating plate mechanism is carried out, a mathematical model of nozzle-floating plate mechanism is established, an experimental device of nozzle-floating plate mechanism is developed, and the experiments verify the correctness of the theoretical study;(3) The affect of nozzle orifice diameter, the diameter and the depth of the pressure chamber, nozzle diameter and gas film thickness and gas pressure on the static characteristics of the nozzle-floating plate mechanism is analyzed with Fluent software simulation, and an optimization scheme of nozzle structure size is proposed according to the simulation data;(4)a flotation-type six-axis force measurement platform is designed and made, a mathematical model of nozzle-floating plate mechanism platform is researched;(5)a calibration method of flotation-type six-axis force measurement based on gravity load of floating plate and the calibration problem of flotation-type six-axis force measurement platform is solved.
     In this paper, we draw the following conclusions:flotation-type force measurement platform contains no coupling between the dimension which is consistent with theoretical expectations; the space force measurement error is:the size of the force error <0.2%, direction of the force error <0.5°, Point error of the force≤±0.05mm, and they meet the calibration requirements of flexible tactile sensor array.
     The significance of flotation force measurement methods and flotation-type six-axis force sensor is not limited to solve the problem of three-dimensional flexible tactile sensor calibration. As a new force measurement approach, flotation force measurement has a unique prospect in the field of multi-axis force measurement, The breakthrough of the flotation-type multi-dimensional force measurement on the measurement accuracy has a significance on many related fields.The results of research have a universal application on a variety of flotation multidimensional force sensor design.
引文
[1]李科杰主编.新编传感器技术手册[M].第一版,北京,国防工业出版社.2002.1:1182.
    [2]R.Andrew Russell. Robot Tactile Sensing[M].1990, by Prentice Hall of Australia pty Ltd.
    [3]高国富,谢少荣,罗均.机器人传感器及其应用[M].北京,化学工业出版社.2005:7-12.
    [4]Mark R Cutkosky, Robert D Howe, William R Provancher. Force and Tactile Sensors. Springer Handbook of Robotics[M]. Germany,2008:455-476
    [5]T. Mukai, M. Onishi, S. Hirano, and Z. Luo, Development of the tactile sensor system of a human-interactive robot "RI-MAN" [J]. IEEE Trans.Robot.2008,24(2):505-512.
    [6]Salo, Kirstein T, Vancura K U, etc. CMOS-based tactile microsensor for medical instrumentation. IEEE sensors journal,2007,7(1-2):258-265.
    [7]席旭刚,罗志增,张启忠.基于触觉传感器的工件形状识别.机电工程,2005,22(9):43-45.
    [8]罗志增,张启忠,叶明.压阻阵列触滑觉复合传感器.机器人,2001,23(2):166-170.
    [9]秦岚,李清,孙先逵.一种新型智能机器人触觉传感器服装的研究.传感技术学报,2006,19(3):824-827.
    [10]M H Lee. Tactile Sensing:New Directions, New Challenges. Int J Robotics Research,2000, 19 (7):636-64.
    [11]张福学.机器人学-智能机器人传感技术[M].北京,电子工业出版社,1996:101-110.
    [12]Lumelsky V J, Shuq M S, Sensitive Skin[J]. IEEE Sensors Journal,2001.1(1):41-51.
    [13]Hoshi, T Shinoda H. Robot Skin Based on Touch-Area-Sensitive Tactile Element[C]. Proceedings of the 2006 IEEE Intemational Conference on Ro botics and Automation,2006: 3463-3468.
    [14]R. Dahiya, G. Metta, M. Valle, and G. Sandini. Tactile sensing:From humans to humanoids[J]. IEEE Trans. Robot., vol.26, no.1, pp.1-20, Feb.2010.
    [15]Alexander Schmitz, Perla Maiolino, Marco Maggiali, etc. Methods and Technologies for the Implementation of Large-Scale Robot Tactile Sensors[J]. IEEE TRANSACTIONS ON ROBOTICS, VOL.27, NO.3, JUNE 2011:389-400
    [16]B. Argall, E. Sauser, and A. Billard. Tactile feedback for policy refinement and reuse[C] in Proc.9th IEEE Int. Conf. Dev. Learning,2010, pp.7-12.
    [17]Byungiune Choi, Hyouk Ryeol Choi, Sungchul Kang. Development of tactile sensor for detecting contact force and slip[C]. IROS 2005, IEEE/RSJ International Conference,2005: 2638-2643.
    [18]李鹏.电磁波屏蔽橡胶的导电机理与屏蔽性能研究[D].大连理工大学硕士学位论文,2005:1-5.
    [19]王兰美,郭业民,潘志国.人体足底压力分布研究与应用[J].机械制造与自动化[J],2005,34(1):35-38.
    [20]刘少强,黄惟一,王爱民等.机器人触觉传感技术研发的历史现状与趋势[J].机器人,2002,24(4):362-366(374)
    [21]S Sastry, et al. Mill-irobotics for remote, minimally invasive surgery. Robotics and A utonomous System[J],1997,21:305-316.
    [22]J Dargah i, et al. A micromach ined p iezoelectric teeth-like laparo scopic tactile sensor:theo ry, fabrication and experiments[C], P roc. of IEEE ICRA,1999:299-304
    [23]M. E. H. Eltaib, J. R. Hewit. Tactile sensing technology for minimal access surgery-a review[J]. Mechatronics,2003,13:1163-1177.
    [24]Baglio, S.; Muscato, G; Savalli. N. Tactile measuring systems for the recognition of unknown surfaces[J]. Instrumentation and Measurement[C], IEEE Transactions on 2002,51(3):522-531
    [25]Bemd Herold,Martin Geyer,Clifford J.Studman. Fruit contact pressure distributions[J]. Equipment Computers and Electronics in Agriculture,2001,32:167-179.
    [26]Byungiune Choi; Hyouk Ryeol Choi; Sungchul Kang. Development of tactile sensor for detecting contact force and slip[C]. IROS 2005, IEEE/RSJ International Conference on,2005: 2638-2643
    [27]Tan,H. Z,Slivovsky,L. A,Pentland,A. A sensing chair using pressure distribution sensors[J]. IEEE/ASME Transactions 011,2001,6(3):261-268.
    [28]Y.Hasegawa, M.Shikida, D.Ogura,et al. Novel type of fabric tactile sensor made from artificial hollow fiber[J]. MEMS 2007,2007:603-606.
    [29]http://www.jsk.t.u-tokyo.ac.jp/Mkuo/kotaro/index-e. html#outline
    [30]Ikuo Mizuuchi. A Musculoskeletal Flexible-Spine Humanoid Kotaro Aiming at the Future inl5 years time[C]. In Proceedings of 36th International Symposium on Robotics(ISR2005),2005:45-56.
    [31]张福学,孙慷主编.压电学(下册)[M].第一版,北京,国防工业出版杜.1984.
    [32]G. Murali Krishna and K. Rajanna, Tactile Sensor Based on Piezoelectric Resonance[J]. IEEE SENSORS JOURNAL, VOL.4, NO.5, OCTOBER 2004:691-697.
    [33]Yong-Kook Kim, Kunnyun Kim, Kang Ryeol Lee, Woo-Sung Cho, Dae-Sung Lee, Won Hyo Kim. Technology development of silicon based CMOS tactile senor for robotics applications[C]. IEEE SENSORS 2006, EXCO, Daegu, Kor ea, October 22-25,2006:734-737.
    [34]Mei Tao, Ge Yu, Ni Libin, and et al. Study on the robot tactile sensor for detecting 3D contact force[J]. Gaojishu Tongxin/High Technology Letters, Vol.10, No.3, Mar,2000:53-56.
    [35]J. G. Rocha, C. Santos, J. M. Cabral and S. Lanceros-Mendezt.3 Axis Capacitive Tactile Sensor and Readout Electronics[C]. IEEE ISIE 2006, July 9-12,2006, Montreal, Quebec, Canada: 2767-2772.
    [36]Hyung-Kew Lee, Sun-Li Chang, and Euisik Yoon. A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL.15, NO.6, December,2006:1681-1686.
    [37]李秀娟,许湘剑.一种采用光波导的触觉传感器[J].仪器仪表学报,2002年6月,第23卷第3期增刊:127-129.
    [38]刘莉.基于磁敏Z元件的机器人触觉传感器及其实验研究[D].哈尔滨工业大学博士学位论文.2000年.
    [39]Y J Yang, M Y Cheng, W Y Chang and et al. An integrated flexible temperature and tactile sensing array using PI-copper films[J]. Sens ors and Actuators A:Physical,2008.143(1):143-153.
    [40]Giorgio Cannata and M. Maggiali, An Embedded Artificial Skin for Humanoid Robots[C]. 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Seoul, Korea.
    [41]A. Schmitz, M. Maggiali, L. Natale, and G. Metta. Touch sensors for humanoid hands[C]. in Proc.19th IEEE Int. Symp. Robot Human Interact. Commun.,2010:691-697.
    [42]T. Sekitani and T. Someya. Stretchable, large-area organic electronics[J]. Adv. Mater,22(20): 2228-2246,2010.
    [43]E S Hwang, J H Seo, Y J Kim. A polymer-based flexible tactile sensor for normal and shear load detection[C]. Proc. IEEE MEMS'06,2006:714-717.
    [44]E S Hwang, J H Seom and et al. A Polymer-Based Flexible Tactile Sensor for Both Normal and Shear Load Detections and Its Application for Robotics[J]. Microelectromechanical Systems, 2007.16(3):556-563.
    [45]Kentaro Noda, Kazunori Hoshino, Kiyoshi Matsumoto and et al. A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material[J]. Sensors and Actuators A,2006.127:295-301.
    [46]A. Schmitz, M. Maggiali, L. Natale, B. Bonino, and G. Metta, A tactile sensor for the f(?) ngertips of the humanoid robot Cub[C]. in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,2010, pp.2212-2217.
    [47]李源,邵力,栗大超等.用于微结构几何量测量的MEMS三维微触觉传感器的性能测试[J].计量学报,2008,29(1):21-25.
    [48]Someya. T and S Iba and et al. A Large-Area, Flexible, and Lightweight Sheet Image Scanner Integrated with Organic Field-Effect Transistors and Organic Photodiodes[C].2004 IEEE International Electron Devices Meeting IEDM, San Francisco.
    [49]Breazeal and W D Stiehl. A Sensitive Skin for Robotic Companions Featuring Temperature, Force, and Electric Field Sensors[C].2006. Intelligent Robots and Systems, Beijing.
    [50]Bajcsy R. Active Perc eption[C]. Proc.of IEEE,1988,76(8):996-1005.
    [51]Ying Huang,etc. Three-dimensional force flexible tactile sensor Based on robot sensitive skin[C], ISPMM'2008; International Symposium on Precision Mechanical Measurements, Vol.7130, 713016:1-6.Aug25-29,2008,Hefei/Jiuhua Mt,Anhui,China
    [52]黄英.基于压力敏感导电橡胶的柔性多维阵列触觉传感器研究.合肥工业大学博士论文,2008.11.
    [53]王国建,王德海,邱军等.功能高分子材料[M].上海:华东理工大学出版社,2006:24-27.
    [54]BARBA Anna A, LAMBERTI Gaetano, DAMORE Matteo and et al. Carbon black/silicone rubber blends as absorbing materials to reduce electro magnetic interferences(EMI)[J]. Polymer bulletin 2006.57(4):587-593.
    [55]马兴瑞,苟兴宇,李铁寿等.航天器动力学发展概况[J].宇航学报,2000,21(3):1-5.
    [56]巨涛,葛运建,双丰等.新型三维柔性触觉阵列传感器标定系统与方法研究.仪表技术,2011,第1期:49-53.
    [57]栗大超,王和牛,傅星,胡小唐MEMS三维微触觉力传感器标定方法.纳米技术与精密工程,2010,8(4):335-339
    [58]赵大博,栗大超,李源等.三维微触觉MEMS传感器测试校准的方法与系统.传感技术学报,2006,19(5):1504-1508.
    [59]Tao Liu, Yoshio Inoue, Kyoko Shibata. A Small and Low-Cost 3-D Tactile Sensor for a Wearable Force Plate[J]. Sensors Journal,2009,9(9):1103-1110.
    [60]Melissa T. Perri, Ana Luisa Trejos, Michael D. Naish, Rajni V. Patel,and Richard A. Malthaner. Initial Evaluation of a Tactile/Kinesthetic Force Feedback System for Minimally Invasive Tumor Localization[J]. Asme Transactions on Mechantronics,2010,15(6):925-931.
    [61]Dong-Ki Kim, Jong-Ho Kim, Hyun-Joon Kwon, and Young-Ha Kwon[J]. A Touchpad for Force and Location Sensing. ETRI Journal,2010,32(5):722-728.
    [62]郑红梅,刘正士,郑传荣等.机器人六维腕力传感器标定试验台误差分析与研究.计量学报,2005,26(4):333-336(342.
    [63]王国泰,易秀芳,王理丽.六维力传感器发展中的几个问题[J].机器人,1997(6):474-478.
    [64]刘正士.机械人多维腕力传感器静、动特性若干基本问题的研究.合肥工业大学博士学位论文,1996,7:92.
    [65]王国泰,葛运建,朱永亮.六维力/力矩传感器性能和使用的有关问题.智能机器人传感器 实验室学术年报,1993,12(1):18-20.
    [66]曹会彬,孙玉香,刘利民,冯勇,王以俊,葛运建.多维力传感器耦合分析及解耦方法的研究[J].传感技术学报,2011,24(8):1136-1140.
    [67]姜力,刘宏,蔡鹤皋.多维力/力矩传感器静态解耦的研究[J].仪器仪表学报,2004,25(3):284-287.
    [68]许德章,吴仲城,葛运建等.机器人六维腕力传感器耦合矩阵的确定与摄动分析[J].仪器仪表学报,2005,26(1):7一11.
    [69]蒲筠果,赵晓东.机器人力传感器分析[J].邢台职业技术学院学报,2004(10):21-15.
    [70]黄斌,余晓芬,黄英等.气浮式多维力传感器及多维力测量方法[P].中国专利:200810019550.2.
    [71]黄斌,余晓芬,黄英.气浮式多维力传感器[P].中国专利:ZL200820031374.X.
    [72]黄斌.力及位移量的气浮式测量方法[P].中国专利:ZL200810020468.1.
    [73]王云飞.气体润滑理论与气体轴承设计.北京:机械工业出版社,1999.2
    [74]Guo Zenglin, Hirano Toshio,KirkR Gordon. Application of CFD analysis for rotating machinery-Part Ⅰ:hydrodynamic,hydrostatic bearings and squeeze film damper[J]. Journal of Engineering for Gas Turbines and Power,2005,127(4):445-451.
    [75]HiranoT,Guo Z L,KirkR GApplication of computation-al fluid dynamics analysis for rotating machinery-Part Ⅱ:Labyrinth seal analysis[J]. Journal of Engineering for Gas Turbines and Power, 2005,127(4):820-826.
    [76]SHIGEKA Y,MAKOTO Y. Numerical calculations of pressure distribution in the bearing clearance of circular aerostatic thrust bearings with a single air supply inlet[J]. Transactions of the ASME,2007,129(4):384-390.
    [77]BELFORTE G, RAPARELLI T, VIKTOROV V,et al. Discharge coefficients of orifice-type restrictor for aerostatic bearings[J]. Tribology International,2007,40(3):512-521.
    [78]YOSHIMOTO S,YAMAMOTO M. Numerical calculations of pressure distribution in the bearing clearance of circular aerostatic thrust bearings with a single air supply inlet[J]. Journal of Tribology, Transactions of the ASME,2007,129(2):384-390.
    [79]孙昂,马文琦,王祖温.平面静压气浮轴承的超声速流场特性[J].机械工程学报,2010,46(9):113-119.
    [80]侯予,赵祥雄,陈双涛等.小孔节流静压止推气体轴承静特性的数值分析[J].润滑与密封,2008,33(9);476-480.
    [81]黄灏,刘品宽,董泽光.静压止推气体轴承性能仿真[J].计算机仿真,2010,27(3):340-343.
    [82]L Yuntang, Ding Han. Influence of the geometrical parameters of aerostatic thrust bearing with pocketed orifice-type restrictor on its performance [J]. Tribology Int,2007,40:1120-1126.
    [83]Mohamed E, Eleshaky. CFD investigation of pressure depressions in aerostatic circular thrust bearings [J]. Tribology International,2009,42:1108-1117.
    [84]Masaaki Miyatake, Shigeka Yoshimoto. Numerical investigation of static and dynamic characteristics of aerostatic thrust bearings with small feedholes[J]. Tribology International, 2010,43,1353-1359.
    [85]Uichiro Nishio, Kei Somaya, Shigeka Yoshimoto. Numerical calculation and experimental verification of static and dynamic characteristics of aerostatic thrust bearings with small feedholes[J]. Tribology International,2011,44,1790-1795.
    [86]机械工程手册电机工程手册编委会,机械工程手册,北京:机械工业出版社,1982.
    [87]孙建民,杨清梅.传感器技术,北京:清华大学出版社2005,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700