用户名: 密码: 验证码:
分区式PRB修复地下水氮污染技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水是宝贵的淡水资源,是水资源的重要组成部分。随着经济社会的快速发展,工农业生产规模的不断扩大,废物排泄量激增,导致地下水三氮(NH4+–N,NO2-–N、NO3-–N)污染日趋严重。长期饮用三氮污染地下水会导致患有高铁血红蛋白症、肝损害以及癌症等疾病,对儿童的危害更加严重。地下水氮污染治理已刻不容缓。
     本论文提出经济、高效的新型的分区式渗透反应格栅(PRB)地下水氮污染原位修复技术。试验从反应介质的遴选入手,为分区式PRB的硝化段、反硝化和二次污染防控段遴选出经济、缓释、高效的有机碳源和释氧材料。根据依托课题示范区的氮污染组分开展分区式PRB模拟试验研究。
     试验选用纸屑、木屑和核桃壳和分别产自三季屯、阿克苏、法库、章党、平庄、张家口、王牛滩、龙口、灵石、义马、汝州、昭通的12种褐煤样品与人工复合碳源材料HE(大麻纤维40%,聚乙烯60%)、HB(大麻纤维40%,聚丁二酸丁二醇酯60%)、HL(大麻纤维40%,聚乳酸60%)共同进行性能遴选。在进水硝酸盐氮浓度为30mg/L,室温19±1℃,水力停留时间24小时条件下,核桃壳装置对硝酸盐氮的去除率达到95%左右,并且在180天的运行期内,处理效果高效、稳定,出水急性毒性检测合格。试验以天然黏土和碳酸钙为原料制备的释氧材料,在过水流速0.02m/d的条件下,可维持出水溶解氧在7mg/L左右长达169天,具有良好的长效释氧性能。以遴选的碳源和制备的释氧材料为主要活性介质,组建分区式PRB模拟试验系统,在进水氨氮浓度2mg/L,硝酸盐氮浓度30mg/L,恒温15℃,流速0.02m/d运行工况下,出水达到《地下水质量标准》(GB/T14848-93)中的Ⅲ类水质标准要求。
     本试验的开展,优化了传统原位生物脱氮PRB的反应环境,强化了处理效果。同时,分区式PRB原位修复技术具有高效、经济、环保、不占用土地的优点,对于我国农业大国,具有重要的实用价值。
Groundwater, which is an important component of water resources, is one of the mostvaluable freshwater resources. Because of the rapid development of economic andsociety, expanding of the scale of agriculture and industry and the soar of pollutantemission, the groundwater contamination by inorganic nitrogen (in the form of NO3-,NO2-, NH4+) pollution became worse and worse. Long-term drinking of nitrogen pollutedgroundwater may cause methemoglobinemia, liver damage, cancer as well as otherdiseases, especially cause more serious disease to children. Thus, groundwatercontamination by inorganic nitrogen constitutes a major environmental concernworldwide.
     This study was supported by the national "five" National Science and TechnologySupport Program "Northeast alpine area towns drinking water security technologyintegration and demonstration"(2012BAJ25B10). We present a new three-layerpermeable reactive barrier (PRB), which is more economic and efficient to fit the qualityof inorganic nitrogen polluted groundwater and the component characteristics.In this research, suitable natural substrate and artificial media as potential carbon sourceand oxygen release material for use in a nitrification, denitrification and control ofsecond pollution prevention permeable reactive barrier (PRB). According to thesimulation study of the three-layer PRB demonstration, the program progress of PRBwas decided and the PRB demonstration will offer technical assistance for industrialapplications.
     First of all, suitable natural organic substrates(paper, wood chips and walnut shells),natural semi-inert solid-phase organic carbon (12samples of lignite from Sanjitun,Akesu, Faku, Zhangdang, Pingzhuang, Zhangjiakou, Wangniutan, Longkou, Lingshi,Yima, Ruzhou and Zhaotong) and man-made solid carbon metieral (HE made of40%hemp fiber and60%polyethylene; HB made of40%hemp fiber and60%poly(butylenesuccinate), HL made of40%hemp fiber and60%polylactic acid) were selected andinvestigated. At the condition of the influence nitrate concentration of30mg/L,19±1℃and hydraulic retention time of24h, the nitrate removal rate of the column with walnutshells as carbon source was95%. Meanwhile, during the180days of running, the carbonrelease of walnut shells didn’t decrease, and the acute toxicity of effluent was safe.Secondly, the oxygen release material made with clay and CaCO3was tested under thecondition of water flow rate of0.02m/s. It was found that the DO of effluent can bestable around7mg/L for169days, which means the material performed a long-term oxygen releasing capacity.
     According to the media selection study, walnut shells and oxygen release material madeof clay and CaCO3were used as the main active media in the simulative three-layer PRB.The simulative groundwater, which is similar to the characteristics of the demonstrationproject site groundwater components and condition, contained ammonia of2mg/L andnitrate of30mg/L at15℃, with the water flow rate of0.02m/d. The effluent was foundto reach the "drinking water health standards"(GB5749-2006) and the class Ⅲ of"groundwater quality standards (GB/T14848-93)". Finally, it was successfully utilized inthe demonstration project.Application of this technology performed a very important role in the protection of urbanand rural residents living water, supporting the development of society and economic, aswell as maintain ecological balance. Meanwhile, the three-layer PRB situ remediationtechnology does not utilize extra land, which makes it efficient, economical andenvironmentally friendly.
引文
Almasri M. N., Kaluarachchi J. J. Implications of on-ground nitrogen loading and soil transformationson ground water quality management [J]. Journal of the American Water Resources Association,2004,40(1):165-185.
    Aslan A., Turkman A. Combined biological removal of nitrate and pesticides using wheat straw assubstrates [J]. Process Biochem,2005,40:935-943.
    Aslan S., Cakici H. Biological denitrification of drinking water in a slow sand filter [J]. Journal ofHazardous Materials,2007,148(1-2):253-258.
    Aslan S., Tu¨rkman A. Combined biological removal of nitrate and pesticides using wheat straw assubstrates [J]. Process Biochem.2005,40:935-943.
    Basu A., Johnson T. M. Determination of hexavalent chromium reduction using Cr stable isotopes:isotopic fractionation factors for permeable reactive barrier materials [J]. Environmental Science&Technology,2012,46(10):5353-5360.
    Bedessem M. E., Edgar T. V., Roll R. Nitrogen removal in laboratory model leachfields with organic-rich layers [J]. Environ. Qual,2005,34:936-942.
    Blowes D.W., Robertson W.D., Ptacek C.J., and Merkley C. Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors [J]. Journal of Contaminant Hydrology,1994,15(3):207-221.
    Camargo J. A., Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution inaquatic ecosystems: a global assessment [J]. Environment International,2006,32(6):831-849.
    Chen S., Wu W., Hu K., Li W. The effects of land use change and irrigation water resource on nitratecontamination in shallow groundwater at county scale [J]. Ecological Complexity2010,7(2):131-138.
    Choe S., Li H. M., Khim J. Nitrate reduction by zero-valent iron under different pH regimes [J].Applied Geochemistry,2004,19:335-342.
    Coe J., Elliott D., Zhang W. X. Perchlorate reduction by nanoscale iron particles [J]. Journal ofNanoparticle Research,2005,7:499-506.
    Day S. R., O’ Hannesin S. F., and Marsden L. Geotechnical techniques for the construction of reactivebarriers [J]. Journal of Hazardous Materials,1999,67:285-297.
    Della R., Belgiorno C., Meric V. S. Heterotrophic/autotrophic denitrification (HAD) of drinking water:prospective use for permeable reactive barrier [J]. Desalination,2006,210:194-204.
    Fenech C., Rock L., Nolan K., Tobin J., Morrissey A. The potential for a suite of isotope and chemicalmarkers to differentiate sources of nitrate contamination: a review [J]. Water Research,2012,46(7):2023-2041.
    Fewtrell L. Drinking-water nitrate, methemoglobinemia and global burden of disease: a discussion [J].Environmental Health Perspectives,2004,112(14):1371-1374.
    Flury B., Frommer J., Eggenberger U., Ma¨der U., Nachtegaal M., Kretzschmar R. Assessment oflong-term performance and chromate reduction mechanisms in a field scale permeable reactivebarrier [J]. Environmental Science&Technology,2009,43(17):6786-6792.
    Gorelick S.M. A review of distributed parameter groundwater management modeling methods[J].Water Resources Research,1983,19(2):305-319.
    Gu B., Watson D., Wu L., Phillips D., White D., Zhou J. Microbiological characteristics in a zero-valent iron reactive barrier [J]. Environmental Monitoring and Assessment,2002,77(3):293-309.
    Ha J., Engler C. R., Wild J. R. Biodegradation of coumaphos, chlorferon, and diethylthiophosphateusing bacteria immobilized in Ca-alginate gel beads [J]. Bioresource Technology,2009,100(3):1138-1142.
    Huang C., Wang H., Chiu P. Nitrate reduction by metallic iron [J]. Water Research,1998,32(8):2257-2264.
    Huang G., Fallowfield H., Guan H., Liu F. Remediation of nitrate-nitrogen contaminated groundwaterby a heterotrophic-autotrophic denitrification approach in an aerobic environment [J]. Water, Air,&Soil Pollution,2012,223(7):4029-4038.
    Hwang Y. H., Kim D. G., Shin H. S. Mechanism study of nitrate reduction by nano zero valent iron [J].Journal of Hazardous Materials,2011,185(2-3):1513-1521.
    Ito A., Miura J., Ishikawa N., Umita T. Biological oxidation of arsenite in synthetic groundwater usingimmobilized bacteria [J]. Water Research,2012,46(15):4825-4831.
    Jaynes D. B., Kaspar T. C., Mooreman T. B., Parkin T. B. In situ bioreactors and deep drain-pipeinstallation to reduce nitrate losses in artificially drained fields [J]. Journal of EnvironmentalQuality,2008,37(2):429-436.
    Korom S. F. Natural denitrification in the saturated zone: A review [J]. Water Resources Research,1992,28(6):1657-1668.
    Li D., Wang H. L., Jiang T. L., Jing L. X., Pinder K. L. Using lignite as carbon source for solid phasedenitrification of nitrate polluted groundwater[C]. The20102nd International Conference onChemical, Biological and Environmental Engineering,372-375.
    Liu G. D., Wu W. L., Zhang J. Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China [J]. Agriculture, Ecosystems&Environment,2005,107:211-220
    Maskey S., Jonoski A., Solomatine D. P. Groundwater remediation strategy using global optimizationalgorithms [J]. Journal of Water Resources Planning and Management,2002,128(6):431-440.
    McAdam E. J., Judd S. J. Denitrification from drinking water using a membrane bioreactor: chemicaland biochemical feasibility [J]. Water Research,2007,41(18):4242-4250.
    Michalsen M. M., Goodman B.A., Kelly S.D., Kemner K. M., McKinley J. P., Stucki J. W., Istok J. D.Uranium and technetium bio-immobilization in intermediate-scale physical models of an in situbio-barrier [J]. Environmental Science&Technology,2006,40(22):7048-7053.
    Moon H. S., Nam K., Kim J. Y. Initial alkalinity requirement and effect of alkalinity sources in sulfur-based autotrophic denitrifcation barrier system [J]. J. Environ. Eng,2006–ASCE132:971-975.
    Morrison S. J., Mushovic P. S., Niesen P. L. Early breakthrough of molybdenum and uranium in apermeable reactive barrier [J]. Environmental Science&Technology.2006,40(6):2018-2024.
    Nooten T. V., Diels L., Bastiaens L. Design of a multifunctional permeable reactive barrier for thetreatment of landfill leachate contamination: laboratory column evaluation [J]. EnvironmentalScience&Technology,2008,42(23):8890-8895.
    O’Hannesin S. F., Gillham R.W. Long-term performance of an in situ ‘‘iron wall’’ for remediation ofVOCs [J]. Ground Water,1998,36(1):164-170.
    Ongley E. D., Booty W. G. Pollution remediation planning in developing countries: Conventionalmodelling versus knowledge-based prediction [J]. Water International,1999,24(1):31-38.
    Ovez B., Mergaert J., Saglam M. Biological denitrification in drinking water treatment using theseaweed Gracilaria verrucosa as carbon source and biofilm carrier [J]. Water Environ. Res,2006,78:430-434.
    Painter B. D. M. Reactive barriers: Hydraulic performance and design enhancements [J]. GroundWater,2004,42(4):609-619.
    Phenrat T., Saleh N., Sirk K., Tilton R. D., Lowry G. V. Aggregation and sedimentation of aqueousnon zero valent iron dispersions [J]. Environmental Science and Technology,2007,41:284-290.
    Philips D. H., Gu B., Watson D. B., Roh Y., Liang L., Lee S.Y. Performance evaluation of a zerovalentiron reactive barrier: mineralogical characteristics [J]. Environmental Science&Technology,2000,34:4169-4176.
    Phillips D. H., Gu B., Watson D. B., Roh Y., Liang L., Lee S. Y. Performance evaluation of a zerovalent iron reactive barrier: mineralogical characteristics [J]. Environ. Sci. Technol,2000,34:4169-4176.
    Phillips D. H., Nooten T. V., Bastiaens L., Russell M. I., Dickson K., Plant S., Ahad J. M. E., NewtonT., Elliot T., Kalin R. M. Ten year performance evaluation of a field-scale zero-valentironpermeable reactive barrier installed to remediate trichloroethene contaminated groundwater.Environmental Science&Technology,2001,44(10):3861-3869.
    Prüsse U., Vorlop K. Supported bimetallic palladium catalysts for water-phase nitrate reduction [J].Journal of Molecular Catalysis A: Chemical,2001,173:313-328.
    Quinton G. E., Buchanan R. J., Ellis D. E., and Shoemaker S. H. A method to compare groundwatercleanup technologies [J]. Remediation,1997,8:7-16.
    Ricardo A. R., Carvalho G., Velizarov S., Crespo J. G., Reis M. A. M. Kinetics of nitrate andperchlorate removal and biofilm stratification in an ion exchange membrane bioreactor [J]. WaterResearch,2012,46(14):4556-4568.
    Rivett M. O., Buss S. R., Morgan P., Smith J. W., Bemment C. Nitrate attenuation in groundwater: areview of biogeochemical controlling processes [J]. Water Research,2008,42(16):4215-4232.
    Robertson W. D. Nitrate removal rates in a15-year-old permeable reactive barrier treating septicsystem nitrate [J]. Ground Water Monitoring and Remediation,2008,28(3):65-72,
    Robertson W. D., Blowes D. W., Ptacek C. J. Long performance of in situ reactive barriers for nitrateremediation [J].Ground Water,2000,38(5):689-695.
    Robertson W. D., Ford G. I., Lombardo P. S. Wood-based filter for nitrate removal in septic systems[J]. Am. Soc. Agric. Eng,2005,48(1):121-128.
    Robertson W. D., Merkley L. C. In stream-bioreactor for agricultural nitrate treatment [J]. J. Environ.Qual,2003,38:230-237.
    Robertson W. D., Ptacek C. J., Brown S. J. Rates of nitrate and perchlorate removal in a5-year-oldwood particle reactor treating agricultural drainage.Ground Water Monit [J]. Remediat,2009,29(2):87-94.
    Robertson W. D., Vogan J. L., Lombardo P. S. Nitrate removal rates in a15-Year-old permeablereactive barrier treating septic system nitrate [J]. Ground Water Monitoring&Remediation,2008,28(3):65-72.
    Robertson W. D., Yeung N, Vandriel P. W. High permeability layers for remediation of ground water,Go Wide, Not Deep [J].Ground Water,2005,43(4):574-581.
    Rocca C. D., Belgiorno V., Meric S. A heterotrophic/autotrophic denitrification (HAD) approach fornitrate removal from drinking water [J]. Process Biochem,2006,41:1022-1028.
    Rocca C. D., Belgiorno V., Meric S. Cotton supported heterotrophic denitrification of nitrate-richdrinking water with a sand filtration post-treatment [J]. Water SA,2005,31(2):229-236.
    Rocca C. D., Belgiorno V., Meric S. Hetertrophic/autotrophic denitrfcation (HAD) of drinking water:prospective use for permeable reactive barrier [J]. Desalination,2007,210:194-204.
    Rocca C., V. Della, and S.M. Belgiorno. Overview of in-situ applicable nitrate removal processes [J].Desalination,2007,204:46-62.
    Ruangchainikom, C., Liao C. H., Anotai J., Lee M. T. Characteristics of nitrate reduction by zero-valent iron powder in the recirculated and CO2-bubbled system [J]. Water Research,2006,40:195-204
    Schipper L. A., Barkle G. F., Vojvodic-Vukovic M. Maximum rates of nitrate removal in adenitrification wall [J]. J. Environ. Qual,2005,34:1270-1276.
    Schipper L. A., Barkle G. F., Vojvodic-Vukovic M., Hadfield J. C., Burgess C. P. Hydraulicconstraints on the performance of a groundwater denitrification wallfor nitrate removal fromshallow groundwater [J]. J. Contam. Hydrol,2004,69:263-279.
    Schipper L. A., Cameron S., Warneke S. Nitrate removal from three different effluents using large-scale denitrification [J]. Ecol. Eng,2001,36:1552-1557.
    Schipper L. A., Robertson W., Gold A. J., Jaynes D. B., Cameron S. G. Denitrifying bioreactors—anapproach for reducing nitrate loads to receiving waters [J]. Ecol. Eng,2010,36:1532-1543.
    Schipper L. A., Vojvodic-Vukovic M. Five years of nitrate removal, denitrification and carbondynamics in a denitrification wall [J].Water Research,2001,35(14):3473-3477.
    Seitzinger S., Harrison J. A., Bohlke J. K., Bouwman A. F., Lowrance R., Peterson B., Tobias C., VanDrecht G. Denitrification across landscapes and waterscapes:a synthesis [J]. Ecol. Appl.,2006,2064-2090.
    Shao L., Xu Z. X., Jin W., Yin H. L. Rice husk as carbon source and bilofilm carrier for waterdenitrification [J]. Polish J. Environ. Stud.,2005,18(4):693-699.
    Stewart G. Cameron, Louis A. Schipper. Nitrate removal and hydraulic performance of organic carbonfor use in denitrification beds, Ecological Engineering,2010,36:1588–1595.
    Su C., Puls R. W. Removal of added nitrate in the single, binary, and ternary systems of cotton burrcompost, zerovalent iron, and sediment: implications for groundwater nitrate remediation usingpermeable reactive barriers [J]. Chemosphere,2007,67:1653-1662.
    Van Driel P. W., Robertson W. D., Merkley L. C. Denitrification of agricultural drainage using wood-based reactors [J]. Transactions of the American Society of Agricultural Engineers,2006,48(1):121-128.
    Wallenstein M. D., Myrold D. D., Firestone M., Voytek M. Environmental controls on denitrifyingcommunities and denitrification rates: insights from molecular methods [J]. Ecol. Appl.,2006,16:2143-2152.
    Wang C. B., Zhang W. X. Synthesizing nanoscale iron particles for rapid and complete dechlorinationof TCE and PCBs [J]. Environmental Science and Technology,1997,31:2154-2156.
    Wang W., Jin Z., Li T., Zhang H., Gao S. Preparation of spherical iron nanoclusters in ethanol–watersolution for nitrate removal [J]. Chemosphere,2006,65:1396-1404.
    Wessels Perelo L., Jimenez M., Munch J. C. Microbial immobilization and turnover of15N labelledsubstrates in two arable soils under field and laboratory conditions [J]. Soil Biol. Biochem.,2006,38:912-922.
    Wilkin R. T., Puls R. W., Sewell G. W. Long-term performance of permeable reactive barriers usingzero-valent iron [J]. Ground Water,2003,41(4):493-503.
    Winneberger J. H. Chemical reduction of nitrate by nanosized iron: kinetics and pathways [J]. WaterResearch,1982,39:884-894.
    Woli K. P., David M. B., Cooke R. A., McIsaac G. F., Mitchell C. A. Nitrogen balance in and exportfrom agricultural fields associated with controlled drainage and denitrifying bioreactors [J]. Ecol.Eng,2010,36:1558-1566.
    Zhang Y., Gillham R. W. Effects of gas generation and precipitates on performance of Fe0PRBs [J].Ground Water,2005,43(1):113-121.
    陈穗玲,李锦文,崔明超,常向阳,曹小安,陈南.广州大学城某校园地表水“三氮”浓度的时间变化特征及自净状态分析[J].环境化学,2013,04:704-705.
    陈新明,马腾,蔡鹤生,王妍妍.地下水氮污染的区域性调控策略[J].地质科技情报,2013,06:130-143.
    段磊,王文科,孙亚乔,杨晓婷.关中盆地浅层地下水氮污染的健康风险评价[J].水文地质工程地质,2011,03:92-97.
    段磊,王文科,杨晓婷,姜桂华.关中盆地浅层地下水氮污染的时空变化规律及其防治措施[J].干旱区资源与环境,2011,08:133-137.
    范振兴,王建龙.利用聚乳酸作为反硝化固体碳源的研究[J].环境科学,2009,08:2315-2319.
    冯兆忠,王效科,冯宗炜.河套灌区地下水氮污染状况[J].农村生态环境,2005,04:74-76.
    付玉芹,雷玉平,郑力,张丽.农田厚不饱和层硝态氮分布特征初探[J].干旱地区农业研究,2006,01:73-76.
    扈志勇,杨梅.岩溶区土壤氮流失及其对地下水的污染[J].人民长江,2008,18:32-34.
    黄海波,高扬,曹杰君,黄红艳,张旭,毛亮,张进忠,周培.都市农业村域地下水非点源氮污染及其风险评估[J].水土保持学报,2010,03:56-59+70.
    姜桂华,王文科,乔小英,杨晓婷.关中盆地地下水特殊脆弱性及其评价[J].吉林大学学报(地球科学版),2009,06:1106-1110+1116.
    姜应和,李超.树皮填料补充碳源人工湿地脱氮初步试验研究[J].环境科学,2011,01:158-164.
    孔祥科,马剑飞,杨应钊,刘菲,毕二平.渗透反应格栅去除地下水中铵的化学生物联合柱研究[J].环境科学与技术,2012,12:1-5.
    孔祥科,张英,毕二平.地下水修复系统中释氧材料的改进及pH调控.环境工程学报[J],2012,09:2935-2940.
    李思亮,刘丛强,肖化云,陶发祥,郎赟超,韩贵琳. δ~(15)N在贵阳地下水氮污染来源和转化过程中的辨识应用[J].地球化学,2005,03:257-262.
    李孝廉,李琦.陕北风沙滩地区浅层地下水氮污染及其预测[J].长安大学学报(自然科学版),2010,03:93-99.
    李秀利,杨君君,卢晓霞,张姝,侯珍.去除地下水中硝酸盐的渗透性反应墙研究[J].环境科学,2013,03:914-918.
    李绪谦,朱雅宁,于光,谢雪,宋爽.氨氮在弱透水层中的渗透迁移规律研究[J].水文,2011,03:71-75.
    刘景涛,孙继朝,林良俊,张玉玺,荆继红.广州市地下水环境三氮污染初探[J].中国地质,2011,02:489-494.
    楼静,马兴冠,景长勇,李敬苗. PRB在酸性矿井水处理中的应用分析[J].矿业安全与环保,2008,03:83-85.
    雒芸芸,马振民,侯玉松,刘思源,李玲玲.焦作地区浅层地下水中“三氮”污染特征及机制研究[J].中国农村水利水电,2013,02:38-40.
    潘田,张幼宽.太湖流域长兴县浅层地下水氮污染特征及影响因素研究[J].水文地质工程地质,2013,04:7-12.
    任军.南水北调中线总干渠水质健康风险与控制技术研究[J].中国安全生产科学技术,2012,11:200-204.
    邵留,徐祖信,金伟,尹海龙,朱柏荣.以稻草为碳源和生物膜载体去除水中的硝酸盐[J].环境科学,2009,05:1414-1419.
    邵留,徐祖信,金伟,尹海龙.农业废物反硝化固体碳源的优选[J].中国环境科学,2011,05:748-754.
    邵留,徐祖信,王晟,金伟,尹海龙.新型反硝化固体碳源释碳性能研究[J].环境科学,2011,08:2323-2327.
    孙强,刘天霸,秦四清,胡秀宏.石家庄市地下水氮污染检测分析[J].工程勘察,2007,01:41-43.
    王佳音,张世涛,王明玉,祁昌炜.滇池流域大河周边地下水氮污染的时空分布特征及影响因素分析[J].中国科学院研究生院学报,2013,03:339-346.
    魏秀琴.河南省浅层地下水中“三氮”的分布及成因分析[J].安徽农业科学,2009,14:6570-6572.
    文威,黄岁樑.海河污染研究进展[J].水资源保护,2007,05:55-58+62.
    吴登定,姜月华,贾军远,蔡鹤生.运用氮、氧同位素技术判别常州地区地下水氮污染源[J].水文地质工程地质,2006,03:11-15.
    谢李,刘菲,刘玉龙.释氧渗透反应格栅填料的改进研究[J].环境科学与技术,2010,02:44-48.
    徐建国,李生果,朱恒华,徐华,韩晔.南四湖流域平原区浅层地下水氮污染特征[J].工程勘察,2010,05:40-44.
    许可,陈鸿汉.地下水中三氮污染物迁移转化规律研究进展[J].中国人口.资源与环境,2011,S2:421-424.
    许可.地下水中三氮污染物研究综述与展望[J].工程勘察,2012,08:32-35.
    杨亮平,刘怡敏,房利民,史俊平,郝素芬.硝酸盐污染的地下水室内净化试验[J].内蒙古大学学报(自然科学版),2009,06:742-746.
    杨荣,苏永中,王雪峰.绿洲农田氮素积累与淋溶研究述评[J].生态学报,2012,04:304-313.
    杨维,郭毓,王晓华,王锋,闫广宇.氮素在包气带与饱水层迁移转化的实验研究[J].环境科学研究,2008,03:69-75.
    杨维,施爽,金丰尧,纪光宇,封金利.去除地下水硝酸盐PRB生物介质可行性试验研究[J].环境科学与技术,2010,S1:111-114.
    杨维,施爽,李璇,封金利,沈爱莲.两种PRB反应介质去除地下水中硝酸盐效果对比[J].安徽农业科学,2011,09:5172-5174.
    杨文澜,刘力,朱瑞珺.苏北某市垃圾填埋场周围地下水氮污染及其形态研究[J].地球与环境,2010,02:157-160.
    杨应钊,刘菲,孔祥科,李圣品,马剑飞.多介质渗透反应格栅中氨氮的转化与存在形态[J].环境工程学报,2013,08:2931-2936.
    叶许春,张世涛,宋学良,张子雄,莫美仙,李长才,金德山,和怀中,孙有国.昆明盆地浅层地下水氮的分布及污染机理[J].水土保持学报,2007,04:185-188+200.
    翟亚丽,王兴润,舒新前,朱文会,雷有德. PRB技术修复铬污染地下水的试验研究[J].环境工程,2012,S2:54-58+167.
    张大奕,李广贺,王允,周贵忠,张文静.缓释有机碳源材料释碳模型与生物脱氮效应[J].清华大学学报(自然科学版),2009,09:1507-1511.
    张丽娟,巨晓棠,刘辰琛,寇长林.北方设施蔬菜种植区地下水硝酸盐来源分析—以山东省惠民县为例.中国农业科学,2010,21:4427-4436.
    张瑞华,孙红文.电动力和铁PRB技术联合修复铬(Ⅵ)污染土壤[J].环境科学,2007,05:1131-1136.
    张胜,张云,张凤娥,荆继红,张明.地下水NO-3污染的微生物修复实验研究[J].水文地质工程地质,2005,02:25-30.
    张小玲,梁运祥.一株反硝化细菌的筛选及其反硝化特性的研究[J].淡水渔业,2006,05:28-32.
    张彦浩,谢康,钟佛华,夏四清,王金鹤. pH对氢自养型反硝化菌反硝化性能的影响[J].环境污染与防治,2010,04:40-43.
    张永祥,梁建奎,王然,任仲宇,井琦.地下水PRB原位生物修复中一种释氧材料的改进技术及效果分析[J].环境工程学报,2012,11:3910-3914.
    张云,刘长礼,王秀艳,宋博,宋超,彭玉荣.农田包气带土层的脱氮防护探讨[J].环境污染与防治,2011,05:10-17.
    张云,张胜,荆继红,侯宏冰.地下水氮污染治理的探索试验[J].地球学报,2006,03:283-288.
    张云,张胜,刘长礼,王秀艳,张明,宋超.氮污染地下水的原位修复试验研究[J].中国给水排水,2007,11:8-12.
    周海红,王建龙,赵璇.反硝化生物膜对PBS表面形态及化学组分的影响[J].环境科学,2006,12:2507-2510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700