用户名: 密码: 验证码:
几丁聚糖对青花菜生长生理机制及品质的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是甲壳素脱去乙酰基后得到的一种高分子阳离子多聚糖,具有安全无毒,抑菌、可食和生物降解等多种特性,壳聚糖几其衍生物已被广泛地应用于医药、农业、食品、化工、环保等多个领域。由于壳聚糖的分子结构与植物细胞壁结构相似,因而作为新型的植物生长调节剂在作物上应用具有重要的意义。
     1、利用不同浓度几丁聚糖对青花菜种子包衣,来研究几丁聚糖对青花菜幼苗生理指标的影响。通过本试验研究表明,不同浓度的几丁聚糖包衣对青花菜幼苗的还原糖、地上部分鲜重、地下部分鲜重及对磷钾的吸收无明显的影响,而显著地增加其中的叶绿素含量、蛋白质含量、地上部分干重、地下部分干重、适当的浓度能增加幼苗叶片中总糖含量和氮的含量;几丁聚糖包衣能显著增加青花菜叶片中游离氨的含量、硝酸还原酶、谷氨酰股合成酶和谷氨酸脱氢酶的活性;几丁聚糖种子包衣能显著增强青花菜幼苗叶片的光合作用和光化学效率。
     2、青花菜品种“株绿”和“山水”在不同浓度盐胁迫下施用几丁聚糖,研究几丁聚糖对青花菜耐盐胁迫的影响。研究表明,几丁聚糖明显地增加青花菜种子的发芽率、发芽指数、种子活力指数和耐盐指数,特别是对发芽率较低的种子,几丁聚糖对其作用更加明显;在盐胁迫下,施用几丁聚糖明显地降低青花菜叶片中的MDA含量和降低叶片膜的透性,施用适当的浓度则显著地增加叶片中SOD、POD、PPO的活性,减缓逆境对叶片的伤害,增强植株的抗性,叶片中的脯氨酸含量不断地提高、蛋白质含量不断降低、还原糖基本没有变化,蔗糖、可溶性总糖在盐浓度较低时有下降趋势,后不断地增高,可见植物在受到伤害时分解体内大分子物质生成小分子物质,来增加自身的抗性。
     3、通过在青花菜生长期间内喷施几丁聚糖,来研究几丁聚糖对青花菜花球内的酚类物质和品质的影响。研究表明,本研究中,不同浓度几丁聚糖喷施对青花菜花球的叶绿素、类黄酮、绿原酸、多酚总量、可溶性蛋白及可溶性总糖的含
    
    浙江大学硕卜学位论文(2004)
    量有显著增加,其中以浓度为40mgL一’影响最为显著,花球中的叶绿素、类黄
    酮、绿原酸、可溶性总糖、可溶性蛋白分别较对照提高64.4%、282.5%、35.6%、
    16.2%、22.7%,苯丙氨酸解氨酶(队L)、多酚氧化酶(PPO)是酚类物质合成
    中关键酶,花球内酚类物质合成与苯丙氨酸解氨酶的活性没有一定的相关性,而
    与多酚氧化酶的活性呈正相关。
Chitosan, a nature high molecular weight cationic polysaccharide, is normally obtained by the alkaline deacetylation of chitin. Chitosan and its derivatives have a wide range of applications due to their low toxic ,antibacterial activity,edibility and biodegradability, They have been employed, for example, to solve numerous problems in medical , agriculture ,foodstuff environmental and chemical engineering. Because the molecular structure of chitosan is similar with the structure of cell wall, it has great significance to be applied in plants as a new plant growth regulator.
    1.Seeds of Broccoli were film-coated with chitosan of different concentration.Our results showed that film-coating with chitosan had no significant effect on fresh weight of ground parts and roots of Broccoli seedlings.And there was no significant effect on the absorption of N and K.But film-coating significantly improved the content of chlorophyll and protein in seedling leaves. It also improved the dry weight of ground parts and roots of cauliflower seedlings. Film-coating with chitosan of appropriate concentration can increase the content of total soluble sugar and N in seedling leaves. Film-coating with chitosan significantly improved the content of free ammonium ,the activity of NR, GDH and GS, and film-coating markedly increased photosynthetic captivity and photochemical efficiency of PS II reaction center( PS II).
    2.We sprayed chitosan on "zhulv"and "shanshui"-two variation of Broccoli under salt stress to investigate the effect of chitosan on salt tolerant of Broccoli.The results showed chitosan significantly increased the germination percentage, germination index and vigor index of Broccoli seeds and increased the salt tolerance index of Broccoli seedings. The effect was more significant on seeds of low germination percentage.Under salt stress ,chitosan significantly decreased the MDA content and membrane permeability of Broccoli leaves.Activities of SOD,POD and PPO in Broccoli leaves was significantly promoted treated with chitosan . Proline content in leaves continuously increased ,while protein content continuously decreased. Reducing sugar content changed little .Content of sucrose and total
    
    
    soluble sugar decreased a little under low salt concentration and increased late with the increase of salt concentration.It indicated that plants decompose macromolecular substances to small molecule substance to improve their tolerance captivity under stress.
    3.Spraying with chitosan of different concentration significantly increased the content of chlorophyll ,anthoxanthin ,chlorogentic acid, polyphenal ,soluble protein and total soluble sugar of Broccoli flowers. 40 mg L-l chitosan showed the most remarkable effet,compared to control, the content of
    chlorophyll ,anthoxanthin ,chlorogentic acid, total soluble sugar and soluble protein of treated Broccoli flowers increased by 64.4%,282.5%,35.6%,16.2% 22.7% respectively.PAL and PPO are key enzymes in synthesize of phenolics.No relation was found between phenolics synthesize and PAL activity in Broccoli flowers,but it showed positive relation between phenolics synthesize and PPO activity.
引文
1.陈宇,李永爱.壳聚糖法制果汁乳蔬菜汁乳的研究.食品科学,1995,16(8):35-39
    2.陈子涛等.稀土甲壳素饵料黏合剂.化学世界,1989,4:149-152
    3.何宇炯、徐如涓、赵毓橘,表油菜素内酯对绿豆幼叶衰老的促进作用,植物生理学报,1996,22(1):58-62
    4.胡敏,甘璐.银杏叶中黄酮类化合物最佳工艺研究[J],食品工业科技,1997(5):49-51
    5.黄丽萍,刘宗明 甲壳素、壳聚糖在农业上的应用[J].辽宁农业科学.1996(6):18-21
    6.蒋德安主编.植物生理学实验指导[M].第一版,成都科技大学出版社,1996,82
    7.姜海平,阚李斌等,壳聚糖S-LL拌种对水稻恶茁病的控制作用 安徽农业科学,1999,27(6):592-593
    8.蒋明义,荆家海,王韶唐.渗透胁迫对水稻光合色素和膜脂过氧化的影响.西北农业大学学报,1991,19(1):79-83
    9.蒋跃明 陈绵达 香蕉低温酶促褐变 植物生理学报.1991,17(2).-157-163
    10.鞠志国,采期对莱田往梨酚类物质代出和组织渴变的影响[J],中国农业科学,1991,24(2):63—68
    11.李洪连,汪守正,王金生等 黄瓜对碳疽病诱导抗性的初步研究Ⅱ诱导抗病机制的研究.植物病理学报 1993,23(4):327-332
    12.李锦树等,干旱对玉米叶片细胞透性及膜脂的影响,植物生理学报,1983,9(3):223-229
    13.李琳 焦新之,应用蛋白染白染色剂考马斯亮蓝 G-250测定蛋白质的方法,植物生理学通讯,1980,8(3):52-55
    14.李庆春,翁长仁,曹广才等.壳聚糖溶液浸种对冬小麦籽粒产量和品质的影响 环境科学学报,1991,11(2):248-251
    15.李治,刘晓非等.壳聚糖降解研究进展,化工进展,2002,1996(19)6:20-23,
    16.何华勤,郭玉春,等.水稻化感作用及其生理生化特性的研究[J],应用生态学报,2001,12(6):871-875
    
    
    17.林植芳、李双顺、林桂珠,水稻叶片衰老与超氧化物酶及脂质过氧化作用的关系,植物学报,1984,76(6):605-615
    18.刘和众,刘东辉 甲壳素植物生长调节剂在玉米上的应用 天然产物研究与开发,1996,8(4):90-92
    19.潘增光,王国宾,李奎明.等,新红星苹果果实着色期几种色素含量变化及其相关性(简报)[J],植物生理学通讯 1996,32(5):347
    20.钱骅,赵伯涛,张卫明.不同因素对杜仲叶绿原酸含量的影响[J].中国野生植物资源,1999,18(3):P45-46
    21.阮松林 薛庆中 壳聚糖包衣对杂交水稻种子发芽和幼苗耐盐性的影响 作物学报 2002,28(6)803-808
    22.师素云 薛启汉 壳聚糖对玉米生长的调节作用.天然产物研究与开发,1999,11(2):32-36
    23.师素云,薛启汉,刘民.羧甲基壳聚糖对玉米籽粒氮代谢关键酶和种子贮藏蛋白含量的影响[J].植物生理学报,1999,(2):187-192
    24.水茂兴,王裕中,方中达 壳聚糖处理番茄、青椒的保鲜效果.浙江农业科学 2001,(4):164-167
    25.王邦锡、孙莉,渗透胁迫引起的膜损伤与膜脂过氧化和某些自由基的关系,中国科学B辑,1992(4):364-368
    26.汪东风,卢福娣,编著.茶叶生物化学基础实验与研究技术.[M](第一版)科学技术文献出版社.1997,18-19
    27.王向阳 彭文博 有机酸和硼,锌对小麦旗叶活性氧化谢及粒重的影响 中国农业科学.1995,28(1).-69-74
    28.吴颂如,周燮、徐义俊(1988).水稻与黄瓜耐铵性生理分析.南京农业大学学报.11(2):17-21
    29.薛应龙主编.植物生理学实验手册[M].第一版,上海科学技术出版社,1985,135-138
    30.许长成,邹琦,程炳嵩 干旱条件下大豆叶片H2O2代谢变化及其同抗旱性的关系.植物生理学报,1993,19(3):216-220
    31.袁毅桦,赖兴华.壳聚糖常温保鲜番茄的研究.食品科学,1994,7:62-65
    
    
    32.于汉寿,吴汉章,张益民等.壳聚糖对小麦生长及纹枯病发生的影响.江苏农业科学,1997,6:9-10
    33.于汉寿,张益民,陈永萱和吴川德.壳聚糖对几种植物病原真菌的作用.天然产物研究与开发,1998,11(5):33-37
    34.于汉寿,张益民,陈永萱等.壳聚糖对油菜生长及菌核菌核病的影响.上海农业学报,1999,15(2):80-83
    35.宰学明,吴国荣,龚祝南,等.旱生和湿生生境对蒲公英体内抗氧化物质的影响[J],植物研究,2002,22(2):196-199
    36.曾艳,赵南明,刘进元 几丁质与植物防卫反应.生物工程进展.1997,17(4):31-34
    37.张殿忠、汪沛洪、赵会贤,测定小麦叶片游离脯氨酸含量的方法,植物生理学通讯,1990(4):62-65
    38.张燕,方力和王宝.壳聚糖对烟草种子萌发及幼苗生理生化特性的影响.吉林农业大学学报 1998,20(3):28-30
    39.赵惠芝 壳聚糖对向日葵种子萌发及幼苗生理特性的影响.河北农业技术师范学院学报,1999,13(2):37-39
    40.赵可夫,邹琦 盐分和水分胁迫对能生和非盐生植物膜脂过氧化作用的效应,植物学报,1993,35(7):519-525
    41.赵云强,方伊 甲壳素、壳聚糖的综合应用及其发展前景,贵州化工,2001(26)1:10-13
    42.中山大学生物系生化微生物学教研室编.生化技术导论[M].北京:人民教育出版社,1981:46-47
    43. Baldridge GB, O'Neill NR, Samac DA Alfkfa (Medicago sativa L) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene Mrna and isoflavonoid phytoalexin levels in roots. Plant Molecular Biology 1998, 38:999-1010
    44. Bell AA, Hubbard JC, Liu, C, et. al. Effects of chitosan on the incidence and severity of fusarium yellows of Celery. Plant Dis, 1998, 82: 322-328
    45. Benhamou N, Belanger RR, Rey P, et al, Oligandrin, the elicitin-like,
    
    protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants Plant Physiol Biochem, 2001, 39:681-698
    46. Benhamou N, Brodeur J. Evidence for antibiosis and induced host defense reaction in the interaction between Verticillium lecanii and Penicilium digitatum, the causal agent of green mold Phytopathology, 2000, 90: 932-943
    47. Benhamou N, Broglie K, Chet I, et al. Cytology of infection of 35S-bean chitinase tragentic canola plants by Rhizoctonia solani: cytochemical aspects of chitin breakdown in vivo. The Plant J, 1993, 4:295-305
    48. Benhamou N, Kloepper JW, Tuzum S. Induction of resistance against Fusarium wilt of tomato by combition of chitosan with an endophytic bacterial strain ultrastructure and cytochemistry of the host response[J] Planta, 1998, 204:153-168
    49. Benhamou N, Lafontaine PJ, Nicole M. Induction of systemic resistance to fusarium crown and root rot in tomato plants by seed treament with chitosan Phytopathology, 1994, 84:1432-1444
    50. Benhamou N. Ultrastructural and cytochemical aspects of chitosan on fusarium oxysporum f. Sp. radical-lcopersici, agent of tomato crown and root rot Phytopathology, 1992, 82: 1185-1193
    51. Boiler T, Gehri A, Manch F, et al. Chitinase in bean leaves:induction by ethylene, purification, properties, andpssiblefunction[J].Planta, 1983,1 57:22-31
    52. Cakmak I, Marschner H, Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase, and glutathione reductase in bean leaves, Plant Physiol.,1991,98:1222-1227
    53. Cardwell KF, Schulthes F, Ndemath R, et, al. A systems approach to assess crop health and maize yield losses due to pests and diseases in Cameroon. Agriculture[J], Ecosystems and Environment, 1997.65:33-47
    
    
    54. Caruso Chilosi G, Caporale C, et al. lnduction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum Plant Science, 1999,140:87-97
    55. Chang MM, Horovitz D, Culley D , et al. Molecular cloning and characterization of a pea chitinase gene expressed in response to wounding fungul infection and the elicitor chitosan. Plant Molecular Biology, 1995, 28:105-111
    56. Cramer G. R et al Influx of Na, K and Ca into Rootsof sal-Stressed Cotton Seedings. Plant Phant Physiol, 1987, (83):510-516
    57. Eisenthal P (1974) The direct linear plot, a new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 139:715-720
    58. El Ghaouth A, Arul J, Grenier J, et al. Antifungal activity of chtosan on two postharvest pathogens of strawberry fruits. Phytopathology, 1992,82: 398-402
    59. El Ghaouth A, Arul J, Grenier J, et al. Effects of chtosan on cucumber plants: suppression of Pythium aphanideermatum and induction of defense reactions[J]. Phytopathology, 1994, 84:313-320
    60. Furusawa, I. Tanaka, K., Thanutomy, P. et al. Paraquat resiatant tibacco calluses with enhanced superoxide dismutase activity. Plant Cell Physiol, 1984,25:1247
    61. Gaudot ED, Slezack S,Dassi, et al. plant hydrolytic enzymes (chitinases and β-glucanase) in root reactions to pathogenic and symbiotic microorganisms .Plant and Soil, 1996,185:211-221
    62. Hadwiger LA, Beckman JM. Chitosan as a component of Pea-Fusarium solani interactions. Plant physiol, 1980, 66:205-211
    63. Hadwiger LA. Inducyion of phenylalanine ammonia lyase and pisatin by photo-sensitive psoralen compounds Plant Physiol, 1972,49:779-782
    64. Helander, IM, Nurmiaho-Lassila EL, Ahvenainen R, et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria
    
    International Journal of Food Microbiology, 2001,71:235-244
    65. Hadwiger LA. Loschke DC. Molecular communication in host-parasite interactions:hexosamine polymers(chitosan) as regulator compounds in race-specific and other interactions Phytopathology, 1981a, 71:756-782
    66. Helander, IM, Nurmiaho-Lassila EL, hhvenainen R, et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria International Journal of the Food Microbiology, 2001, 71:235-244
    67. Hirano S, Hayashi M, Nagao N, et al. Chitinase activity of some seeds during their germination process and its inducetion by treating with chitosan and derivatives. In: Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical, Properties, and Application. Edited by Skjak B, Gudmund, London UK 1998, p743-747
    68. Hirano S, Nagao N Effects of chitosan, pectic acid, lysozyme, and chitosan on the growth of several phytopathogens[J] Agric Biol Chem, 1989, 53 (11): 3065-3066
    69. Hoffman, G.J. and Jobes, J.A. Growth and water relations of cereal crops as influenced by salinity and relative humidity Agron. J. 1978,70:765-769
    70. Huang and Redman, R.E. Solute adjustment to salinity and calcium supply in cultivated and wild Barley. J. of Plant Nutrition, 1995,18(7):1371-1389
    71. Jia ZS, Shen DF, Xu WL. Synthesis and antibacterial activities of quatemary ammonium salt of chitosan. Carbohydrate Research, 2001,333:1-6
    72. Kendra DF, Christian D, Hadwiger LA. Chtosan oligomers from Fusarium solani/pea interactions, chitinase/β-glucanase digestion of sporelings and from fungal wall chitin activitely inhibit fungalgrowth and enhance disease resistance[J].Physiological and Molecular Plant Pathology, 1989,35:215-230
    73. Koukol. J. Conn EE The metabaolism of aromatic compounds in higher plant [J], io. chem 1991.236:2692-2695
    
    
    74. Lafontaine PJ, Baenhamou N. Chtosan treament: an emerging straegy for enhancing sistance of greenhouse tomato plants to infection by Fusarium oxysporum f. Sp. Radicis-lycoperic[J]i. Biocontrol Sci rechnol, 1996, 6:111-124
    75. Lee KY; Kwon IC; Kim YH, et. al. Jeong SY. Preparation of chitosan self-aggregates as a gene delivery system. Journal of Controlled Release, 1998, 51:213-220
    76. Leslie Ch;Romani RJ.Inhibition of ethylene biosynthesis bysalicylic acid[J].Plant Physiol, 1988,88:833-837
    77. Majalhaes JR and Huber DM(1991)Reponse of ammnium assimilation enzymes to nitrogen form treatments in different plant species J. Plant Nutr. 14:175-185
    78. Martinez N, Giselle MA, Madrid EA, Bottini, R, et al. Indole acetic acid attenuates disease severity in potato-Phytophthora infeatans interaction and inhibits the pathogen growth in vitro. Plant Physiology and Biochemistry, 2001,39:815-823
    79. Matsuhashi S, Kume T. Enhancement of antimicrobical activity of chitosan by irrdiation J Sci Food Agric, 1997, 73: 237-241
    80. Mauch F, Hadwiger LA, Boller T. Antifungal hydrolases in pea tissue Plant physiol, 1988a, 87:325-333
    81. Mauch F, Mauch-Mani B, boller T. antifungal hydrolases in pea tissue Ⅱ inhibition of fungal growth by combinations of chitinase and β -1,3-glucanase Plant Plant Physiol, 1988b, 88:936-942
    82. Murr DP Morris Infuence of O2 and CO on o_diphenol oxidase activity in mushrooms [J] Amer. Soc hort Sci 1974.99:155-158
    83. Nielsen KK, Jorgensen P, Mikkelsen JD. Antifungal activity of sugar beet chiinase against Cercospora beticola can autoradiographic study on cell wall degration Plant Patho,1994,43:979-986
    84. NOHK, Na, YP, Shin HL, et al. Antibacterial activity of chitosans and
    
    chitosan oligomers with different molecular weights, Intermational Journal of Food Microbiology, 2002, 74:65-72
    85. Perez-Alfocea, F, Estan, M,T, Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants J, of Horticultural Science, 1994,68(6):1021-1027
    86. Pospieszny H, Antiviroid activity of chitosan. Crop Protection, 1997, (16)2: 105-106
    87. Rasmussen PH, Knudsen IMB, Elmholt S, et al. Relationship between soil cellulolytic activity and suppression of seeding blight of barley in arable soils[J]Applied Soil Ecology, 2002.19:91-96
    88. Reddy MVB, Arul J, Angers P, et al. Chitosan treatment of wheat seeds induced resistance to Fusarium graminearum and improves seed quality. J. Agric. Food Chem, 1999, 47:1208-1216
    89. Rejikumar JL, Surekha D, Devi S.Hydrolysis of lactose and milk when using afixed bed reator containing beta-galactosidase covalently bound onto chitosan and cross-linked poly (vinyl alcohol) .Food science and techno; ogy, 2001, 36(1): 91-98
    90. Rhoades J, Rolier S. Antimicrobial actions of degraded and native chitosan agaist spoilage organisms in laboratory media and foods. Applied and Evironmental Microbiology, 2000, 66 (1): 80-86
    91. Ryder T, Cramer CL, Bell Jn, et al. Elicitor rapidly induceds chalconc synthase Mrna in Phaseolus Vulgaris cell at the onset of the phytoalexi defense response[j].Proc Natl Acad Sci USA, 1984,81:5724-5728
    92. Sathiyabama M and Balasubramanian R. Chitosan induces resistance components in Arachis hypogaea against leaf rust caused by Puccinia arachidis Speg Crop Protection, 1998, 17(4):307-313
    93. Singh Nk, Handa A k, Hasegawa P M et al .Electrophoretic protein patterna in cultured cells of tobacco adapted to NaCl[J] plant Physiol,
    
    1983, 72(5):535
    94. Srivastava H.S and Singh R.P(1987).Role and regulation of L-glutamate dehydrogenase activity in higher plants Phtochemistry. 23(3):597-610
    95. Suntornsuk W, Pochanavanich P, Suntornsuk L. Fungal chitosan production on foodprocessing by-products. Process Biochemistry, 2002, 37:727-729
    96. Teixeira MA, Patterson WT, Dunn EJ, et al. Assessment of chitosan gels for the controlled release of agrochemical .Ind Eng Chem Res, 1990 (29): 1205-1209
    97. Thanou M: Florea BI: Geldof M et al.Q uaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines Biomaterials, 2002: 153-159
    98. Vander P, Varum KM, Domard A, et al. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves Plant Physiol, 1998, 118:1353-1359
    99. Vasyukova NI, ZI, Z ionov' eva SV, Il' inskaya Li, et al. Modulation of plant resistance to diseases by water-soluble chitosan .Applied Biochemistry Microbiology, 2001, 37:115-122
    100. Xie WM, Xu PX, Liu Q. Antioxidant activity of water-soluble chitosan derivatives Bioorg Med. Chem. Lett, 2001, 11: 1699-1701
    101. Xuan TL, NagasawaN, Matsuhashi S, et. al. Effect of radiation-degraded chitosan on plantsstressed with vanadium. Radiation Physics and Chemistry, 2001, 61:171-175
    102. Zornoza Pand Gonzalez M. (1998).Intraspecific differences in nitrogen assimilating anzymes in spinach under contrasting forms of nitrogen supply J. plant. Nutr. 21:1129-1138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700