用户名: 密码: 验证码:
基于分形理论的柱塞式生物质环模成型模具磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物质物料成型领域,尤其是环模成型机成型物料过程中,由于摩擦磨损而产生的高能耗、高成本,大大削弱了环模机的普及率,使环模市场接受能力一直不高。因此控制摩擦、减少磨损、改善节能性能以及合理发挥材料的潜能等的摩擦磨损研究在工程中具有重要意义。
     本文所作的研究不仅为新型柱塞式生物质环模成型设备关键参数的选择提供理论依据,以《“十二五”国家科技支撑计划项目(2012BAD30B0205)》为支撑,作为轻型可移动式环模生物质成型燃料制造关键技术研究的一部分,并对新型柱塞式生物质环模成型机的设计和制造提供重要理论与参考依据。
     本文运用分形非线性理论为基础理论来研究生物质成型物料-环模凹模的摩擦磨损过程的动力学行为,揭示磨损过程中的行为规律,同时对环模凹模的磨损总量进行预测,研究内容主要如下:
     (1)分析柱塞式生物质环模成型机的成型环模失效原因及形式,对其进行受力及失效分析,确定磨损是环模失效的主要原因。
     (2)利用分形理论,结合环模凹模粗糙表面分形特性,导出环模凹模与物料接触面积的计算公式,采用分形方法中的W-M函数法表征环模凹模和成型物料粗糙表面曲线,利用MATLAB计算功能及Solidworks的建模功能,建立分形表面接触几何模型及环模凹模-成型物料表面接触有限元模型。
     (3)基于分形理论及粗糙分形表面接触模型,建立考虑成型物料及环模凹模物理特性的环模凹模内壁磨损预测方程,预测验证程序的正确性的同时探讨环模凹模磨损预测模型的典型参数与平均磨损率的关系,同时分析不同种类的物料及环模材质条件下环模凹模总磨损量随磨损时间的变化规律,并实现环模凹模随磨损时间的总磨损量的预测,为柱塞式环模设计提供理论依据。
     (4)对环模凹模磨损预测程度模型进行试验验证。通过两种类型的环模及不同规格凹模进行磨损试验测量,验证环模凹模磨损预测程度的正确性。
     (5)对环模凹模的摩擦热与结构进行耦合分析,确定在不同时刻环模凹模温度场及应力场分布情况,分析在不同的成型物料及不同的环模材质条件下环模凹模由于摩擦生热而引起的温度场及应力场温度分布情况。
     (6)利用凹模摩擦接触表面的分形数学模型对环模凹模摩擦过程中的最高温升进行预测并进行分析,确定环模凹模粗糙分形表面最大温升随摩擦因数、滑动速度、材料的机械和热性能参数、真实接触面积、名义接触面积以及表面轮廓分形参数等的函数变化规律。
     本文对农业机械、饲料加工机械的设计、制造具有重要的意义,对于推广柱塞式环模成型机有重要意义,是具有广阔前景的研究课题。
In the field of biomass molding, especially ring molding machine molding process, due to the friction and wear of high energy consumption, high cost, greatly weakened the penetration ring molding machine, the ring mold market accept ability has not been high. Thus control friction, reduce wear and improve the energy saving performance, and a reasonable potential of materials to play, such as the friction and wear of research is of material significance in the project.
     This paper studies done not only provide a theoretical basis for the selection of new biomass ring plunger molding equipment of key parameters, in order to "" twelfth five-year "National Science and Technology Support Program (2012BAD30B0205)" to support, as a lightweight removable ring mold biomass briquette manufacturing part of the key technology research, and the design and manufacture of new biomass ring plunger molding machines provide important theoretical and reference.
     In this paper, the nonlinear theory of fractal theory to graduate material forming materials-dynamic behavior of the ring mold die friction and wear processes, revealing the wear behavior of the law in the process, while the total amount of wear ring mold die to predict specific. The main contents are as follows:
     (1) Analyze the causes and forms of biomass plunger ring die molding machine failure, stress analysis of the ring mold and failure analysis to determine the wear ring mold is the main reason for the failure.
     (2) The use of fractal theory, combined with ring mold die rough surface fractal characteristics derived formulas ring mold die and the material of the contact area, Characterization ring mold die and molding materials rough surface curve fractal method WM function method, using MATLAB computing and modeling capabilities Solidworks establish contact with the surface of fractal geometry and ring die die-molding material surface contact finite element model.
     (3) Based on fractal theory and rough fractal surface contact model, establish the correctness consider forming materials and ring die die physical characteristics of the ring mold die inner wall wear prediction equation to predict the verification process at the same time explore the ring mold die wear prediction model Typical parameters of the relationship between the average wear rate, simultaneous analysis of different types of materials and material conditions ring ring die die die variation of the total amount of wear worn with time, and realize the die ring mold with a total amount of wear of the wear of time predicted to provide a theoretical basis for the plunger ring mold design.
     (4) The wear extent predicting for model of ring mold die was verified. And tests were measured by the wear of the ring mold and the two types of different specifications of the die, then correctness of the wear ring mold die predict the degree was verified.
     (5) On the friction ring mold die coupled thermal and structural analysis to determine the different moments ring mold die temperature and stress field distribution cases, the analysis in different materials and different shaped ring mold material conditions concave ring mold temperature and stress field distribution of mold temperature due to friction caused by heat.
     (6) The use of die friction contact surface fractal mathematical model for friction ring mold die during the highest temperature forecast and analyzed to determine the ring mold die fractal rough surface with the maximum temperature coefficient of friction, sliding speed, material function of mechanical and thermal variation of performance parameters, the true contact area, the contact area and the nominal surface profile of the fractal parameters.
     This paper has important implications for agricultural machinery, feed processing machinery design, manufacturing, for the promotion of the plunger ring molding machine application and implementation of large-scale use of biomass resources is important, is a basic theory with deep and broad application prospects research.
引文
[1]景元琢,董玉平,盖超,等.生物质固化成型技术研究进展与展望[J].中国工程科学,2011,(2):72-77
    [2]中国国家发展和改革委员会.国际可再生能源现状与展望[M].北京:中国环境科学出版社,2007:1-40
    [3]HOLM J K, HENRIKSEN U B, WAND K, et al. Experimental verification of novel pellet model using a single pelleterunit[J]. Energy & Fuels,2007, (21):2446-2449.
    [4]石元春.生物质能源主导论[N].北京:科学时报,2010:12
    [5]徐向阳.能源供应安全视角下中印生物质能源利用的比较[J].自然资源学报,2010,25(10):1806-1812
    [6]张百良,王吉庆,徐桂转,等.中国生物能源利用的思考[J].农业工程学报,2009,25(9):227-229
    [7]赵军,王述洋.我国生物能资源与利用[J].太阳能学报,2008,29(1):90-93
    [8]董玉平,王理鹏,等.国内外生物质能源开发利用技术[J].可再生能源,2003,(6):48-49.
    [9]周中仁,吴文良.生物质能研究现状及展望[J].农业工程学报,2005,21(12):12-15
    [10]可再生能源中长期发展规划.中华人民共和国国家发展和改革委员会,2007,9.
    [11]兰肇华.生物质燃料及其影响研究[D].武汉:武汉理工大学,2009:4
    [12]孔雪辉,王述洋,黎粤华.生物质燃料固化成型设备发展现状及趋势[J].机电产品开发与创新,2010,23(2):12-13,21.
    [13]欧阳双平,侯书林,等.生物质固体成型燃料环模成型技术研究进展[J].可再生能源,2011,29(1):14-18.
    [14]李美华.生物质燃料致密成型参数的研究[D].北京:北京林业大学,2005:1-58
    [15]郝玲,祖宇,等.模辊式生物质燃料成型技术及设备的研究进展[J].安徽农业科学,2012,40(1):367-372
    [16]蒋剑春.国外木质成型燃料[J].林产化学与工业,1986,(6):17-22
    [17]刘勇.欧洲三国生物质能利用[J].可再生能源,2003,(110):53-54
    [18]钱能志,尹国平,陈卓梅.欧洲生物质能源开发利用现状和经验[J].中外能源,2007,12(3):10-14
    [19]赵建,李春梅.欧盟发展生物燃料的有关政策及其启示[J].中外能源,2006,1(4):101-103
    [20]李永志.欧盟大力发展生物燃料[J].全球科技经济瞭望,2004,(12):42
    [21]林维纪,张大雷.生物质固化成型技术及其展望[J].新能源,1999,4(2):39-42
    [22]盛奎川,吴杰.生物质成型燃料的物理品质和成型机理的研究进展[J].农业工程学报,2004,20(3):242-245.
    [23]Ayhan Demiras, Ayse Sahinl Evaluation of Biomass Reside (1) Briqueting Waste Paper and Wheat Straw Mixtures [J]. Fuel Processing Technol,1998, (55):185-193
    [24]WERNER, HANS. Process and apparatus for production of fuels from compressed biomass and use of the fuels:EP 1443096 [P].2004.
    [25]MALANIN V I, MAKSIMOV A A, KVASHNIN. Method and apparatus for briquetting of lignin-containing materials:RU 2191799[P].2002.
    [26]MASON M, DUMBLETON, FREDERICK J. Production of compact biomass fuel:WO 2003087276[P].2003.
    [27]REED, THOMAS B. Combined biomass pyrolysis and densification for manufacture of shaped biomass-derived solid fuels:US 2003221363[P].2003.
    [28]Reddy S, Painuly J P. Diffusion of renewable energy technologies-barriers and stakeholders perspectives[J]. Renewable Energy,2004,29(9):1431-1447
    [29]DEM1RBAS, AYHAN, SAH1N-DEM1RBAS. Briquetting properties of biomass waste materials[J]. Energy Sources,2004,26(1):83-91
    [30]Launhardt Thomas. How Clean Do Chip Furnace1 Burnmeasuring Emissions from Domestic Wood Chip Furnaces All Across Bavaria [J]. Lan Dtechnik,1999,54(1):28-35
    [31]Faborode M.O, Callaghan J. R. Theoretical Analysis of the Compression of Fibrous Agricultural Materials [J]. Journal of Agricultural Engineering Research.1986,35 (3):170-190
    [32]Roman T.Dee, Antonios Zavaliangos, John C. Cunningham.Com Parison of vous modeling methods for analysis of Powdereom Paction in roller Press [J].Powder Technology,2003,130: 265-271
    [33]Yao B.Yang, Vida N.Sharifi, Jim Swithenbank etal. Combustion of a Single Particle of Biomass[J]. Energy&Fuels,2008,22,306-316
    [34]张永宁,陈磊.英国发展生物能源的政策及启示[J].北学工业,2007,25(6):12-15
    [35]俞国胜.生物质成型燃料加工装备发展现状及趋势[J].林木机械装备与循环经济论坛论文集,2007
    [36]宋晓文,俞国胜,等.生物质常温开模压缩成型直筒参数的研究[J].黑龙江农业科学,2011,(11):36-38
    [37]回彩娟,俞国胜.影响生物质块状燃料常温高压致密成型因素的研究[J].林业机械与木工设备,2005,(11):10-14.
    [38]张海鹰,俞国胜,等.生物质固体燃料成型装备研究[J].黑龙江农业科学,2010,(10):113-115.
    [39]黎粤华,王述洋.生物质燃料平模固化成型机压辊特性分析[J].机电产品开发与创新,2009,(6):47.-49.
    [40]王敏.延长制粒机压模使用寿命的方法[J].江西饲料,2004,(3):18-19.
    [41]王敏.环模制粒机的主要技术参数[J].湖南饲料,2006,(4):39-41.
    [42]陈义厚,周恩柱.三锥辊式平模制粒机的设计与研究[J].机械设计与制造,2007,(11): 126-128
    [43]高建辉.基于ANSYS的生物质成型关键部件动静态特性研究[D].济南:山东大学,2009.
    [44]李在峰,雷廷宙,何晓峰,等.玉米秸秆颗粒燃料致密成型电耗测试[J].农业工程学报,2006,22(S1):117-119.
    [45]吴云玉,董玉平,吴云荣.生物质固化成型的微观机理[J].太阳能学报,2011,(2):268-271.
    [46]吴云玉.基于生物质固体成型机理研究的环模疲劳寿命分析[D].济南:山东大学,2010:1-84.
    [47]杜红光,董玉平,等.生物质冷压成型模具摩擦热分析[J].农业工程学报,2011,27(9):58-62.
    [48]孙启新,张仁俭,等.基于ANSYS的秸秆类生物质冷成型仿真分析[J].农业机械学报,2009,40(12):130-134.
    [49]刘圣勇,杨国峰,等.螺杆挤压式生物质成型机优化设计与试验[J].农业机械学报,2010,41(7):96-100.
    [50]霍丽丽,田宜水,等.模辊式生物质颗粒燃料成型机性能试验[J].农业机械学报,2010,41(12):121-125.
    [51]姚宗路,田宜水,等.生物质固体成型燃料加工生产线及配套设备[J].农业工程学报,2010,26(9):280-285.
    [52]焦安勇.基于有限元模拟分析的生物质压缩成型机的研发[D].长春:吉林大学,2009.5
    [53]王冬梅.基于ANSYS的生物质成型机的研制[D].长春:吉林大学,2008.5
    [54]中国新能源与可再生资源专题研究组.中国新能源行业分析报告[R].北京:2002:6-7
    [55]孔雪辉.生物质固化成型环模磨损实验研究及数值模拟[D].哈尔滨:东北林业大学,2010:15-17.
    [56]侯红亮,任学平.可压缩材料挤压过程有限元模拟[J].金属成形工艺,2001,19(3):4-8
    [57]朱德文,陈永生,钟成义.多功能空心对辊式生物质颗粒成型机的研制[J].农业化研究,2007.(5):91-94
    [58]何晓峰,雷廷宙,李在峰,朱金.生物质颗粒燃料冷成型技术试验研究[J].太阳能学报,2006,27(9):937-941
    [59]邓勇,史建新,董富民.环模制粒机中环模的有限元分析[J].饲料加工,2004,(4):26-27
    [60]阳向军.卧式环模制粒机环模失效原因浅析[J].饲料工业,2003,24(9):9-10
    [61]杨月祥SZLP78大模孔平模制粒机研制[J].粮食与饲料工业,1999,(12):29
    [62]刘谦儒.在环模颗粒机部分结构参数分析[J].饲料工业,1989,(7):34-35
    [63]黄传海.环模颗粒机的环模强度[J].饲料工业,1991,12(1):14-15
    [64]申树云.生物质颗粒成型环模特性研究[D].济南:山东大学机械工程学院,2008:1-42
    [65]邹岚,白洪涛.饲料膨化机模孔儿何参数理论分析[J].农业机械学报,2008,(6):203-204
    [66]德雪红,俞国胜,翟晓敏,金敏.内啮合式生物质环模成型模具的关键技术[J].北京林业大学学报,2013,35(5):128-132
    [67]卓金武,魏永生,秦健,等MATLAB在数学建模中的应用.北京:北京航空航天大学出版 社,2013
    [68]B.B.曼德伯罗特.大自然的分形几何学[M].陈守吉等译.上海:上海远东出版社,1998
    [69](英)K.法尔科内.分形几何-数学基础与应用[M].谢和平等译.重庆:重庆大学出版社,1991
    [70]曾文曲,王向阳,刘丹,王福龙.分形理论与分形的计算机模拟[M].沈阳:东北大学出版社,1993:1-89
    [71]张济忠.分形[M].北京:清华大学出版社,1995:1-80
    [72]Mandelbrot B B. The Fractal Geometry of Nature[M]. New York:W. H. Freeman,1982
    [73]Ling F F. The Possible Role of Fractal Geometry in Tribology[J]. Tribol. Trans.,1989, (32): 497-505
    [74]Barnsley M. Fractals Everywhere[M]. New York:Academic Press,1988
    [75]杨叔子,吴雅等.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1991:1-10
    [76](英)K.法尔科内.分形几何中的技巧[M].曾文曲等译.沈阳:东北大学出版社,1999
    [77]Paul Meakin. Fractal, Scaling and Growth Far from Equilibrium[M]北京:清华大学出版社,Cambridge University Press联合出版,2000:1-27
    [78]龙期威.金属中的分形与复杂性[M].上海:上海科学技术出版社,1999:58-67
    [79]凌桂龙ANSYS14.0热力学分析从入门到精髓[M].北京:清华大学出版社,2013:43-98
    [80]高耀东,刘学杰ANSYS机械工程应用精华50例(3版)[M].北京:电子工业出版社,2011:41-76
    [81]石博强,申焱华.机械故障诊断的分形方法[M].北京:冶金工业出版社,2001:1-39
    [82]谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1997:2-78
    [83]葛世荣.粗糙表面的分形行为研究[M].中国机械工程,1996,(7)增刊:59-61
    [84]Majumdar, A., Tien, C. L. Fractal Characterization and Simulation of Rough Surfaces[J].Wear, 1990,136(2):313-327
    [85]Majumdar A, Bhushan B. Role of Fractal Geometry in Roughness Characterization and ContactMechanics of Surfaces[J]. ASME Journal of Tribology,1990, (112):205-216
    [86]Lim, Siak-Piang; Shi, W. M. Fractal Surface and its Measurement by Computer Simulation[J]. Proceedings of SPIE-The International Society for Optical Engineering,1994:182-186
    [87]Min, Shi Wei, Lim, S. P., Lee, K. S. Fractal Surface and Its Measurement By ComputerSimulation[J]. Optics and Laser Technology,1995,27(5):331-333
    [88]Ganti S, Bhushan B. Generalized Fractal Analysis and Its Applications to Engineering Surfaces[J]. Wear,1995, (108):17-34
    [89]索双富,葛世荣.各向异性加工表面的分形维数[J].机械科学与技术,1995,(10)增刊:187-190
    [90]陶闯,林宗坚,卢键.分形地形模拟[J].计算机辅助设计与图形学学报,1996,8(3):178-186
    [91]葛世荣,索双富,朱旬.切削表面的分形行为研究[J].中国机械工程,1996,(7)增刊:59-62
    [92]陆涛,曹伟,师汉民,等.基于分形特征的表面微观形貌模拟和分析[J].华中理工大学学报,1996,24(7):22-24
    [93]汪慰军,吴昭同,陈历喜,等.二维表面粗糙度的分形模拟与分析[J].中国机械工程,1997,6(16):1059-1062
    [94]盛选禹,雒建斌,温诗铸.基于分形接触的静摩擦因数预测[J].中国机械工程,1998,9(7):16-20
    [95]陈国安,葛世荣等.滑动摩擦力分形预测模型[J].中国矿业大学学报,2000,29(5):492-495
    [96]Majumdar A, Bhushan B. Fractal Model of Elastic-plastic Contact between Roueh Surfaces[J].ASME Journal of Tribology,1991, (113):1-11
    [97]Rabinowicz E. Friction Coefficient of Noble Metal over a Range of Load[J]. Wear,1992, 159(1):89-94
    [98]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990:1-70
    [99]Hutchings I M. Tribology:Friction and Wear of Engineering Materials[M]. London:Edward Arnold,1992:25-30
    [100]吴承伟.粗糙表面接触研究进展[J].力学进展,1991,21(1):96-108
    [101]Bensisu M T, AkayA. Relation of Dry-friction to Surface Roughness[J]. Journal of Tribology, 1997, (119):18-25
    [102]陈国安,朱真才,朱华.工程装备磨损研究[M].北京:兵器工业出版社,2003:1-40
    [103](苏)克拉薷尔斯基NB,陀贝钦HC,康巴洛夫BC.摩擦磨损计算原理[M].汪一麟等译.北京:机械工业出版社,1982:1-70
    [104]Wang S, Komwopoulos K. A Fractal Theory of the Interfacial Temperature Distribution in the slow Sliding Regime:Part 2-Multiple Domains, Elastoplastic Contacts and Applications[J]. ASME:Journal of Tribology,1994, (116):824-832
    [105]Wang S, Komwopoulos K. A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces[J]. ASME Journal of Tribology,1995, (117):203-215
    [106]温诗铸.世纪回顾与展望-摩擦学研究的发展趋势[J].机械工程学报,2000,36(6):1-6
    [107]Ludema K C. Mechanism-based Modeling Of Friction and Wear[J]. Wear,1996,(200):1-7
    [108]葛世荣,朱华.摩擦学复杂系统及其问题的量化研究方法[J].摩擦学学报,2002,22(5):405-408
    [109]Lliuc I. Reaction Products in and around the Wear Track in Lubricated Mild Wear Regime[J]. Wear,1984, (93):271-279
    [110]Kang S C, Ludema K C. The Breaking-in of Lubricated Sufaces[J]. Wear,1986,(108):375-384
    [111]Kelly D A, Barnes C G, Freeman R W. Running-in and the Enhancement of Scuffing Resistance[J]. Proc. Instn. Mech. Engrs.,1992, (206):425-429
    [112]张家驷.摩擦磨损机理现代概念及磨损计算探讨[J].润滑与密封,2001,147(5):80
    [113]张移山,孔宪梅,陈大融.关于内燃机缸套活塞环磨合过程的数学模型[J].机械科学与技术,1997,16(1):1-6
    [114]Hu Y Z, Li Na, Kristian Tonder. Applications of a Dynamic System Model for Running-in[M]. In:International Conference On Wear of Materials,1991, (v1):7-11
    [115]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992:1-63
    [116]桂长林.Archard的磨损设计计算模型及应用方法[J].润滑与密封,1990,(1):12-21
    [117]Zhou G Y, Leu M C, Blackmore D. Fractal Geometry Model for Wear Prediction[J]. Wear, 1993,170:1-14
    [118]陈国安.粗糙表面分形识别与磨合磨损预测模型[D].徐州:中国矿业大学机电与材料工程学院,1999:1-67
    [119]张移山,孔宪梅,陈大融.磨合过程中缸套表面形貌变化的计算机仿真[M].摩擦学学报,1999,19(2):151-155
    [120]Kang S C,Ludema K C. The Breaking-in of Lubricated Surfaces[J].Wear,1986,(108):375-384
    [121]克拉盖尔斯基等著.摩擦磨损计算原理[M].汪一麟等译.北京:机械工业出版社,1982
    [122]张移山,孔宪梅,陈大融.磨合过程的摩擦学设计研究[J].清华大学学报,1998,38(4):38-41
    [123]Stout K J, Davis E J. Surface Topography of Cylinder Bores-the Relationship between Manufacture, Characterization and Function[J]. Wear,1984, (95):111-125
    [124]Pawel Pawlus. A Study On the Functional Properties Of Honed Cylinder Surface during Running-in[J]. Wear,1994, (176):247-254
    [125]Willis E. Surface Finish in Relation to Cylinder Liners[J]. Wear,1986, (109):351-366
    [126]Stout K J, Spedding T A. The Characterization Of the Combustion Engine Bore[J]. Wear, 1982, (83):311-327
    [127]葛世荣,Tonder K.粗糙表面的分形特征与分形表达研究[J].摩擦学学报,1997,17(1):73-80
    [128]朱华,葛世荣.结构函数与均方根分形表征效果的比较[J].中国矿业大学学报,2004,33(4):396-399
    [129]朱华.摩擦磨损过程的分形行为研究[D].徐州:中国矿业大学机电与材料工程学院,2003:1-37
    [130]葛世荣,朱华.磨合吸引子研究[J].摩擦学学报,2005
    [131]Hutchings I M. Tribology:Friction and Wear of Engineering Materials[M]. London: EdwardArnold,1992:82-84,142-144
    [132]王松年,苏诒福,江亲瑜.摩擦学原理与应用[M].北京:中国铁道出版社,1990:95-96,103-106.
    [133]Stolarski T A. A Probabilistic Approach to Wear Prediction[J]. J. Phys.,1990,(D24):1143-1149
    [134]陈国安,葛世荣,朱华.磨合磨损分形预测模型[M].北京:机械工业出版社,1998:834-837.
    [135]机械工程手册组委会编.机械设计:基础卷[M].北京:机械工业出版社,1996
    [136]谢友柏.摩擦学的三个公理[J].摩擦学学报,2001,21(3):161-166
    [137]MANI S, TABI L G, SOKHANSANJ S.Effects of compressiveforce, particle size and moisture content on mechanicalproperties of biomass pellets from grasses[J].Biomass and Bioenergy,2006,30(7):648-654.
    [138]DENG Yong, SHI Jian-xin, DONG Fu-min. The loop die FEA analysis of pelletizing machine [J]. Cereal & Feed Industry,2004, (4):26-27.
    [139]高明旺,董玉平.生物质热压成型温度场数值模拟[J].可再生能源,2004,(2):23-25.
    [140]WANG Min. The main technical parameters of pelletizing machine[J].Hunan Feed,2006, (4): 39-41.
    [141]JIANG Yang. Study on the formation conditions of biomass pellet [J]. Renewable Energy, 2006, (5):16-18.
    [142]YUMAK H, UCAR T, SEYIDBEKIROGLU N. Briquetting soda weed (salsola tragus) to be used as a rural fuel source[J]. Biomass and Bioenergy,2010,34(5):630-636.
    [143]SAEED MOAVENI. Finite element analysis:theory and application with ANSYS [M]. New Jersey:Prentice Hall,1999:50-93
    [144]KALIYAN N, MOREY R V. Factors affecting strength and durability of densified biomass products[J]. Biosystems Engineering,2009,33(3):337-359.
    [145]汤爱君,马海龙,董玉平.生物质挤压过程中的静水压应力[J].可再生能源,2006,(2):28-31
    [146]易维明,郭超,姚宝刚.生物质导热系数的测定方法[J].农业工程学报,1996,12(3):38-41
    [147]周美香.木材径向导温系数的理论推导[J].干燥技术与设备,2010,8(6):271-276.
    [148]李源,张小辉,郎威,王启民.生物质压缩成型技术的研究进展[J].沈阳工程学院学报(自然科学版),2009,5(4):301-304.
    [149]Demirbas A.Physical properties of briquettes from wastepaper and wheat straw mixtures [J]. Energy Conversion and Management,1999,40(4):437-445.
    [150]李泉临,秦大东.秸秆固化成型燃料开发利用初探[J].可再生能源,2008,26(5):116-118.
    [151]闫文刚,俞国胜,张海鹰,等.含水率对草坪草常温开模成型的影响[J].农业工程学报,2011,27(增刊1):162-165.
    [152]Sudhagar Mani, Lope G Tabil, Shahab Sokhansanj.Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses[J].Biomass and Bio-energy,2006, (30):648-654.
    [153]肖宏儒,钟成义,宋卫东,秦广明.农作物秸秆平模压缩成型技术研究[J].中国农机化,2010,(1):58-62.
    [154]王野平,王裕超,张俊.生物质燃料平模成型机关键参数分析[J].机械设计与研究,2011,27(4):103-106.
    [155]赵昌盛.实用模具材料应用手册[M].北京:机械工业出版社,2005:1-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700