用户名: 密码: 验证码:
矩量法及其加速算法研究一维粗糙面与目标复合电磁散射
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用矩量法(Method of Moment, MOM)及其相关加速算法深入系统地研究了一维粗糙面及其与二维目标的复合电磁散射问题。首先研究了一维理想导体和介质粗糙面的电磁散射特性;然后分析了一维单(分)层介质粗糙面与二维理想导体目标的复合电磁散射特性;最后给出了并行技术和多区域分解技术在一维粗糙面及其与目标复合电磁散射求解中的应用。主要工作如下:
     1、介绍了矩量法(Method of Moment, MOM)和快速多极子(Fast Multipole Method, FMM)的基本原理和基本知识,给出了MOM求解一维理想导体粗糙面电磁散射的积分方程和矩阵方程建立的详细过程,并对采用FMM计算一维理想导体粗糙面电磁散射的具体实施过程进行了详细说明。
     2、利用FMM快速求解了一维介质粗糙面的双站电磁散射,给出了二维理想导体目标放置在一维介质粗糙面的上方、下方和半掩埋时复合电磁散射矩量法求解的详细过程,并讨论粗糙面的特征参数和目标的几何参数对复合散射的影响。
     3、推导了一维多层粗糙面及其与二维理想导体目标复合电磁散射MOM求解的积分方程和矩阵方程,讨论了分层粗糙面在不同极化下的电磁散射特性,以及目标放置在分层粗糙面的上方、下方或者两层之间时的复合电磁散射特性,讨论了粗糙面的特征参数、目标的几何参数以及两层粗糙面之间填充的媒质和厚度对电磁散射特性的影响。
     4、将并行技术和多区域分解技术引入到一维粗糙面及其与目标的复合电磁散射的快速求解中,给出了加速算法在粗糙面及其与目标复合电磁散射应用的详细过程,并说明了加速算法在计算时间方面的优势,讨论了粗糙面的特征参数及目标的几何参数对复合散射的影响。
In this thesis, the properties of the composite scattering from a one-dimensional (1-D) rough surface with or without a two-dimensional (2-D) object are investigated by the method of moment (MOM) and its fast algorithms. Firstly, the characteristics of the electromagnetic (EM) scattering from a 1-D perfectly electric contour (PEC) or a 1-D dielectric rough surface is examined. The composite scattering from a 1-D single-layered or two-layered dielectric rough surface and a 2-D object is calculated. Finally, the parallel algorithm and the multiregion technique are applied to compute the composite scattering of the 1-D rough surface and the 2-D object. Main works of this thesis are as following:
     1. The fundamental of the MOM and the fast multipole method (FMM) are presented. The integral equations and the matrix equations for calculating the EM scattering from a 1-D PEC rough surface are provided in detail. The implementation of calculating EM scattersing from the 1-D PEC rough surface has been described in detail.
     2. The bistatic scattering from a 1-D dielectric rough surface is calculated by the fast FMM. The processes of obtaining the composite scattering from a 2-D PEC object located above, below or embedded in the 1-D dielectric rough surface through the MOM are given in detail. The influences of the parameters of the rough surface and the object on the composite scattering are illustrated.
     3. The integral equations and the matrix equations for calculating the EM scattering from a 1-D multi-layered rough surface with or without 2-D PEC object are derived. The properties of the EM scattering from two-layered rough surface are discussed. The composite scattering from the 2-D object located above, below and between the two rough surfaces is computed. Finally, the influences of the parameters of the rough surfaces and the object, as well as the average height between the two rough surfaces and the medium on the composite scattering are discussed.
     4. The parallel algorithm and the multiregion technique have been introduced to compute the composite scattering of the 1-D rough surface and the 2-D object. The solution to the above scattering problem by these fast algorithms has been presented in detail. The advantage in the computing time of these fast algorithms is presented, and the influences of the parameters of the rough surface and the object are discussed.
引文
[1] P. Beckmann, and A. Spizzichino. The Scattering of Electromagnetic Waves from Rough Surfaces. London: Oxford Pergamon, 1963.
    [2] F. T. Ulaby, R. K. Moore, and A. K. Fung. Microwave Remote Sensing. London: Addision-Wesbey Publishing, 1982.
    [3] A. Ishimaru. Wave Propagation and Scattering in Random Medium. New York: Academic Press, 1978.
    [4] A. K. Fung. Microwave Scattering and Emission Models and Their Applications. London: Artech House, 1994.
    [5] J. A. Ogilvy. Theory of Wave Scattering from Random Rough Surface. Bristol: Institute of Physics Publishing, 1991.
    [6] F. G. Bass, and I. M. Fuks. Wave Scattering from Statistically Rough Surfaces. Oxford: Pergamon, 1979.
    [7]陈向东.微波被动遥感在海况监测中的应用.北京:测绘出版社, 1992.
    [8]金亚秋,刘鹏,叶红霞.随机粗糙面与目标复合散射数值模拟理论与方法.北京:科学出版社, 2008.
    [9]郭立新,王蕊,吴振森.随机粗糙面散射的基本理论与方法.北京:科学出版社, 2010.
    [10]聂在平,方大刚.目标与环境电磁散射特性建模-理论、方法与实现(理论篇).北京:国防工业出版社, 2009.
    [11] R. F. Harrington. Filed computation by moment method. New York: IEEE Press, 1993.
    [12] V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. Joural Computational Physics, 1990, 36(2): 414-439.
    [13] W. C. Chew, J. M. Jin, E. Michielssen, et al. Fast and efficient algorithms in computational electromagnetic. Boston/London: Artech house, 2001.
    [14]张宝琳,谷同祥,莫则尧.数值并行计算原理与方法.北京:国防工业出版社, 1999.
    [15]麻军.矩量法及其并行计算在粗糙面和目标电磁散射中应用.西安:西安电子科技大学硕士学位论文, 2009.
    [16]王长清.计算电磁学基础.北京:北京大学出版社, 2005.
    [17]郭立新,李江挺,韩旭彪.计算物理学.西安:西安电子科技大学出版社, 2009.
    [18] M. R. Hestenes, and E. Stiefel. Method of conjugate gradients for solving linear systems. J Res Natl Bur Stand, 1952, 49(409-436.
    [19] C. T. Kelley. Iterative methods for linear and nonlinear equations. Society for Industrial and Applied Mathematics, 1995.
    [20] C.C.Lu, and W.C.Chew. A multilevel algorithm for solving boundary-value scattering. Microwave and Optical Technology Letters, 1994, 7(10): 466-470.
    [21] J. M. Song, and W. C. Chew. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microwave and Optics Letters, 1995, 10(1): 14-19.
    [22] S. V. Velamparambil, W. C. Chew, and J. M. Song. 10 Million Unknowns: Is it that big ? IEEE Antennas and Propagation Magazine, 2003, 45(2): 43-58.
    [23] V. Jandhyala, E. Michielssen, S. Balasubramaniam, et al. A combined steepest descent-fast multipole algorithm for the fast analysis. IEEE Trans Geosci Remote Sensing, 1998, 36(3): 738-748.
    [24] R. L. Wagner, and W. C. Chew. A ray-propagation fast multipole algorithm. Microwave and Opt Tech Lett, 1994, 7(10): 435-438.
    [25] C. C. Lu, and W. C. Chew. Fast far field approximation for calculating the RCS of large objects. Microwave and Opt Tech Lett, 1995, 8(5): 238-241.
    [26] T. J. Cui, W. Wiesbeck, and A. Herschlein. Electromagnetic Scattering by Multiple Three-Dimensional Scatterers Buried Under Multilayered Media-Part I: Theory. IEEE Trans Geosci Remote Sensing, 1998, 36(2): 526-534.
    [27] X. Q. Sheng, and E. K. Yung. Implementation and experiments of a hybrid algorithm of the MLFMA enhanced FE-BI method for open-region inhomogeneous electromagnetic problems. IEEE Trans on Antennas Propagat, 2002, 50(2): 163-167.
    [28]盛新庆.计算电磁学要论(第二版).合肥:中国科学技术大学出版社, 2008.
    [29]潘晓敏,盛新庆.一种多层快速多极子的高效并行方案.电子学报, 2007, 35(3): 567-571.
    [30] T. J. Peters, and J. L. Volakis. Application of a conjugate gradient FFT method to scattering from thin planar material plates. IEEE Trans Antennas Propagat, 2000, 36(4): 518-526.
    [31] X. C. Nie, L. W. Li, N. Yuan, et al. Fast analysis of scattering by arbitrarily shaped three-dimensional objects using the precorrected-FFT method. Microwave Opt Technol Lett, 2002, 34(6): 438-442.
    [32] W. B. Ewe, L. W. Li, and M. S. Leong. Fast solution of mixed dielectric/conductingscattering problem using volume-surface adaptive integral method. IEEE Trans Antennas Propagat, 2004, 52(11): 3071-3077.
    [33] L. Tsang, C. H. Chan, K. Pak, et al. Monte-Carlo simulations of large-scale problems of random rough surface scattering and applications to grazing incidence with the BMIA/canonical grid method. IEEE Trans Antennas Propagat, 1995, 43(8): 851-859.
    [34] C. H. Chan, and L. Tsang. Monte-Carlo simulations of large-scale one-dimensional random rough surface scattering at near-grazing incidence: penetrable case. IEEE Trans Antennas Propag, 1998, 46(1): 142-149.
    [35] Q. Li, C. H. Chan, and L. Tsang. Monte Carlo simulations of wave scattering from lossy dielectric random rough surfaces using the physics-based two-grid method and the canonical- grid method. IEEE Trans Antennas Propag, 1999, 47(4): 752-763.
    [36] S. Y. He, and G.. Q. Zhu. A hybrid MM-PO method combining UV technique for scattering from two-dimensional target above a rough surface. Microwave and Opt Tech Lett, 2007, 49(12): 2957-2960.
    [37] H. Wiebe, G. Heygster, and T. Markus. Comparison of the ASI ice concentration algorithm with landsat-7 ETM+ and SAR imagery. IEEE Trans Geosci Remote Sensing, 2009, 47(9): 3008-3015.
    [38] C. Bourlier. Azimuthal harmonic coefficients of the microwave backscattering from a non-gaussian ocean surface with the first-order SSA model. IEEE Trans Geosci Remote Sensing, 2004, 42(11): 2600~2611.
    [39]梁玉,郭立新.气泡/泡沫覆盖粗糙海面电磁散射的修正双尺度法研究.物理学报, 2009, 58(9): 6156-6166.
    [40] J. T. Johnson, R. T. Shin, J. A. Kong, et al. A numerical study of the composite surface model for ocean backscattering. IEEE Trans Geosci Remote Sensing, 1998, 36(1): 72-83.
    [41] L. Tsang, J. A. Kong, K. H. Ding, et al. Scattering of electromagnetic waves: numerical simulations. New York: John Wiley&Sons, 2001.
    [42] R. L. Wagner, J. M. Song, and W. C. Chew. Monte carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces. IEEE Trans Antennas Propagat, 1997, 45(2): 235-245.
    [43] Y. Z. Hu, and K. Tonder. Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis. Int J Mach Tools Manufact, 1992, 32(1): 83-90.
    [44] A. K. Fung, M. R. Shah, and S. Tjuatja. Numerical simulation of scattering fromthree- dimensional randomly rough surfaces. IEEE Trans Geosci Remote Sensing, 1994, 32(5): 986-994.
    [45] S. H. Lou, L .Bang, and C H Chan. Application of the finite element method to Monte Carlo simulations of scattering of waves by random rough surfaces: penetrable case. Waves in Random and Complex Media, 1997, 1(4): 287-307.
    [46] S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propagat, 1982, 30(3): 409-418.
    [47] Y. Zhao, X. W. Shi, and L. Xu. Modeling with NURBS surfaces used for the calculation of RCS. Progress In Electromagnetics Research, PIER 78, 2008: 49-59.
    [48] L. X. Guo, A. Q. Wang, and J. Ma. Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MOM based on PC clusters. Progress In Electromagnetics Research, PIER 89, 2009: 149-166.
    [49] A. Q. Wang, L. X. Guo, and C. Chai. Numerical simulations of electromagnetic scattering from 2D rough surface: geometric modeling by NURBS surface. J of Electromagn Waves and Appl, 2010, 24(1315-1328.
    [50] J. Li, L. X. Guo, and H. Zeng. FDTD investigation on bistatic scattering from two-dimensional rough surface with UPML absorbing condition. Waves in Random and Complex Media, 2009, 19(3): 418-429.
    [51]逯贵祯,峰冯,宁曰民.小波变换与高斯粗糙表面的电磁散射研究.北京广播学院学报(自然科学版), 2004, 11(3): 1-5.
    [52] J. Ma, L. X. Guo, and H. Zeng. Study on 1D large scale rough surface scattering at low grazing incident angle by parallel MOM based on PC clusters. Waves in Random and Complex Media, 2009, 19(4): 585-599.
    [53] J. Li, L. X. Guo, and H. Zeng. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary. J Opt Soc Am A, 2009, 26(6): 1494-1502.
    [54] S. Q. Li, C. H. Chan, and M. Y. Xia. Multilevel expansion of the sparse-matrix canonical grid method for two-dimensional random rough surfaces. IEEE Trans Antennas Propag, 2001, 49(11): 1579-1589.
    [55] M. Y. Xia, C. H. Chan, S. Q. Li, et al. An efficient algorithm for electromagnetic scattering from rough surfaces using a single integral equation and multilevel sparse-matrix canonical-grid method. IEEE Trans Antennas Propag, 2003, 51(6): 1142-1149.
    [56] P. Spiga, G. Soriano, and M. Saillard. Scattering of electromagnetic waves fromrough surfaces: a boundary integral method for low-grazing angles. IEEE Trans Antennas Propagat, 2008, 56(7): 2043-2050.
    [57] V. U. Zavorotny, and A. G. Voronovich. Two-scale model and ocean radar doppler spectra at moderate- and low-grazing angles. IEEE Trans Antennas Propagat, 1998, 46(1): 84-92.
    [58] J. C. West, and Z. Q. Zhao. Electromagnetic modeling of multipath scattering from breaking water waves with rough faces. IEEE Trans Geosci Remote Sensing, 2002, 40(3): 583-592.
    [59] Y. Z. Li, J. C. West, and Z. Q. Zhao. Low-grazing-angle scattering from 3-D breaking water wave crests. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2093-2101.
    [60] H. X. Ye, and Y. Q. Jin. Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface. IEEE Transaction Antennas Propagation, 2005, 53(3): 1234-1237.
    [61]A. Tabatabaeenejad, and M. Moghaddam. Bistatic scattering from three-dimensional layered rough surfaces. IEEE Trans Geosci Remote Sensing, 2006, 44(8): 2102-2114.
    [62] N. Déchamps, C. Bourlier, N. de Beaucoudrey, et al. Numerical simulations of scattering from multilayers separated by one-dimensional rough interfaces. Geoscience and Remote Sensing Symposium, 2003, IGARSS '03, 2003, 1: 118-120.
    [63] E. I. Thorsos. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J Acoust Soc Am, 1988, 83(1): 78~92.
    [64] R. Wang, L. X. Guo, and J. Ma. Electromagnetic scattering from two-layer rough interfaces in the Kirchhoff approximation. Chinese Physics B, 2009, 18(8): 3422-3430.
    [65] N. Déchamps, N. de Beaucoudrey, C. Bourlier, et al. Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation-inside-layer expansion method. J Opt Soc Am A, 2006, 23(2): 359-369.
    [66] N. Déchamps, and C. Bourlier. Electromagnetic scattering from a rough layer: Propagation-Inside-Layer Expansion method combined to an updated BMIA/CAG approach. IEEE Trans Antennas Propagat, 2007, 55(10): 2790-2802.
    [67] N. Déchamps, and C. Bourlier. Electromagnetic scattering from a rough layer: Propagation-Inside-Layer Expansion method combined to the Forward-BackwardNovel Spectral Acceleration. IEEE Trans Antennas Propagat, 2007, 55(12): 3576-3586.
    [68] N. Pinel, and C. Bourlier. Scattering from very rough layers under the geometric optics approximation: further investigation. J Opt Soc Am A, 2008, 25(6): 1293-1306.
    [69] N. Pinel, N. Déchamps, and C. Bourlier. Modeling of the bistatic electromagnetic scattering from sea surfaces covered in oil for microwave application. IEEE Trans Geosci Remote Sensing, 2008, 46(2): 385-392.
    [70] C. H. Kuo, and M. Moghaddam. Scattering from multilayer rough surfaces based on the extended boundary condition method and truncated singular value decomposition. IEEE Trans Antennas Propag, 2006, 54(10): 2917-2929.
    [71] C. D. Moss, T. M. Grzegorczyk, H. C. Han, et al. Forward-backward method with spectral acceleration for scattering from layered rough surfaces. IEEE Trans Antennas Propag, 2006, 54(3): 1006-1016.
    [72] J. Li, L. X. Guo, and H. Zeng. FDTD investigation on electromagnetic scattering from two-layered rough surfaces under UPML absorbing condition. Chin Phys Lett, 2009, 26(3): 034101-034101~034101-034104.
    [73] J. T. Johnson. A study of the four-path model for scattering from an object above a half space. Microwave and Opt Tech Lett, 2001, 30(12): 130-134,.
    [74] T. Chiu, and K. Sarabandi. Electromagnetic Scattering Interaction Between a Dielectric Cylinder and a Slightly Rough Surface. IEEE Trans Antennas Propagat, 1999, 47(5): 902-913.
    [75] X. Wang, C. F. Wang, Y. B. Gan, et al. Electromagneticscattering from a circular target above or below rough surface. Journal of Electromagnetic Waves and Applications, 2003, 17(8): 1153-1155.
    [76] X. Wang, Y. B. Gan, and L. W. Li. Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case. IEEE Antennas and Wireless Propagation Letters, 2003, 2(319-322.
    [77] X. Wang, and L. W. Li. Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: horizontal polarization. Progress In Electromagnetics Research, PIER 91, 2009: 35-51.
    [78] X. Wang, C. F. Wang, and Y. B. Gan. Electromagnetic scattering from a circular target above or below rough surface. Progress In Electromagnetics Research, PIER 40, 2003: 207-227.
    [79] L. X. Guo, A. Q. Wang, and J. Ma. Study on EM scattering from 2-D target above1-D large scale rough surface with low grazing incidence by parallel MOM based on PC Clusters. Progress In Electromagnetics Research, 2009, PIER 89(149-166.
    [80] G. Kubické, C. Bourlier, and J. Saillard. Scattering by an object above a randomly rough surface from a fast numerical method : extended PILE method combined to FB-SA. Waves in Random and Complex Media, 2008, 18(3): 495-519.
    [81] C. Bourlier, G. Kubické, and N. Déchamps. Fast method to compute scattering by a buried object under a randomly rough surface: PILE combined to FB-SA. J Opt Soc Am A, 2008, 25(4): 891-902.
    [82] R. J. Burkholder, M. R. Pino, and F. Obelleiro. A Monte Carlo study of the rough sea surface influence on the radar scattering from Two-Dimensional Ships. IEEE Antennas Propagat Magazine, 2001, 43(2): 25-33.
    [83] Z. X. Li, and Y. Q. Jin. Bistatic scattering from a fractal dynamic rough sea surface with a ship presence at low grazing angle incidence using the GFBM/SAA. Microwave Opt Technol Lett, 2001, 31(2): 146-151.
    [84] H. X. Ye, and Y. Q. Jin. Fast iterative approach to electromagnetic scattering from the target above a rough surface. IEEE Trans Geosci Remote Sensing, 2006, 44(1): 108-115.
    [85] R. Wang, and L. X. Guo. Hybrid method for investigation of electromagnetic scattering from conducting target above the randomly rough surface. Chinese Physics B, 2009, 18(4): 1503-1511.
    [86] B. Guan, J. F. Zhang, X. Y. Zhou, et al. Electromagnetic Scattering From Objects Above a Rough Surface Using the Method of Moments With Half-Space Green's Function. IEEE Trans Geosci Remote Sensing, 2009, 47(10): 3399-3405.
    [87]康士峰,王显德.粗糙面与目标电磁散射统计特性分析.微波学报, 2004, 20(3): 43-46.
    [88] A. Q. Wang, L. X. Guo, and C. Chai. Investigation on the electromagnetic scattering from a PEC target above a two-layered dielectric rough surface: vertical polarization. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010: 498-501.
    [89] A. Q. Wang, L. X. Guo, and C. Chai. Numerical Simulations and Analysis of Electromagnetic Scattering from a PEC Target below a Two-layered Dielectric Rough Surfaces: Vertical Polarization. Progress in Electromagnetics Research Symposium, 2010: 1028-1032.
    [90] C. H. Kuo, and M. Moghaddam. Electromagnetic scattering from a buried cylinder in layered media with rough interfaces. IEEE Trans Antennas Propagat, 2006,54(8): 2392-2401.
    [91] D. Colak, R. J. Burkholder, and E. H. Newman. Multiple sweep method of moments analysis of electromagnetic scattering from 3d targets on ocean-like rough surfaces. Microwave and Optical Technology Letters, 2007, 49(1): 241-247.
    [92]Y. Zhang, J. Lu, J. P. Jr., et al. Mode-expansion method for calculating electromagnetic waves scattered by objects on rough ocean surfaces. IEEE Trans Antennas Propagat, 2005, 53(5): 1631-1639.
    [93] M. E. Shenawee. Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects. IEEE Trans Geosci Remote Sensing, 2004, 42(1): 67-76.
    [94] J. Li, L. X. Guo, H. Zeng, et al. Investigation of composite electromagnetic scattering from ship-like target on the randomly rough sea surface using FDTD method. Chinese Physics B, 2009, 18(7): 2757-2763.
    [95] J. Li, L.-X. Guo, and H. Zeng. FDTD investigation on the electromagnetic scattering from a target above a randomly rough sea surface. Waves in Random and Complex Media, 2008, 18(4): 641-650.
    [96] J. Li, L. X. Guo, and H. Zeng. FDTD investigation on bistatic scattering from a target above two-layered rough surfaces using UPML absorbing condition. Progress In Electromagnetics Research, 2008, PIER 88(197-211.
    [97] L. X. Guo, J. Li, and H. Zeng. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach. J Opt Soc Am A, 2009, 26(11): 2383-2392.
    [98]李娟.粗糙面及其与目标复合电磁散射中的FDTD方法研究.西安:西安电子科技大学博士论文, 2010.
    [99]刘鹏,金亚秋.动态起伏海面上低飞目标电磁散射Doppler频谱的有限元-区域分解法数值模拟.中国科学G辑物理学力学天文学, 2004, 34(3): 265-278.
    [100] P. Liu, and Y. Q. Jin. Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-Wave incidence at low grazing angle by using the finite element method. IEEE Trans Geosci Remote Sensing, 2004, 52(5): 1205-1220.
    [101]郭立新,王运华.二维导体微粗糙面与其上方金属平板的复合电磁散射研究.物理学报, 2005, 54(11): 5130-5138.
    [102]郭立新,王运华, and吴振森.等效原理和互易性定理在两个相邻球形目标电磁散射中的应用.物理学报, 2006, 55(11): 5815-5823.
    [103] R. Wang, L. X. Guo. Study on electromagnetic scattering from the time-varying lossy dielectric ocean and a moving conducting plate above it. J Opt Soc Am A, 2009, 26(3): 517-529.
    [104]王蕊.粗糙面及其与目标复合电磁散射中的相关问题研究.西安:西安电子科技大学博士学位论文, 2009.
    [105] W. C. Gibson. The method of moments in electromagnetics. Taylor & Francis Group, 2008.
    [106] J. Jin. The finite element method in electromagnetics. John Wiley and Sons, 1993.
    [107] K. S. Yee. Numerical solution of initial boundary value problems involving equations in isotropic media Maxwell's equations in isotropic media. IEEE Trans Antennas Propagat, 1966, 14(3): 302-307.
    [108]郭立新,李江挺,韩旭彪.计算电磁.西安:西安电子科技大学出版社, 2010.
    [109] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations Philadelphia: Society for Industrial and Applied Mathematics, 1995.
    [110] C. C. Lu, and W. C. Chew. Fast algorithm for solving hybrid integral equations. IEE Proceedings-H, 1993, 140(6): 455-460.
    [111]张跃江,龚中麟.二维电大尺寸导体目标RCS的快速多极子算法分析.空军雷达学院学报, 1999, 13(1): 1-6.
    [112] G. Scott. Detection and processing of bistatically reflected GPS signals from low earth orbit for the purpose of ocean remote sensing. IEEE Trans Geosci Remote Sensing, 2005, 43(6): 1229-1241.
    [113] E. I. Thorsos. Acoustic scattering from‘Pierson-Moskowitz’sea surface. Journal of Acoustic Society American, 1990, 88(1): 335-349.
    [114] L. A. Klein, and C.T. Swift. An Improved model for the dielectric constant of sea water at microwave frequencies. IEEE Journal of Oceanic Engineering, 1977, 2(1): 104-111.
    [115] N. Déchamps, N. Beaucoudrey, C. Bourlier, et al. Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation inside layer expansion method. J Opt Soc Am A, 2006, 23(2): 359-369.
    [116] J. Curtis. Dielectric properties of soils: Various sites in Bosnia. U. S. Army Corp. Eng., Washington, DC, Waterways Experim., Station Data Rep., 1996.
    [117] L. X. Guo, A. Q. Wang, and J. Ma. Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MOM based on PC clusters. Progress In Electromagnetics Research, 2009, PIER 89(149-166.
    [118] A. Q. Wang, L. X. Guo, and C. Chai. Investigation on the electromagneticscattering from a PEC target above a two-layered dielectric rough surface: vertical polarization. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). Beijing, China, April 2010: 498-501.
    [119] A. Q. Wang, L. X. Guo, and C. Chai. Numerical Simulations and Analysis of Electromagnetic Scattering from a PEC Target below a Two-layered Dielectric Rough Surfaces: Vertical Polarization. Progress in Electromagnetics Research Symposium (PIERS). Xi'an, China, March 2010: 1028-1032.
    [120]孙家昶,张林波,迟学斌等.网络并行计算与分布式编程环.北京:科学出版社, 1996.
    [121] T. J. Cui, and W. B. Lu. An Efficient Multiregion Model for Electromagnetic Scattering and Radiation by PEC Targets. IEEE Transactions on Antennas and Propagation, 2004, 52(7): 1707-1716.
    [122] H. X. Ye, and Y. Q. Jin. A hybrid analytic-numerical algorithm of scattering from an object above a rough surface. IEEE Trans Geosci Remote Sens, 2007, 45(5): 1174-1180.
    [123] P. Tran, V. Celli, and A. A. Maradudin. Electromagnetic scattering from a two-dimensional randomly rough, perfectly conducting surface: iterative methods. J Opt Soc Am A, 1994, 11(5): 1686-1689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700