用户名: 密码: 验证码:
震区泥石流危险性评价及预警减灾系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流危险性评价和泥石流监测预警是泥石流灾害风险管理的重要内容,针对震区泥石流,开展危险性评价和监测预警的研究,可以为灾区人民的生命和财产安全提供有力保障。“5.12‖汶川地震诱发了震区大量的地质灾害,据统计,地震诱发的滑坡和崩塌达5万多处,潜在的地质灾害隐患点多达万余处,具有泥石流暴发可能性的沟谷1千余条。地震造成的各种地质灾害和不稳定斜坡为泥石流发育提供了丰富的物源,在强降雨条件下泥石流灾害极易暴发。受地震的影响,汶川震区泥石流灾害将在未来很长的一段时间内处于活跃状态,因此对震区泥石流进行危险性评价和监测预警的研究,具有重要的科学价值和实用意义。
     本文在这一领域做了有益的探讨,取得了以下主要成果和结论:
     (1)泥石流危险性评价从尺度上可以划分为区域泥石流危险性评价和单沟泥石流危险性评价。本文分别以震区北川湔江流域和映秀红椿沟作为研究对象,进行区域泥石流危险评价和单沟泥石流危险性评价研究。当前,区域泥石流流域的危险性评价多采用计算泥石流流域危险度的方式进行评价,缺少对未暴发泥石流流域的预测。然而,未暴发的泥石流流域依然有暴发泥石流的可能性,且这些流域一旦暴发泥石流往往会产生无法估计的损失。本文在区域泥石流危险性评价研究中,通过采用GIS技术和遥感技术对研究区进行灾害信息提取,分析出地震以后研究区内滑坡和泥石流的空间分布情况。在区域危险性评价过程中,利用高精度DEM和水文模型按照不同集水阈值提取集水单元,共得到99个集水单元作为评价单元。本文对泥石流危险评价选取的因子以地貌因子为主,利用坡度、曲率、地震烈度、沟壑密度和地震烈度建立泥石流评价因子体系,借鉴信息量法的思想计算评价单元的信息量。每个集水单元的信息量代表该区域内泥石流发生的可能性,并以此为依据,将研究区划分为极高危险区、高危险区、中危险区和低危险区。最后的评价结果显示,从低到高的危险分区内泥石流分布的相对密度不断增加,评价结果基本反映了该地区泥石流危险性的分布情况,且对区域内泥石流暴发的可能性有预测作用。
     (2)目前,单沟泥石流危险性评价的常用方法,多采用经验公式预测泥石流的最大冲出距离,但是由于泥石流活动的范围难以准确描述,因此本文使用数值模拟的方法获取单沟泥石流危险评价所需要的各种定量化参数和精确的泥石堆积范围。“8.14”映秀红椿沟泥石流堵断都汶公路中断了交通,泥石流冲入岷江形成堰塞体,迫使河水改道冲进映秀新镇,造成了巨大的财产损失。本次研究对红椿沟流域进行了详细的野外踏勘,对沟道情况、物源情况和形成机理进行了分析。利用FLO-2D泥石流模型配合流变参数及泥石流流量对红椿沟泥石流进行数值模拟。“8.14”红椿沟泥石流属于溃决型泥石流,地震后在沟道中出现了大量崩塌堆积体,严重堵塞沟道。泥石流暴发后,在堆积物堵塞处形成泥石流淤积,当滑坡坝不堪承受坝内淤积的流体时,滑坡坝溃决。滑坡坝溃决后的泥石流流量由于堵塞的放大效应要远大于一般的降雨型泥石流流量,因此在对“8.14”红椿沟泥石流模拟过程中,不能直接使用降雨流量过程线进行数值模拟。假设滑坡坝溃决过程类似于大坝溃决过程,通过对红椿沟的实地考察,推测出沟道中滑坡坝高度为4m,将此高度作为大坝高度,以大坝溃决时洪水的概化流量过程线为依据,得到滑坡坝溃决的流量过程线,作为模拟泥石流的清水流量过程线。将FLO-2D模拟“8.14”红椿沟泥石流的结果与灾后航拍的泥石流堆积扇面积进行对比分析,泥石流堆积扇吻合度达到70.1%。在假定其他条件不变情况下分别采用100年一遇和50年一遇的流量数据模拟红椿沟无溃决情况的泥石流运动状态,得到了不同重现周期下泥石流的强度分布,利用泥石流强度分布数据结合重现周期,进行泥石流危险性分析,进而绘制出红椿沟泥石流危险性分区图。
     (3)泥石流监测预警是对泥石流灾害防治的一项重要措施,目前,国内外学者对泥石流预警已进行过大量研究,通过对泥石流诱发因素、运动特征的分析,建立起各种预警模型,这些模型大多是单一的预警模型,总体预测水平不高。本文根据前人对震区泥石流前期雨量和激发雨量的研究,使用当前泥石流预警中常用的小时雨强-累计雨量预警模型,结合泥石流流量监测数据和群测群防网络,形成多源泥石流预警体系,有效地提高了预警精度。本文综合利用GIS技术、物联网技术和信息传输技术等组建泥石流监测预警减灾信息平台,该信息平台集成了群测群防网络模块、泥石流灾害空间信息和属性信息数据管理模块、监测预警模块。当泥石流沟出现降雨以后,预警信息平台通过野外测站实时获取野外监测数据,运用小时雨强-累计雨量构建的预警模型,结合群测群防网络便可以对监测区进行泥石流灾害预警。当达到预警条件时,系统可以通过短信、广播、网络和电视等发出预警信息。泥石流预警信息平台建成以后,可以根据监测数据进行预警模型的改进以提高预警准确度。
Hazard assessment of debris flow and early warning is an important part of riskmanagement,providing a powerful guarantee for people's lives and property indisaster area."5.12" Wenchuan earthquake induced a large number of geologicaldisaster. According to the statistics, there are more than50000landslides and collapsesinduced by earthquake, potential geological hazard up to million and more than1000gullies with possibility of outbreak of debris flow. Landslides and collapses induced byearthquake provide a rich source for debris flow development. And debris flowoutbreak with high possibility under the condition of strong rainfall.Influenced byWenchuan earthquake, debris flow disasters would be active state for a long time.Therefore,the hazard assessment of debris flow and researchof early warning hasimportant scientific value and practical significance.
     Thesis research content and made innovations in the following areas:
     (1)Debris flow hazard assessment can be divided into regional hazardassessment and single gully hazardassessmentaccording to scale. In this paper,selectingBeichuanJianRiver and Hongchun gully as research object for regional debris flowhazard assessment and single gully debris flowhazard assessmentrespectively. Incurrent, regional debris flowhazard assessment always adopts calculated riskmethod toevaluate the dangers of the outbreakdebris flow. However, it cannotpredict the risk ofwithout debris flowsin this way.In this paper, based on GIS and RS,we got theinformation of debris flows to research the distribution of landslides and debris flows inthe region after "5.12" Wenchuan earthquake. And by using the high precision DEMand hydrological models, we obtained different threshold of catchment units. Finally,99evaluated catchment units were got by comparing and mergering with the actualterrain catchment units.The debris flow evaluation factors are gradient, curvature,seismic intensity, gully density, and Earthquake intensity.Among these factors,landform is the main influence factor.We consulted the information method to evaluateunits, and every catchment unit stands for a possibility of debris flows in this region.According to these units, the study area was divided into very high danger zone, high danger zone,mediumdanger zone and low danger zone. The final evaluation resultsshowed thatrelative density of debris flow were increasing from low to high risk zone.The evaluation results almost reflect the risk distribution of debris flowsand provide apossibility to forecast the outbreaks ofthe debris flows in this region.
     (2)The method of single gully debris flow hazard assessment uses empiricalformula for predicting maximum movement distance of mudslides,difficult toaccurately describe the range of activities.However, the numerical simulation can givevarious quantitative parameters and the area of accumulation areaof debris Flow forhazardassessment.―8.14‖Hongchungou gullydebris flowblocking Duwen road,rushedinto the Minjiang and blocked river. The water rushed intoYingxiu new town whichcaused tremendous damage to property. The study was carried out detailed work suchas field investigation.And based on the research of debris flow gully characteristic,formation mechanism and source, we adopted FLO-2D Model with rheologicalparameters to simulate Hongchungou gully debris flow.The debris flow is caused bylandslide dam outburst, which breakout at14th Aug2010when the debris flowbreakout,the landslide dam can not supportfluid pressure and break.Because ofamplification effect, the flow of debris flow is more than that of debris flow induced byrainfall. Therefore, it can not adopt commonly rainfall data.the process of landslidedam outburst is similar to that of dam break. According to the field investigation, wefound that the height of dam is4meters. The landslide dam break discharge hydrographgot by dam break,which was regarded as water discharge hydrograph for simulatingdebris flow. From the comparison of accumulation range between the simulation resultsand aerial photographs,we founded that the accuracy of simulation reached70.1%.And we simulated debris flow state of motion without dam break by using data on flowsin100years and50years, draw debris flow map intensity of different return period andfinally accomplish Hongchungou gullyhazarddebris flow zoning mapaccording tohazard results based on the strength distribution data and return period.
     (3)Themonitoring andearlywarningofdebris flowis animportant measure fordisaster prevention. At present, there are manly researches involved in warning ofdebris flowat home and abroad, including establishvarious warning modelsbasedoninducing factor and motion characteristics of debris flow. However, these models aresingle warning model and their prediction levelsare not high. In the paper, according tothe studies of preliminary rainfall and stimulate rainfall of debris flow in earthquakearea, Combining the rain-accumulated rainfall warning model which used oftencurrently with the traffic monitoring data of debris flow and group monitoring and prevention network to develop a multi-source debris flow warning system to improvethe early warning accuracy.In this article,using GIS technology, the Internet technologyand information transfer technology to set up debris flow monitoring and early warninginformation platform for disaster reduction,it could dramatically reduce the debrisflows threat to the people in disaster areas.Debris flow early warning and mitigationinformation platform integrated group monitoring and prevention network module,debris flows spatial information and attribute information data management module,monitoring and early warning module. After the rain of debris flow gullies, earlywarning information platform obtain real-time field monitoring data through the fieldstation, used early warning modelbuildby hours of Rain-cumulative rainfall andcombined with group monitoring and prevention network to monitor debris flow. Whilereaching the early warning condition, the system sends early warning information bySMS, radio, Internet and television. After the completion of the debris flow earlywarning information platform, based on the monitoring data, we will enhance the earlywarning model in order to improve the accuracy of early warning.
引文
[1]康志成.中国泥石流研究[M].北京:科学出版社,2004.
    [2]铁永波.强震区城镇泥石流灾害风险评价方法与体系研究[D].成都:成都理工大学,2009.
    [3]陈光曦,王继康,王林梅.泥石流防治[M].北京:中国铁道出版社.
    [4]刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,2004.
    [5]杨鑫.基于3S的震后汶川潜在泥石流危险性评价研究[D].成都:成都理工大学,2012.
    [6]梅岩.四川省北川县5_12强震区泥石流危险性评价[D].成都:成都理工大学,2011.
    [7]于炎鑫.滚马岭泥石流危险性评价与防治研究[D].吉林:吉林大学,2010.
    [8]万元,许建东,林旭东等.基于数值模拟的长白山天池火山泥石流灾害展布范围分析及预测[J].吉林大学学报(地球科学版),2011,41(5):1638-1645.
    [9] Andrew J. Welsh.Delineating debris-flow hazards on alluvial fans in the Coromandel andKaimai regions, New Zealand, using GIS[D]. New Zealand:University of Canterbury,2007.
    [10]贠小苏.国家重大工程建设地质灾害危险性评估理论和实践[M].北京:地质出版社,2008.
    [11]余斌.美国纽约州立大学布法罗分校火山碎屑和泥石流数学模型研究近况[J].山地学报,2005,23(1):126-128.
    [12] Marcel Hürlimann Detailed debris flow hazard assessment in Andorra:A multidisciplinaryapproach[J].Geomorphology,2006,78:359-372
    [13]王鑫等.日本泥石流、滑坡和预报研究[J].安徽农业科学,2009,37(14):6503-6505.
    [14]方华.泥石流监测预警技术研究[J].人民黄河,2011,33(10):63-66.
    [15]李朝安.山区铁路沿线泥石流泥位自动监测预警系统[J].自然灾害学报,2001,20(5):74-81.
    [16] J.Hubl,H.Steinwendtner.Two-Dimensional Simulation of Two Viscous Debris Flow inAustria[J]. Physics and Chemistry of the Earth,2001,26(9):639-644.
    [17] Yoshiaki K, Hironnori K, Ryuichi G, et al. A Study on the Development and Distribution ofWebGIS-based Flood Hazard Map [J]. Journal of Japan Society for Natural Disaser Science,2005,23(4):539-551.
    [18] Lee S, Ryu J, Min K, et al. Development and Application of Landslides SusceptibilityAnalysis Techniques Using Geographic Information System(GIS)[J].Geoscience andRemote Sensing Symposium,2000(1):319-327.
    [19] O’Brien,FLO-2D Users Manual Version2009[R].10.
    [20] Jan,C.D.Shen,H.A.Review of Debris Flow Analysis Proceeding XXV congress,IAHR
    [C],1993,3:25-32.
    [21] Van Dine.Debris flow and debris torents in the Southern CanadianCordillera[J].Geotech,1985,22:44-68.
    [22] Rickenmann.D.Empirical relationships for debris flows[J].Natural Hazards,1999,19:47-77
    [23] Giuseppe T. Aronica. Assessment and mapping of debris-flow risk in a small catchment ineastern sicily through integrated numerical simulations and GIS[J]. Physics and Chemistryof the Earth,2012.
    [24] Jeng-Wen Lin Potential hazard analysis and risk assessment of debris flow by fuzzymodeling[J]. Nat Hazards,2012,64:273-282.
    [25] Yi CS, Lee JH, Shim MP. GIS-based distributed technique for assessing economic loss fromflood damage: pre-feasibility study for the Anyang Stream Basin in Korea. Nat Hazards55(2):251–272.
    [26]师哲等.泥石流监测预报预警系统研究[J].长江科学院院报:2010,27(11):115-118.
    [27]张震等.基于ArcEngine的我国海岸带地质灾害信息管理系统的设计与研究[J].遥感技术与应用,2011,26(4):533-536.
    [28]唐川,铁永波.汶川震区北川县城魏家沟暴雨泥石流灾害调查分析[J].山地学报,2009,27(5):625-630.
    [29]齐信.基于3S技术的强震区地质灾害解译与危险性评价[D].成都:成都理工大学,2010.
    [30]林伯融.FLO-2D模式應用于土石流災害損失評估之研究-以松鶴部落為例[D].台灣:朝陽科技大學,2007.
    [31]曹英明.FLO-2D模式於土石流流況模擬之應用[D].台灣:朝陽科技大學,2005.
    [32]林芝岩.FLO-2D沖淤模式應用於土石流影響範圍之研究-以宜蘭縣頭城鎮桶盤嶇溪偽例[D].台灣:國立宜蘭大學,2007.
    [33]唐川,李为乐.汶川震区映秀镇―8·14‖特大泥石流灾害调查[J].中国地质大学学报(地球科学版),2011,36(1):172-180.
    [34]唐川.城市泥石流灾害预警问题探讨[J].地球科学进展.2008,5:546-551.
    [35]刘传正,张明霞,孟晖.论地质灾害群测群防体系[J].防灾减灾工程学报,2006,26(2):175-178.
    [36]廖立琼.基GIS的铁路工程地质信息系统的构建[J].四川地质学报,2001,21(1):44-47.
    [37]廖立琼.基GIS的铁路工程地质信息系统的构建[J].四川地质学报,2001,21(1):44-47.
    [38]葛峤.基于WebGIS的三峡库区滑坡预警信息系统研究[D].北京:清华大学,2008.
    [39]孙仁先,王小平.湖北省地质灾害防灾减灾网络信息平台建设思考[J].资源环境与工程,2004,18(4):43-47.
    [40]陶舒,胡德勇,赵文吉.基于信息量与逻辑回归模型的次生滑坡灾害敏感性评价——以汶川县北部为例[J].地理研究,2010(9):1597-1605.
    [41]吴桂平,曾永年.AutoLogistic方法在土地利用格局模拟中的应用——以张家界市永定区为例[J].地理学报,2008(2):156-162.
    [42]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报,2001,29(1):87-89.
    [43] B. Calvo, F. Savi. A real-world application of Monte Carlo procedure for debris flow riskassessment[J]. Computers&Geosciences,2009,35(5):967-977.
    [44] Gre t-Regamey, A., Straub, D. Spatially explicit avalanche risk assessment linking Bayesiannetworks to a GIS[J]. Natural Hazards,Earth System Science2006,6:911–926.
    [45]夏添.空间数据挖掘技术在滑坡敏感性评价中的应用[J].人民黄河,2012,34(9):79-81.
    [46]方华.泥石流监测预警技术研究[J].人民黄河,2011,33(10):63-65.
    [47]焦方晖,贾永刚.崂山地质灾害远程监测预警系统构建[J].中国海报大学学报,2012,42(1-2):49-53.
    [48] Abdou T,Danisch L,Ha D.Advanced sensing for real-time monitoring of geotechnicalsystem[J].Site Characterization and Modeling,2005(4):164-173.
    [49]曹修定,阮俊,展建设等.滑坡的远程实时监测控制与数据传输[J].中国地质灾害与防治学报,2002,13(1):61-65.
    [50]岳建伟,王斌,刘国华等.地质灾害预警预报及信息管理系统应用研究[J].自然灾害学报,2008,17(6):60-63.
    [51]许强,黄润秋,李秀珍.滑坡时间预测预报研究[C].兰州:全国突发性地质灾害应急处置与灾害防治技术高级研讨会议文集,2010.
    [52]黄健.基于3D WebGIS技术的地质灾害监测预警研究[D].成都:成都理工大学,2012.
    [53]孟凡奇,李广杰,秦胜伍,汪茜,马建全.基于证据权法的泥石流危险度区划[J].吉林大学学报(地球科学版),2010,40(6):1380-1384.
    [54] C.J.van Westen,N.Rengers,M.T.J.Terlien.Prediction of the occurrence of slopeinstabilityphenomena through GIS-based hazard zonation[J].Geol Rundsch,1997,86:404-414.
    [55]安玉华,王清,张晨,赵传海.基于突变模型的泥石流危险度评价[J].吉林大学学报(地球科学版),2012,S1:355-361.
    [56]匡乐红,徐林荣,刘宝琛.基于可拓方法的泥石流危险性评价[J].中国铁道科学,2006,27(5):1-5.
    [57]李新坡,莫多闻.应用GIS和神经网络方法进行泥石流危险度评价的研究—以云南省为例[J].水土保持研究,2005,12(4):7-9.
    [58]任洪玉;畅益锋;赵健.长江上游滑坡泥石流灾害现状与预警系统建设探讨[J].水土保持研究,2009,16(6):139-142.
    [59]汪月娟.汶川震区北川县暴雨泥石流危险性评价[D].成都:成都理工大学,2009.
    [60]丁军.强震区泥石流活动规模与最大堆积长度预测研究[D].成都:成都理工大学,2010.
    [61]黄翔超.汶川震区典型泥石流堵江可能性分析[D].成都:成都理工大学,2011.
    [62]胡凯衡,韦方强.基于数值模拟的泥石流危险性分区方法[J].自然灾害学报,2005,14(1):10-14.
    [63]蒋忠信.泥石流流域系统的超嫡[J].中国地质灾害与防治学报,1992,3(1):33-39.
    [64]谷复光,王清,张晨.基于投影寻踪与可拓学方法的泥石流危险度评价[J].吉林大学学报(地球科学版).2010,4(2):374-377.
    [65]唐川.平面二维泥石流数值模拟方法的探讨[J].水文地质工程地质,1995,5:9-11.
    [66]韦方强,胡凯衡,程尊兰.藏古乡沟泥石流的数值模拟[J].山地学报,2006,167-171.
    [67]哲伦.美国的泥石流预警系统[J].资源与人居环境,2009,19:41-44.
    [68]刘传正,张明霞,孟晖.论地质灾害群测群防体系[J].防灾减灾工程学报,2006,26(2):175-179.
    [69] Glade T. The temporal and spatial occurrence of rainstorm-triggered landslide events in NewZealand.School of Earth Science Institute of Geography, Victoria University of Wellington,New Zealand,1997.
    [70] Johnson and P.H. Rahn. Mobilization of debris flows[J]. Zeitschrift fuerGeomorphologie,1970,9:168–186.
    [71] Lorenzo Marchi,Massimo Arattano,Andrea M Deganutti.Ten years of debris-flowmonitoring in the Moscardo Torrent (Italian Alps)[J]. Geomorphology.2002,46(1-2):1-17.
    [72] Byron Quan Luna.Dynamic numerical run-out modeling for quantitative landslide riskassessment[D].Netherlands:University of Twente.
    [73] Cannon SH, Ellen SD (1985) Rainfall conditions for abundant debris avalanches, SanFrancisco Bay region, California. Calif Geol38(12):267–272.
    [74]张燕.日本最新滑坡调查及防治对策技术—赴日本考察地质灾害监测防治技术报告[J].中国地质灾害与防治学报,2007,18,增刊:1-4.
    [75] Clark James. Hierarehieal Geometric Models for Visible SurfaceAlgorithms[J].Communieations of the ACM (S0001-0782).1976,19(10):547-554.
    [76] Takahashi,T.―Debris Flow‖, IAHR,Monograh,A.A.Balkema,Rotterdam,the Netherlands1991
    [77] Johnson,A.M.A model for debris flow[D]. TheStates:Pennsylvania University.
    [78]詹钱登教授研究室。http://www.hyd.ncku.edu.tw/teacher/~cdjian/cdjan-pagge1.htm.2006
    [79] Woolhiser,D.A.Simulation of unsteady overland flow[J].Water resources publications,1975.
    [80]陈松村.FLO-2D模式与土石流灾害模拟之研究-松鹤为例[D].台湾:国立中兴大学.
    [81]柳金峰,游勇,陈兴长.震后堵溃泥石流的特征及防治对策研究——以四川省平武县唐房沟为例[J].四川大学学报(工程科学版),2010,42(5):68-75.
    [82]陈储军,刘明,张帜.西藏年楚河冰川终碛湖溃决条件及洪水估算[J].冰川冻土,1996,18(4):347-352.
    [83] Cendereli D A. Wohl E E. Peak discharge estimates of glacial-lake outburst floods and―normal‖climatic floods in the Mount Everest region, Nepal [J]. Geomorphology,2001,40:57-90.
    [84]华东水利学院.水工设计手册(第一卷)[M].北京:水利电力出版社,1983.
    [85]谭万沛,韩庆玉.四川省泥石流预报的区域临界雨里指标研究[J].灾害学,1992,7(2):37-42.
    [86]四川省水电局.四川省水文手册[M].四川省水利电力局水文总站图书出版社,1984.
    [87] R.Garcia,J.J.Rodriguez and J.S,O’Brien.Hazard Zone Delineation for Urbanized AlluvialFans.2004ASCE World Water&Environmental Resources Congress-Arid LandsSymposium,SaltLakeCity,Utah,2004.
    [88] Fiebiger, G.1997. Gefahrenzonenplanung in sterreich[J].Wildbachund Lawinenverbau,1997,61,121–133.
    [89]周伟,唐川,周春花.汶川震区暴雨泥石流激发雨量特征[J].水科学进展,2012,23(5):650-655
    [90]钟敦伦,张金山,谢洪,崔鹏.泥石流警报技术探索[J].山地学报,2011,29(2):234-242.
    [91]陈伟,许强.地质灾害降雨预警基准研究[J].地球与环境,2011,39(3):393-398.
    [92]关振忠.基于ZigBee的家庭控制网络的应用研究[D].江苏大学硕士学位论文,2008.
    [93]马寅.物联网技术特点与应用[J].评论综述,2012,231:7-12.
    [94] YAN B,HUANG G W. Application of RFID and internet of things in monitoring andanti-counterfeiting for products[C].2008International Seminar on Business andInformation Management,2008:392-395.
    [95]刘传正.长江三峡库区的地质灾害及其监测预警[J].科技导报,2000,11:60-63.
    [96]红椿沟泥石流补充勘查报告.四川省华地建设工程有限责任公司.
    [97]铁永波,唐川.层次分析法在单沟泥石流危险度评价中的应用[J].中国地质灾害与防治学报.2006,17(4):79-84.
    [98]刘丽,王士革.滑坡、泥石流区域危险度二级模糊综合评判初探[J].自然灾害学报.1996,5(3):51-59.
    [99]谭炳炎.泥石流沟严重程度的数量化综合评判[J].水土保持通报,1986,6(1):51-57.
    [100]朱静,唐川.云南省泥石流灾害危险度分区研究[J].中国地质灾害与防灾学报,1996,7(2):86-93
    [101]夏添.面向地图服务的水资源实时监控与管理信息系统研究[D].成都:成都理工大学.
    [102]夏添,常鸣.改进逻辑回归方法在滑坡敏感性评价中的应用[J].物探化探与计算计算,2013,35(2):185-188.
    [103] Jan C D,Shen H W.Review dynamic modeling of debris flows[C].Proceedings of theInternational Workshop on Debris Flows,1993:33-42.
    [104]唐川,刘琼招.中国泥石流强度划分与危险区划讨论[J].中国地质灾害与防治学报,1994,5:30-34.
    [105]唐川,刘希林.泥石流堆积泛滥区危险度的评价与应用[J].自然灾害学报,1993,2(4):79-84.
    [106]唐川,周钜乾.泥石流堆积扇危险度分区评价的数值模拟研究[J].灾害学,1994,9(4):7-13.
    [107]邓辉.基于遥感和GIS的泸定县生态地质环境质量评价[D].成都:成都理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700