用户名: 密码: 验证码:
潜油电机机械损耗及隔磁段电磁参数计算分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜油电机作为潜油电泵机组的动力部分,是一种立式三相异步电动机,工作于数千米井下的特殊环境中,定转子采用分段的细长结构,气隙中充满专用润滑油。转子由同轴的若干个独立的笼型转子单元组成,每两个单元之间装有扶正轴承;与扶正轴承相对应的定子铁心处装有隔磁段。显然,普通三相感应电动机的通用设计方法不再完全适合潜油电机,但是目前国内外还没有一种完善的充分考虑其特殊结构和工作环境的设计方法,多数仍是采用传统普通异步电机设计方法,这在工程实践中很难满足实际准确度需求,误差很大。
     本文根据国内外潜油电机设计的研究现状,分析了目前设计中所存在的问题。针对设计中的关键技术问题,结合其结构特点运用电磁场理论、流体理论等技术理论对潜油电机的设计方法进行了深入具体的研究,形成了具有高准确度的设计方法。
     首先研究了气隙中充满专用润滑油后对潜油电机机械损耗的影响,着重分析了电机高速旋转时润滑油对转子形成的油摩损耗,采用流体力学的原理并结合潜油电机稳态运行时止推轴承动块、静块及扶正轴承的摩擦损耗的经验公式得到了潜油电机机械损耗的准确计算方法,通过对实例的计算、实验对比,证明了该方法的有效性。
     分析了潜油电机隔磁段处漏磁对电机性能参数的影响,定义了潜油电机特有的隔磁段漏抗。建立了隔磁段三维有限元模型,通过求解其中的磁场储能来获得该漏抗值,实验证明隔磁段漏抗对电机的性能参数有较大的影响,在电机的设计中必须考虑。
     同时利用有限元模型,在保证计算结果正确的前提下,对定转子铁心磁导率的非线性做了简化后计算了转子扶正轴承中的附加涡流损耗。分析了采用现有钢外套扶正轴承的潜油电机其附加损耗对电机效率的影响,并研究了采用新型具有大电阻率而又不导磁的合金材料制造扶正轴承外套时,可将该损耗显著降低,对电机效率影响可忽略不计。
     结合潜油电机直径很小长度很大难以采用传统斜槽,文中通过将转子槽中心线与键中心线设计成某一定特定角度,转子铁心叠压时分别采用冲片的正反面,形成不同的转子铁心,安装在扶正轴承的两侧,在整个电机中起到了等效斜槽的作用。
     研制了两台模拟实验样机,样机设计时考虑了既能够反映所要研究的问题又要结构简单易于制造。两台实验样机采用相同的电磁设计方案,不同的结构设计。样机由两段组成,输出功率6 kW,电压290 V,总装完成后电机的长度是1.6 m。样机中一台定转子之间装有隔磁段和扶正轴承;另一台样机没有扶正轴承,转子分段处用卡簧固定。
     样机制造完成后,首先应用前文所述方法对样机的扶正轴承附加涡流损耗及其机械损耗进行了理论计算。购置了相关实验设备并分别对两台样机进行了实验,分析两组实验数据,得到了扶正轴承附加涡流损耗和机械损耗的实验值。最后对比相关参数的计算值与实验值表明,考虑本文所提出的参数后的计算结果更加接近实验值,直接验证了研究内容的正确性。对样机的定子隔磁段漏抗进行了间接验证,证明了文中所述理论计算方法具有很高的准确度。
     在上述研究基础上,对潜油电机隔磁段漏抗做了应用研究,深入研究了隔磁段漏抗随电机功率等级、隔磁段宽度、隔磁段数量以及扶正轴承与相邻两段转子相对位置的变化,对现有各功率等级潜油电机在不同隔磁段宽度下的隔磁段漏抗做了大量的计算,得到潜油电机漏抗曲线族,为今后潜油电机的设计提供了可靠的依据。
     论文的研究成果为潜油电机的设计提供了参考,并考虑到今后产品的批量生产,提出了电机结构中的通用性、适应性和可靠性的设计。所提出的方法和研究成果不仅具有理论意义,而且具有较高的实用价值。
As the drive part of submersible pump set, submersible motor is a kind of vertical three-phase asynchronous motor, working in very special situation , the bottom of oil well , thousands of meters under ground. The stator and rotor are slender and separated; the gap is full of special lube oil. The rotor includes several cage-type rotor units; there is bearing between every two units; corresponding to the rotor bearing, there are magnetic isolated segments in the stator core. Obviously, common calculation method for general three-phase asynchronous motor is not completely suitable for submersible motor, but till now there is not a design method inside or outside of China that can perfectly consider the special structure and working situation. Traditional design method for general asynchronous motor is used in most occasions, the error is big and the practical accuracy requirement is hard to be satisfied in engineering practice.
     According to nowadays international study status of submersible motor, the problems exist in present design method are analyzed. For the pivotal technology problems in design, combined with its structure character, electromagnetic field theory, liquid theory and etc. are applied to thoroughly and concretely study the design method of submersible motor, and the high accuracy design method is formed.
     When the gap is full of special lube oil, the influence to the mechanical loss of the submersible motor is studied; the oil friction loss formed by lube oil with rotor as the motor revolves with high speed is analyzed emphatically; hydromechanical theory and empirical formula for friction loss of thrust bearing shoe, static block and rotor bearing under working condition of the motor are adopted, the accurate calculation method of mechanical loss of submersible motor is acquired, and the effectiveness of this method has been proved by experiments and calculations of example.
     The leak magnet influence of magnetic isolated segment to the performance parameter of submersible motor is analyzed, and the concept of leakage reactance in magnetic isolated segment is defined. The 3D FEM model of magnetic isolated segment is set up, and the leakage reactance is achieved by solving the stored energy of the model. It is proved by experiment that the influence of leakage reactance in magnetic isolated segment to the performance parameter of the motor is clear and must be considered in the design of the motor.
     Meanwhile, under the premise of guaranteeing the calculation result is right, the nonlinearity of magnetic conductivity of the stator core and rotor core is simplified and the additive loss in rotor bearing is calculated by FEM model. For the submersible motor with steel outer space rotor bearing, the influence of additive loss to the efficiency of motor is analyzed. It is studied that, when new type alloy material with big resistivity and without magnetic permeability is used to produce the outer space rotor bearing, the loss is reduced obviously and the influence to the motor efficiency can be ignored.
     As the characteristic of submersible motor with small diameter and big length that traditional skewed slot is hard to be adopted. In this dissertation, the angle between the line of rotor slot centre and the line of key centre is designed with some special degree. Front and back of iron sheet are used separately when making the rotor iron core, and different rotor cores are formed and installed at the two sides of the rotor bearing, so the function of skewed slot is attained for the whole motor.
     Two sets of simulated experiment simulated model are developed, not only the studied problems are considered when designing the sample motor, but also the structure shall be easy to be manufactured. For the two sets of model, the same electro-magnetic design scheme but different structure designs are used. The sample has two sections, output power 6kW, voltage 290V, the length of the whole assembled motor is 1.6m. For one sample, magnetic isolated segment and rotor bearing are installed at the subsection of the stator and rotor; for the other one, no rotor bearing is installed at the subsection but circlip to fix.
     After the samples are completed, the additive loss in rotor bearing and mechanical loss are theoretically calculated by the method stated above. The related experiment equipments are purchased and the experiments are carried out for the two samples, two groups of test data are analyzed and the experimental values of additive loss in rotor bearing and mechanical loss are acquired. At last, comparing the calculation value with the experimental value of the related parameters, it shows that, the calculation result which considers the parameters raised in this dissertation can reach the experimental values closer. The correctness of the study content is proved directly. The theoretical calculation method is testified with very high accuracy by indirect experiment of leakage reactance in magnetic isolated segment of samples.
     Based on the reserch above, the universality research of leakage reactance in magnetic isolated segment of submersible motor is carried out. It is studied profoundly that how the leakage reactance in magnetic isolated segment changes with the motor power rate, the width of magnetic isolated segment, the quantity of magnetic isolated segment and the relative position of rotor bearing and the near two section of rotors. For each power rate of now available submersible motor, large amount of calculations of leakage reactance in magnetic isolated segment under different width of magnetic isolated segment have been done, and the leakage reactance curve group of submersible motor is achieved, which will provide reliable foundation for submersible motor design in future.
     Research achievement of this dissertation provided the reference for the design of submersible motor. Considering batch production of the product in future, the universal property, flexibility and reliability design of the motor structure is provided. The provided method and study achievement not only have theoretical significance but also very high practical value.Submersible Motor.
引文
1师世刚.潜油电泵采油技术.石油工业出版社,2003:34~40
    2黄秀明,黄中明,闫建文.国内外螺杆泵采油技术发展概况.国外油田工程,1996,(6):20~22
    3白广文.潜油电泵技术.石油工业出版社,1993:40~49
    4刘成,孟大伟,刘宇蕾.大功率潜油电机的设计及模拟试验样机的制造.防爆电机,2008,43(2):8~11
    5王世杰,吕彬彬,李勤.潜油螺杆泵采油系统设计与应用技术分析.沈阳工业大学学报,2005,27(2):121~125
    6郑砥中.潜油电机设计特点及主要尺寸确定.电机技术,1995,(4):28~31
    7 Y. Guo, J.G. Zhu, W. Wu. Thermal Analysis of Soft Magnetic Composite Motors Using a Hybrid Model With Distributed Heat Sources. IEEE Transactions on Magnetic, 2005, 41(6):2124~2128
    8 O.V.Thorsen, M.Dalva.Modelling and Simulation of Electric Submersible Pumps. IEEE Transactions on Industry Application, 1999, 35(9):952~954
    9 V.Vivek, G.Uma, R.P.Kumudini Devi, C.Chellamuthu.Performance of Induction Motor Driven Submersible Pump Using Matlab/Simulink. IEEE Transactions on Industry Application, 2002, 38(2):765~768
    10 St.Henneberger, S.Van Haute, K.Hameyer, R.Belmans.Submersible Installed Permanent Magnet Synchronous Motor for a Photovoltaic Pump System. IEEE Transactions on Industry Application, 1997, 33(7):WB2-10.1~WB2-10.3
    11 M.A.Choudhury, M.Azizur Rahman.Determination of Operating Conditions of Submersible Induction Motors. IEEE Transactions on Industry Application, 1992, 28(3):680~684
    12 M.A.Choudhury, M.A.Rahman.Determination of Operating Conditions of Submersible Induction Motors from Their Terminal Quantities. IEEE Transactions on Industry Application, 1990, 26(5):129~134
    13 M.A.Choudhury, M.A.Rahman.Starting Performances of Delta-Modulated Inverter-Fed Submersible Induction. IEEE Transactions on Industry Application, 1992, 28(3):685~693
    14曹庆霞,刘晓玲,王宇等.节能潜油电机的研制与应用.西部探矿工程,2004,(9):139~140
    15张庆生,曹言光,杜山弘等.高压节能潜油电机的研制与应用.断块油气田,2003,10(2):70~72
    16杭化歌,王宇.大功率单节潜油电机的研制与应用.西部探矿工程,2005,(9):143~144
    17初明召.非常规潜油电机电气参数的变换计算.河南石油,2004,18(1): 48~49
    18刘宏,朱友珠,张艳玲等.小直径系列潜油电机的研制与应用.西部探矿工程,2003,(8):65~66
    19孟大伟,李国辉.潜油电机机械损耗的分析与计算.电机与控制学报,2004,8(4):370~372
    20张瑞良,孟大伟,孟庆伟.潜油电机端部漏抗的分析与计算.电机与控制学报,2006,10(1):31~34
    21孟庆伟,孟大伟,张瑞良.潜油电机隔磁段涡流损耗的计算.电机与控制学报,2006,10(2):143~146
    22 Katsumi Yamazaki. Comparison of Induction Motor Characteristics Calculated from Electromagnetic Field and Equivalent Circuit Determined by 3D FEM. IEEE Trans.Mag, 2000, 36(4):1881~1885
    23 P. Silvester, M. V. K. Chari. Finite E1ement Solution of Saturable Magnetic Field Problem, IEEE Trans. on Power Apparatus and Systems, 1970, 89(7):1642~1650
    24 Binns K J,Lawrenson P J,Trowbrige C W.The Analytical and Numerical Solution of Electric and Magnetic Fields.New York:Jhon Wiley & Sons,1992
    25 S.Richard, J.P.Ducreux. A Three Dimensional Finite Element Analysis of the Magnetic Field in the End Region of A Synchronous Generator. Proceeding of the 1997 IEEE International Electric Machine and Drives Conference (IEMDC), Milwaukee, WI, USA. 1997:WC2-4.1~WC2-4.3
    26 Slaon S J.Finite Element Analysis of Electrical Machinery.IEEE Computer Application in Power, 1990, 3(2):1642~1650
    27汤蕴璆.电机内的电磁场(第二版).科学出版社,1998:40~53,287~295
    28汪耕,李希明.大型汽轮发电机设计、制造与运行.上海科学技术出版社,2000:103~104
    29孙立瑛,孟大伟,李一博.场路结合算法在电机稳态过程分析中的应用.哈尔滨理工大学学报,2003,8(6):83~85
    30周克定.工程电磁场数值计算的理论方法及应用.高等教育出版社,1994:1~5
    31 Chari M M K, Salon S J. Numerical Methods in Electromagnetism. San Diego:Academic, 2000:125~131
    32 Lavers J D.Electromagnetic Field Computation in Power Engineering. IEEE Trans.MAG, 1993, 29(6):1455~1461
    33 Emson C R I, Simkin J, Trowbridge C W. A Status Report on Electromagnetic Field Computation. IEEE Trans. MAG,1994, 30(4):879~885
    34张榴晨,徐松.有限元法在电磁计算中的应用.中国铁道出版社,1996:11~15
    35 Erdelyi E A, Ahmed S V. Flux Distribution in Saturated D.C. machines. IEEE Trans PAS, 1965, 84(6):1315~1322
    36 Ahamed S V, Erdelyi E A. Nonlinear Theory of Salient Pole Machines. IEEE Trans. PAS, 1965, 84(4):1165~1167
    37 Erdelyi E A,Ahmed S V. Nonlinear Theory of Synchronous Machines on Load. IEEE Trans. PAS, 1965, 84(4):1347~1353
    38 Pabot J L.Study on The Electromagnetic Field of Windings of Turbogenerator. IEEE Trans. PAS, 1975, 94(4):519~528
    39 Molinari G,Viviani.A. Grid and metric optimization procedures in finite difference and finite element method. Proc of IEE PES Winter meeting,New York, A78,289-1,1-9(1978):243~247
    40赵光,陈永校.一种计算笼型异步电机稳态特性的有限元模型.中小型电机,2001,28(3):26~29
    41 Martic H C,Carey G.Introduction to Finite Element Analysis Theory and Applications. New York:McGraw-Hill,1973:79~88
    42 Hildebrand F B. Advanced Calculus for Applications. Englewood Cliffs,N.J. :Prentice-Hall,1962:141~153
    43 Winslow A A. Numerical Solution of The Quasi-linear Poisson Equation in a Non-uniform Triangular Mesh. J. Comput. Phys.,1971,1:385~389
    44王坚.基于有限元法的电机铁心涡流损耗分析.大电机技术,2004,(4):5~9
    45 Frederic bcuillault, Adel razek. Dynamic Model for Eddy Current Calculation inSaturated Electric Machines. IEEE IEEE Trans.MAG, 2005, 19(6):2639~2642
    46闫照文,李朗如.电磁场有限元分析的优秀软件.微电机,2002,27~29
    47 Kurt Preis, Oszkár Bíró, Igor Ti?car. FEM Analysis of Eddy Current Losses in Nonlinear Laminated Iron Cores. IEEE Trans.MAG, 2005, 41(5),1412~1415
    48严登俊,刘瑞芳,胡敏强,李训铭.鼠笼异步电机启动性能的时步有限元计算.电机与控制学报,2003,7(3):177~181
    49 M.A.Choudhury, M.Azizur Rahman. Determination of Operation Conditions of Submersible Induction Motors. IEEE Trans.APPL, 2002, 38(3):680~684
    50谢德馨,姚缨英,白保东,李锦彪.三维涡流场的有限元分析.北京:机械工业出版社,2001:14~25
    51 Silvester P P,Chari M V K. Finite Element Solution of Saturable Magnetic Field Problems. IEEE Trans. PAS, 1970, 89(12):1674~1685
    52 Christian Kaehler and Gerhard Henneberger. Transient 3-D FEM Computation of Eddy-Current Losses in the Rotor of a Claw-Pole Alternator. IEEE Transactions on magnetics, 2004, 40(2),1362~1365
    53 Karl Hollaus and Oszkár Bíró. A FEM Formulation to Treat 3D Eddy Currents in Laminations. IEEE Transactions on magnetics, 2000, 36(4),1289~1292
    54 Harrington R F. Field Computation by the Moment Method. New York: Macmillan.2005:33~52
    55 Dudley R F, Burke P E. The Prediction of Current Distribution in Induction Heading Installations. IEEE Trans. Ind. Appl. 2006, 42(8):1632~1638
    56 Ishibashi K. Nonlinear Eddy Current Analysis by Volume Integral Equation Method. IEEE Trans. MAG, 1997, 23(6):927~933
    57 Koizumi M, Onizawa M. Computational Method of Three Dimensional Eddy Current by Using Volume Integral Equation Method. IEEE Trans. MAG, 1991, 17(4):487~495
    58 Gimignani M, Musolino A,Raugi M. Integral Formulation for Nonlinear Magnetostatic and Eddy Currents Analysis. IEEE Trans. MAG, 1994, 20(4):1471~1479
    59 Fawzi T H, Burke P E. Use of surface integral equations for the analysis of TM-induction problem. Proc. IEE, 1974, 31(5):991~1007
    60 Mayergoyz. Boundary Integral Equations of Minimum Order for Calculation of Three Dimensional Eddy Current Problems. IEEE Trans. MAG, 2006,32(3):369~374
    61 Lowther D A, Silvester P P. Computer Aided Design in Magnetics. Berlin: Springer. 2003:17~31
    62 Zienkiewicz O C. Taylor R L. The Finite Element Method(4th edition).New York: Mc Graw-Hill.2006:94~103
    63 Reece A B J, Preston T W. Finite Element Methods in Electrical Power Engineering. London: Oxford,2005:3~12
    64 K.Preis,H.Stogner,K.R.Richter. Calculation of Eddy Current Losses in Air Coils by Finite Element Method. IEEE Trans. MAG, 2002, 18(6),1064~1066
    65 M.V.K Chari,P.Silvester,A.Konrad,Z.J.Csendes,M.A.Palmo. Three-Dimensional Magnetostatic Fields Analysis of Electrical Machinery by the Finite-element Method. IEEE Trans, 2006 (100):4007~4017
    66 Toshiya Morisue. Magnetic Vector Potential and Electrical Scalar Potential in Three Dimension Eddy Current Problem. IEEE Trans Magnetics, 2000, 18(2),531~533
    67 N.A.Demerdash, O.A.Mohammed, T.W.Nehl, F.A.Found,R.H.Miller. Solution of Eddy Current Problems Using Three Dimension Finite Element Complex Magnetic Vector Potential. IEEE Trans, 2006, (100):3038~3043
    68 O.A.Mohammed, N.A.Demerdash,T.W.Nehl. Validity of Finite Element Formulation an Solution of Three Dimension Magnetic Problems in Electrical Device with Applications to Transformers and Reactors.IEEE Trans, 2005, 99(7):1846~1853
    69黄学良,胡敏强,杜炎森,周鹗.汽轮发电机端部似稳涡流场数学模型.东南大学学报,1995,(2):90~97
    70阮江君,陈贤珍,周克定.大型汽轮发电机端部三维瞬态涡流场数值分析.大电机技术,1997,(5):1~4
    71 Ballisti R, Hafner C. The Multipole Method in Electro and Magnetostatic Problems. IEEE Trans. MAG, 2004, 30(4):2309~2317
    72 Meng H Lean. Application of Boundary Integral Equations to Electromagnetics. IEEE Trans. MAG, 2005, 31(5):856~869
    73 Lalaichelvan S, Lavers J D. On the Implementation of a Boundary Element Method for 3-D Multiply Connected EM Field Problems. IEEE Trans. MAG, 2004, 30(7):1979~1990
    74 Shao K R, et al. Boundary Element Analysis Method for 3-D Eddy Current Problems Using the Second Order Vector Potential. IEEE Trans. MAG, 2003, 29(6):1857~1861
    75 Wang Jingguo, Lavers J D. The Method of Fundamental Solutions with a Minimum Order Formulation Applied to 3D Eddy Current Problems. IEEE Trans. MAG, 1999, 25(8):997~1005
    76 Enokizono M, Todaka T. Three-Dimensional Eddy Current Analysis on Thin Conductors with Boundary Element Method. IEEE Trans. MAG, 2006, 32(7):3319~3326
    77 Salon S J,Schneuder J M. A hybrid Finite Element-Boundary Integral Formulation of the Eddy Current Problem. IEEE Trans. MAG, 1982, 8(4):1559~1564
    78 Winslow A A. Numerical Solution of The Quasi-linear Poisson Equation in a Non-uniform Triangular Mesh. J. Comput. Phys.,1971,1:385~389
    79 Chari M V K,Silvester P P. Finite Element Analysis of Magnetically Saturated DC Machines. IEEE Trans. PAS,971,90:131~139
    80 Chari M V K,Silvester P P. Analysis of Turbo-Alternator Magnetic Fields by Finite Elements. IEEE Trans. PAS,1971,90:476~483
    81奥田宏史.有限要素法による进行波磁界およびうず电流解析.电气学会论文志(B),1976:96~105
    82 Kaoru Ito, Tadashi Tokumasu, Susumu Nagano, et al. Simulation for Design Purposes of Magnetic Fields in Turbine-Driven Generator End Regions. IEEE Trans. PAS, 1980, 99(4):761~769
    83 Weise J, Stcphers C M. Finite Element for Three-Dimensional Magnetstatic Fields and Its Application to Turbine-Generator End Regions. IEEE Trans. PAS, 1981, 100(4):336~341
    84 Jack A G. Calculation of 3D Electromagnetic Fields Involving Laminar Eddy Current. PIEE, Pt.A, 1987, 134(8):985~992
    85 Bedrosian Gary, Chari M V K,Andrew deBlois, et al. Axiperiodic Finite Element Analysis of Generator End Regions: PartⅡApplication. IEEE Trans. MAG, 1989, 25(4):779~786
    86 Bedrosian Gary, Chari M V K, Manoj Shah, et al. Axiperiodic Finite Element Analysis of Generator End Regions: PartⅠTheory. IEEE Trans. MAG, 1989,25(4):771~778
    87 Khan G K M, Buckley G W, Bennett R B,et al. An Integrated Approach for the Calculation of Losses and Temperatures in the End-Region of Large Turbine Generators. IEEE Trans. EC, 1990, 5(1):161~165
    88陈丕璋.定子端部绕组与压板平行的汽轮发电机在短路时端部压板的电磁场与涡流损耗.清华大学学报,1964,11(3):17~22
    89四川大学计算数学专业.大型汽轮发电机端部磁场计算.大电机技术,1976,(6):21~25
    90许善椿.行波电磁场问题的有限元法.哈尔滨电工学院学报,1980,3(1):9~12
    91胡显承,姚若萍.发电机端部磁场的有限元分析(Ⅰ).清华大学学报,1982,22(3):1~4
    92胡显承,姚若萍.发电机端部磁场的有限元分析(Ⅱ) .清华大学学报,1982,22(4):13~16
    93陈伟华.空载、三相短路和进相运行时汽轮发电机的端部磁场.哈尔滨电工学院学报,1987,10(1):31~34
    94陈伟华,汤蕴缪.汽轮发电机端部磁场的有限元分析.哈尔滨电工学院学报,1986,9(2):5~9
    95胡敏强,陈贤珍等.汽轮发电机中三维行波涡流电磁场的有限元计算.华中理工大学学报,1989,17(5):37~41
    96胡敏强.大型汽轮发电机进相运行时端部涡流场和温度场的研究.华中理工大学博士论文,1989:21~45
    97黄学良,胡敏强,杜炎森,周鹗.汽轮发电机端部涡流电磁场及影响因素研究.电工技术学报,1995,11(2):41~45
    98黄学良.大型汽轮发电机物理场理论研究及其进相运行分析:东南大学博士论文,1997:12~33
    99 Freitas C.J. Prospective:Selected Benchmarks from Commercial CFD Cods. ASME J Fluids Engineering, 2004:208~218
    100韩占忠,王敬,兰小平.流体工程仿真计算实例与应用.北京理工大学出版社,2004:1~4
    101 F.M.怀特.粘性流体力学.机械工业出版社,1982:157~189
    102王福军.计算流体动力学分析.清华大学出版社,2004:144~156
    103 Sungmun Cho, Jaekwang Kim, Hyunkyo Jung, Cheolgyun Lee. Stress andThermal Analysis Coupled with Field Analysis of Multilayer Buried Magnet Synchronous Machine with a Wide Speed Range. IEEE Transactions on Magnetics. 2005, 41(5):1632~1635
    104陶文铨.计算传热学的近代进展.科学出版社,1996:383~395
    105 Freitas C J. Prospective: selected benchmarks from commercial CFD cods. ASME J Fluids Engineering, 1995:208~218
    106朱松林,朱方元.三维复杂区域对流换热问题的控制方程及计算.航空动力学报,1998,13(3):267~271
    107 M.Shanel, S.J.Pickering, D.Lampard. Application of Computational Fluid Dynamics to the Cooling of Salient Pole Electrical Machines. International Conference on Electrical Machines, ICEM 2000. Espoo, Finland, 2000:338~342
    108王徳林.无界域电磁场问题的有限元—本征函数展开结合解法.西安交通大学学报,1997,31(11),117~122
    109陈世元.交流电机磁场的有限元分析.哈尔滨:哈尔滨工程大学出版社,1998:203~216
    110韩秀芝,邓辉.潜油电机机械损耗分析计算.机械工程师,1998,(4):38~39
    111 L.普朗特.流体力学概论.北京:科学出版社,1981:235~241
    112孙玉田,杨明,李北芳.电机动态有限元法中的运动问题.大电机技术,1997,(6):35~39
    113陈世坤.电机设计(第二版).北京:机械工业出版社,2000:9~18
    114汤蕴璆、史乃.电机学.机械工业出版社,2002.149~151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700