用户名: 密码: 验证码:
缠绕式电脉冲水处理系统阻垢效能优化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水垢问题一直是困扰人类日常生活和生产的重要问题,它的存在不但严重影响人们的身体健康,而且会降低工业生产中的能量交换效率,并导致严重的安全隐患。缠绕式电脉冲水处理系统(circumvolute electronic pulse watertreatment system,简称CEPWT系统)是一种基于交变电场阻垢原理的水处理系统,被广泛应用于解决工业硬水及民用硬水的水垢问题,其阻垢效果较为显著。但是到目前为止,交变电场的阻垢机理还没有被人们完全掌握,因此缠绕式电脉冲水处理系统在实际的工程应用中缺乏可靠的理论指导,从而导致了系统阻垢性能的不稳定。本文研究的目的是在完善交变电场阻垢机理研究结论的基础上,探索缠绕式电脉冲水处理系统关键参数的优化方法,为缠绕式电脉冲水处理系统阻垢性能的优化提供可靠的理论基础。
     本文紧紧围绕缠绕式电脉冲水处理系统阻垢性能优化这一主题,针对国内外在交变电场阻垢机理研究过程中存在的争议问题,应用分子动力学模拟的方法从微观层面上实现了对交变电场阻垢机理的研究;针对当前缠绕式电脉冲水处理系统在应用过程中缺乏理论指导的现状,通过建立系统等效电路数学模型并结合交变电场阻垢机理以及电场作用下的电解质溶液理论,确立了系统关键参数的优化方法,该方法为缠绕式电脉冲水处理系统在实际工程中的高效应用提供了重要的理论指导。
     针对目前交变电场阻垢机理尚不明确以及缺乏交变电场作用下硬水溶液微观结构变化研究结论的问题,本文应用非平衡分子动力学方法研究了交变电场对CaCl2溶液微观结构及热动力学性质的影响,通过对CaCl2溶液中钙离子的径向分布函数,以及钙离子和水分子的自扩散系数的计算,观察水合钙离子的离子半径、钙离子及水分子的扩散速率在施加交变电场前后的变化,并进一步详细分析了CaCl2溶液微观结构及热动力学性质的变化对碳酸钙沉淀生成及生长过程的影响,从微观层面上较好的解释了交变电场的阻垢机理。
     针对目前缺乏对缠绕式电脉冲水处理系统工作过程精确控制的方法,并且对输水管材料的选择以及激磁信号波形的选择缺乏理论指导的问题,建立了系统的等效电路数学模型,并根据系统特点对模型进行合理简化,该模型可较好地描述缠绕式电脉冲水处理系统在整个时域内的工作状态;运用有限元方法研究了感生磁场在不同材料水管中的分布,实现了对最优输水管材料的选择;提出了一种可有效简化缠绕式电脉冲水处理系统数学模型求解过程的方法,并实现了对最优激磁信号波形的选择。
     为确定阻垢效果与缠绕式电脉冲水处理系统关键参数之间的对应关系,建立了溶液中感生电流的近似表达式;在基于之前得到的针对交变电场阻垢机理的研究结论,以及深入分析了影响缠绕式电脉冲水处理系统阻垢效果关键因素的基础上,结合外加电场下的电解质溶液理论,实现了缠绕式电脉冲水处理系统关键参数的优化设置,从而实现了对系统阻垢性能的优化。通过实验证明,本文建立的缠绕式电脉冲水处理系统关键参数优化设置方法,可以正确反映系统关键参数与阻垢性能之间的定量关系。
Scale problem is a key problem to many fields of social life. The water scale isnot only harmful for human health but also making the industrial heat efficiencyreduced, what's worse is it can cause horrible potential safety hazard. The scaleproblem roots on using hard water. The circumvolute electronic pulse watertreatment (CEPWT) system is a very useful electromagnetic field water treatmentsystem to the scale problem, and is used to solve the scale problem in the industrialwater and people daily water field. But the anti-fouling mechanism of CEPWTsystem is still not all clear as yet. Therefore it is scarce of theoretical direction tomake a good use of CEPWT system, which makes the anti-fouling performanceunstable. The research purpose of the present thesis is improving the anti-foulingmechanism of CEPWT system, and based on the improved mechanism the methodof CEPWT system‘s key parameter optimization will be researched, which can give atheoretical direction for optimizing CEPWT system‘s anti-fouling function.
     The optimization of CEPWT system‘s anti-fouling function is the core problemof this thesis. For solving the controversial problems of the CEPWT system‘santi-fouling function, the influence to the change of microcosmic particles structurein the hard water solutions by AC electric field is researched by using systematiclong time non-equilibrium molecular dynamics (MD) simulation; for solving thecurrent situation of lacking theoretical direction for using CEPWT system, amathematical model of CEPWT system is built, and based on this mathematicalmodel and debye-huckel theory the method of CEPWT system‘s key parameteroptimization is obtained. This method can give an important theoretical direction fora high-efficiency using of the CEPWT system in practice.
     In order to solve lacking the research of the influence to the change ofmicrocosmic particles structure in the hard water solutions by AC electric field, inthe present thesis systematic long time (1112-2500ns) non-equilibrium moleculardynamics (MD) simulation has been carried out to study structural and dynamicalproperties of hydrated Ca2+and water molecules in CaCl2aqueous solutions with anexternal AC electric field produced by the CEPWT system, and analysed how thechange of structural and dynamical properties can affect the calcium carbonatecrystallizing process, which can explain the anti-fouling mechanism of CEPWTsystem from micro perspective.
     In order to solve the problem of lacking an accurate control method for theCEPWT system and lacking the theoretical direction for choosing the optimal watertube material and excitation signal, in the present thesis a mathematical analytical modeling of CEPWT system is built and simplified based on the system features.This analytical modeling can describe the working progress of CEPWT system inthe whole time domain. The optimal water tube material is chosen by studying themagnetic field distribution using finite element method. Further more amathematical method is used to simplify the solving progress of the analyticalmodeling of CEPWT system, and based this method, the optimal waveform ofexcitation signal is chosen.
     For building a relationship between CEPWT system‘s key parameter andsystem‘s anti-fouling function, an approximate analytical modeling of inducedcurrent for electronic anti-fouling technology is deduced. Then based on theimproved anti-fouling mechanism of CEPWT system which is obtained from theprevious chapters, the key factors which can influence the anti-fouling effect ofCEPWT system, and electrolyte solution theory, the method of CEPWT system‘skey parameter optimization is abtained, which can be used to optimize the CEPWTsystem‘s anti-fouling function. A series of experiments were carried out, and theexperiment results prove that the the method of CEPWT system‘s key parameteroptimization can accurately reflect the quantitative relation between CEPWTsystem‘s key parameter and system‘s anti-fouling function.
引文
[1] Nachod F C, Schubert J. Ion Exchange Technology[M]. New York: AcademicPress,1956:10.
    [2] Owens D L. Practical Principles of Ion Exchange Water Treatment[M].Littleton, CO: Tall Oaks Publishing,1985:15.
    [3]魏永志.山东十里泉发电厂125MW机组循环冷却水物理处理技术研究[D].山东:山东大学,2004.
    [4]赵述哲,刁元东.锅炉水除垢防垢的磁技术处理[J].沈阳化工学院学报,1994,6(8):100-104.
    [5]武理中.磁处理循环冷却水防垢机理的显微观察及探讨[J].化肥工业,2000,(3):33-36.
    [6]黄征青,黄光斗,徐洪涛.水的磁处理防垢与除垢的研究[J].工业水处理,2001,1(21):5-8.
    [7]张宝铭,刘有昌.水的磁处理研究[J].工业水处理,1994,14(2):10-11.
    [8]柴天禹.高频电场处理水的实验研究[J].水处理技术,1997,23(4):222-225.
    [9]杨俊玲等.高频电子除垢设备在空调水系统中的应用[J].管道技术与设备,1999,15:34-35.
    [10]丘泰球,刘石生,黄运贤,等.物理场防除积垢节能技术[J].物理学和高新技术,2002,3:162-166.
    [11] Maheshwari, Basant L, Grewal, et al. Magnetic Treatment of Irrigation Water:Its Effects on Vegetable Crop Yield and Water Productivity[J]. AgriculturalWater Management,2009,96(8):1229-1236.
    [12] Fathi A, Mohamed T, Claude G, et al. Effect of a Magnetic Water Treatment onHomogeneous and Heterogeneous Precipitation of Calcium Carbonate[J].Water Research,2006,40(10):1941-1950.
    [13] Kney A D, Parsons S A. A Spectrophotometer-based Study of Magnetic WaterTreatment: Assessment of Ionic vs. Surface Mechanisms[J]. Water Research,2006,40(3):517-524.
    [14] Si X H, Youn S M, Xi J X. Reducing Scale Deposition by Surface Modificationand Magnetic Water Treatment[C]. ASME International MechanicalEngineering Congress and Exposition, Proceedings,2010,9(PART B):1263-1270.
    [15]黄征青,黄光斗,徐洪涛.水的磁处理防垢与除垢的研究[J].工业水处理,2001,21(1):5-8.
    [16]武理中.磁处理循环冷却水防垢机理的显微观察及探讨[J].化肥工业,2000,(3):33-36.
    [17]柳涛,吴秀英.静电水处理技术[J].物理,1991,20(6):374-375.
    [18]王硕禾,高蒙,张晓民.生活用水静电场水处理技术研究[J].石家庄铁道学院学报,2002,15(1):31-33.
    [19]戴继岚.电子水处理和静电水处理原理与应用[J].建筑技术通讯,1992,(1):57-60.
    [20]毛月红,李江云,刘英杰.超声波水处理技术及应用[J].工业水处理,2006,26(6):10-13.
    [21] Renuka N. Microbial Inactivation in Water Using Pulsed Electric Fields andMagnetic Pulse Compressor Technology[J]. IEEE TRANSACTIONS ONPLASMA SCIENCE,2006,34(4):1386-1394.
    [22] Schoenbach K H, Joshi R P, Kolb J F, et al. Ultrashort Electrical Pulses Open aNew Gateway into Biological Cells[J]. Proc. IEEE,2004,92(7):1122–1137.
    [23] Espino-Cortes F, El-Hag A H, Adedayo O, et al. Water Processing by HighIntensity Pulsed Electric Fields[C].2006Annual Report Conference onElectrical Insulation and Dielectric Phenomena,2006,684-687.
    [24] Abou-Ghazala A, Katsuki S, Schoenbach K, et al. Bacterial Decontaminationof Water by Means of Pulsed Corona Discharges[J]. IEEE Transaction onPlasma Science,2002,30(4):1449–1453.
    [25]杨庆华,何建波,马昕.电磁水处理[J].浙江工业大学学报,1999,27(3):228-231.
    [26]贾克欣.几种电磁水处理器的作用机理及其应用[J].给水排水,1999,10:25-26.
    [27] Amr A G, Karl H. Schoenbach. Biofouling Prevention with Pulsed ElectricFields[J]. IEEE Transactions on Plasma Science,2000,28(1):115-121.
    [28]陈静杰,王彬,余国卫.高频电磁场防垢水处理技术及其应用[J].沈阳理工大学学报,2006,25(1):92-94.
    [29]解鲁生.锅炉水处理原理与实践[M].北京:中国建筑工业出版社,1992,9-13.
    [30] Tombacz E, Ma C, Busch K W, et al. Effect of a Weak Magnetic Field onHematite Sol in Stationary and Flowing Systems[J]. Colloid Polym. Sci,1991,269:278-289.
    [31]卢贵武,周开学.磁场对抗磁性难溶电解质溶解度的影响[J].石油大学学报,1998,22(3):110-112.
    [32] Kozic V, Lipus L C. Magnetic Water Treatment for a Less Tenacious Scale[J]. J.Chem. Inf. Comput. Sci.,2003,43:1815-1819.
    [33]黄征青,徐洪涛,黄光斗.磁处理对水溶液pH值和电导率的影响[J].水处理技术,2003,29(1):22-24.
    [34]梁德义.磁水应用于锅炉防、除垢的实验[J].水处理技术,1989,15(3):183-185.
    [35] Hassett C A L. Beneficial Effects of Electromagnetic Fields[J]. Journal ofCellular Biochemistry,1993,51:387-393.
    [36]周蔚红,张钧.电磁脉冲灭菌研究[J].微波学报,2000,16(3):320-321.
    [37]钟力生.脉冲电磁场对小白鼠血细胞的影响[J].西安交通大学学报,1998,32(2):10-11.
    [38]毛宁,黄谚谚.磁生物学效应的研究[J].生物学通报,2000,35(5):6-9.
    [39]齐连惠.工业循环冷却水处理技术研究动态[J].环境科学进展,1999,7(1):78-82.
    [40]李昌敏.脉冲磁场对细胞缝隙连接通讯功能影响的研究[J].中国生物医学工程学报,2001,20(2):148-151.
    [41]席晓莉.低频脉冲磁场对带质粒大肠杆菌生化特性及质粒DNA的影响[J].中国医学物理学杂志,1997,14(2):71-72.
    [42] Quan Z H, Chen Y C, Ma C F, et al. Experimental Study on Anti-FoulingPerformance in a Heat Exchanger with Low Voltage Electrolysis Treatment[J].Heat Transfer Engineering,2009,30(3):181-188.
    [43]陈金辉,王湛,马重芳,等.电磁抗垢强化传热技术机理的实验研究[J].工程热物理学报,2002,23(5):608-610.
    [44]熊兰,席朝辉,叶晓杰,等.大功率高频电磁阻垢系统的设计及实验研究[J].工业水处理,2011,31(6):46-48.
    [45] Schoenbach K H, Beebe S J, Buescher E S. Intracellular Effect of UltrashortElectrical Pulses[J]. Bioelectromagnetics,2001,22(6):440-448.
    [46]周开学,卢贵武,黄乔松.磁防垢机理研究现状与进展[J].石油大学学报,1999,10(5):110-112.
    [47] Baker J S, Juddy S J, Parsons S A. Antiscale Magnetic Pretreat-ment ofReverse OsmosisFeedwater[J]. Desalination,1997,110(1-2):151-166.
    [48] Ho ysz L, Chibowski M, Chibowski E. Time-dependent Changes of ZetaPotential and Other Parameters of in Situ Calcium Carbonate due to MagneticField Treatment[J]. Colloids Surf. A,2002,208(1-3):231-240.
    [49] Gehr R, Zhai Z A, Finch J A, et al. Reduction of Soluble MineralConcentrations in CaSO4Saturated Water Using a Magnetic Field[J]. WaterRes.,1995,29(3):933-940.
    [50] Knez S, Pohar C. The Magnetic Field Influence on the PolymorphComposition of CaCO3Precipitated from Carbonized Aqueous Solutions[J]. J.Colloid Interface Sci.,2005,281(2):377-388.
    [51] Herzog R E, Shi Q, Patil J N, et al. Magnetic Water Treatment: the Effect ofIron on Calcium Carbonate Nucleation and Growth[J]. Langmuir,1989,5(3):861-867.
    [52]李海燕,蒋永锋,包晔峰.高频电磁在水处理中阻垢作用[J].新技术新工艺,2010,4:56-58.
    [53]窦照英,周军,任德贵,等.实用无污染防垢技术[M].北京:化学工业出版社,1999,31-40.
    [54]马伟,萧锦,郭丽艳.磁场效应在水处理中的作用与研究[J].工业水处理,1997,17(6):1-3.
    [55]范玉东,李永庆,马世平.高频电磁式水处理装置在循环水处理中的应用[J].东北电力技术,2004,(7):51-52.
    [56]熊兰,蒋飏,杨子康等.循环冷却水的复合式电磁灭菌阻垢系统[J].重庆大学学报,2009,32(10):1144-1149.
    [57] Evelyn J L T, Teodorico C R, Zuy M M. Influence of Magnetic Field onPhysical-chemical Properties of the Liquid Water: Insights from Experimentaland Theoretical Models[J]. Journal of Molecular Structure,2008,888(1-3):409-415.
    [58]陈静杰,王彬,余国卫.高频电磁场防垢水处理技术及其应用[J].沈阳理工大学学报,2006,25(1):92-94.
    [59] Colic M, Morse D. Mechanism of the Long-term Effects of ElectromagneticRadiation of Solutions and Suspended Colloids [J]. Langmuir,1998,14(11):783-787.
    [60] Cho Y I, Choi B G. Electronic Anti-fouling Technology to MitigatePrecipitation Fouling in Plate-and-frame Heat Exchangers[J]. Int. J. Heat MassTransfer.,1998,41(17):2565-2571.
    [61] Cho Y I, Choi B G. Validation of an Electronic Anti-fouling Technology in aSingle Tube Heat Exchanger[J]. International Journal of Heat and MassTransfer,1999,42:1491-1499.
    [62] Liu R, Cho Y I. Combined Use of an Electronic Anti-fouling Technology andBrush Punching for Scale Removal in a Water-cooled Plain Tube[J].Experimental Heat Transfer,1999,12:203-213.
    [63]王佩琼.高频电磁场防垢技术在循环水中的应用机理初探[J].电力建设,2001,22(9):43-48.
    [64] Higashitani K, Kage A, Katamura S, et al. Effect of a Magnetic Field on theFormation of CaCO3Particles[J]. Journal of Colloid and Interface Science,1993,156(1):90-95.
    [65] Fan C F, Cho Y I. Microscopic Observation of Calcium Carbonate Particles:Validation of an Electronic Anti-fouling Technology[J]. Int. Comm. Heat MassTransfer.,1997,24(6):747-756.
    [66] Donaldson J S, Grimes S. Lifting the Scale from Our Pipes[J]. New Scientist,1988,18(2):43-46.
    [67] Xing X K, Ma C F, Chen Y C, et al. Electromagnetic Anti-fouling Technologyfor Prevention of Scale[J]. J. Cent. South Univ. Technol.,2006,13(1):68-74.
    [68] Cho Y I, Fan C F, Choi B G. Theory of Electronic Anti-fouling Technology toControl Precipitation Fouling in Heat Exchangers[J]. Int. Comm. Heat MassTransf.,1997,24(6):757-770.
    [69] Philippe V, Jacques L, Laurent L, et al. Effects of Pulsed Low-FrequencyElectromagnetic Fields on Water Characterized by Light ScatteringTechniques: Role of Bubbles[J]. Langmuir,2005,21(6):2293-2299
    [70]陈慧,王建军.火力发电厂水力冲灰系统的防垢研究[J].工业水处理,1997,17(6):24-25.
    [71] Fan C F, Cho Y I. A new Electronic Anti-fouling Technology to ControlPrecipitation Fouling[C]. National Heat Transfer Conference. ASME,1997,12:183-188.
    [72] Cho Y I, Liu R. Control of Fouling in a Spirally ribbed Water Chilled Tubewith Electronic Anti-fouling Technology[J]. International Journal of Heat andMass Transfer,1999,42:3037-3046.
    [73]迟金宝,张雪峰,苍大强,等.低频电磁场处理中水的静态阻垢缓蚀试验研究[J].钢铁,2009,44(6):89-93.
    [74]何为,王博.工业循环水高频电磁场阻垢机理和试验分析[J].重庆大学学报,2012,35(1):45-64.
    [75]熊兰,伍懿美,杨子康,等.高频电磁水处理器处理腔的电磁场仿真分析及实验[J].高电压技术,2012,38(2):427-443.
    [76]费继友,李玉泉,白鑫.水的电磁变频除垢防垢技术和实验研究[J].化工自动化及仪表,2011,38:157-161.
    [77]杨知文,王磊,张继顺,等.变频电子阻垢技术的工业应用[J].石油化工腐蚀与防护,2006,23(5):42-46.
    [78]齐丽英,张雪峰,李永红.低频高梯度磁场频率对碳酸钙结垢的影响研究[J].内蒙古科技大学学报,2008,27(3):271-273.
    [79] Xing X K, Ma C F, Chen Y C. Investigation on the ElectromagneticAnti-fouling Technology for Scale Prevention[J]. Chem. Eng. Tech.,2005,28(12):1540-1545.
    [80] Cowan J C, Weintritt D J. Water-Formed Scale Deposits[M]. Houston, TX:Gulf Publishing Company,1976.
    [81]陈家森,叶士璨,陈树德,等.电场对水结构的影响──电场处理水的应用机理研究[J].物理,1995,24(7):424-428.
    [82]李光林,杨亚玲.脉冲电场对水结构影响的研究[J].激光生物学报,1999,8(1):40-42.
    [83] Cho Y I, Lee S H. Reduction in the Surface Tension of Water Due to PhysicalWater Treatment for Fouling Control in Heat Exchangers[J]. InternationalCommunications in Heat and Mass Transfer,2005,32(1-2):1-9.
    [84] James A R, Maurice A B, G S Peter Castle. The Electric Field at a WaterSurface Stressed by an AC Voltage[J]. IEEE TRANSACTIONS ONINDUSTRY APPLICATIONS,2001,37(3):735-742.
    [85]张军,李书光,胡松青.磁处理技术的应用与研究进展[J].青岛大学学报,2002,15(4):71-74.
    [86] Y. I. Cho, R. Liu, Control of Fouling in a Spirally-ribbed Water Chilled Tubewith Electronic Anti-fouling Technology[J]. Int. J. Heat Mass Transf.,1999,42(16):3037-3046,
    [87]王洪祥,张龙江,董申.微切削过程的分子动力学分析[J].制造技术与机床,2000,2::40-42.
    [88]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M],北京:化学工业出版社,2007,84-88.
    [89] Berendsen H J C, Postma J P M, Gunsteren W F V. Molecular Dynamics withCoupling to an External Bath[J]. Journal of Chemical Physics,1984,81:3684-3690.
    [90] Andersen H C. Molecular Dynamics Simulations at Constant Pressure and/orTemperature[J]. Journal of Chemical Physics,1980,72:2384-2393.
    [91] Parrinello M, Rahman A. Polymorphic Transitions in Single Crystals: A NewMolecular Dynamics Method[J]. Journal of Applied Physics,1981,52(12):7182-7190.
    [92] Nose S, Klein M L. Constant Pressure Molecular Dynamics for MolecularSystems[J]. Mol Phys,1983,50:1055-1076.
    [93] Hess B, Kutzner C, van der Spoel D, et al. GROMACS4: Algorithms forHighly Efficient, Load-Balanced, and Scalable Molecular Simulation[J]. J.Chem. Theory Comput.,2008,4(3):435–447.
    [94] Zhang Z, Duan Z. Prediction of the PVT Properties of Water over Wide Rangeof Temperatures and Pressures from Molecular Dynamics Simulation[J]. Phys.Earth Planet. Inter.,2005,149(4):335–354.
    [95] Dang L X, Smith D E. Comment on “Mean Force Potential for theCalcium–chloride Ion Pairin Water”[J]. J. Chem. Phys.1995,102:3483-3484.
    [96] Li M Y, Duan Z H, Zhang Z G, et al. The Structure, Dynamics and SolvationMechanisms of Ions in Water from Long Time Molecular DynamicsSimulations: A Case Study of CaCl2(aq) Aqueous Solutions[J]. MolecularPhysics.,2008,106(24):2685-2697.
    [97] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford:Clarendon Press,1989.
    [98] Hertz H G, Mills R. Velocity Correlations in Aqueous Electrolyte Solutionsfrom Diffusion, Conductance and Transference Data. Applications toConcentrater Solutions of1:2Electrolytes[J]. J. Phys. Chem.,1978,82:952-959.
    [99] Chialvo A A, Simonson J M. The Structure of CaCl2Aqueous Aolutions over aWide Range of Concentration. Interpretation of diffraction experiments viamolecular simulation[J]. J. Chem. Phys.,2003,119:8052-8061.
    [100]Megyes T, Bako I, Balint S, et al. Solvation of Calcium Ion in Polar Solvents:An X-ray Diffraction and ab Initio Study[J]. J. Phys. Chem. A,2004,108(35):7261–7271
    [101]Badyal Y S, Barnes A C, Cuello G J, et al. Understanding the Effects ofConcentration on the Solvation Structure of Ca2+in Aqueous Solution. II:Insights into Longer Range Order from Neutron Diffraction IsotopeSubstitution[J]. J. Phys. Chem. A.,2004,108(52):11819–11827.
    [102]Megyes T, Bako I, Balint S, et al. Ion Pairing in Aqueous Calcium ChlorideSolution: Molecular Dynamics Simulation and Diffraction Studies[J]. J. Mol.Liq., vol.129, pp.63–74,2006.
    [103]Berendsen H J C, Grigera J R, Straatsma T P. The Missing Term in EffectivePair Potentials[J]. J. Phys. Chem.,1987,91(24):6269–6271.
    [104]Jian Z, Hua L X, Ru W Y, et al. Molecular Dynamics Simulation of IonicHydration[J]. Journal of Chemical Industry and Engineerin,2000,51(2):143-149.
    [105]Tijing L D, Kim H Y, Lee D H, et al. Physical Water Treatment Using RFElectric Fields for the Mitigation of CaCO3Fouling in Cooling Water[J]. Int. J.Heat Mass Transf.,2010,57(8):1426-1437.
    [106]Xing X K, Jing D F. An Analysis of the Mechanism Governing the Control ofCaCO3Scale Formation Process[J]. Journal of Engineering for ThermalEnergy and Power,2007,22(3):336-339.
    [107]Ohtaki H, Radnai T. Structure and Dynamics of Hydrated Ions[J]. Chem. Rev.,1993,93(3):1157–1204.
    [108]Darden T, York D, Pedersen L. Particle Mesh Ewald: An N log(N) Method forEwald Sums in Large Systems[J]. J. Chem. Phys.,1993,98:10089–10092.
    [109]黄卡玛,贾国柱,杨晓庆.微波频率下氯化钠溶液电导率的非线性特性[J].物理化学学报,2008,24(1):20-24.
    [110]Philippe V, Jacques L. Effects of Pulsed Low Frequency ElectromagneticFields on Water Using Photoluminescence Spectroscopy: Role ofBubble/Water Interface[J]. Journal of Chemical Physics,2005,122(11):114513.
    [111]全贞花,陈永昌,刘运洁,等.循环冷却水中物理阻垢技术的比较[J].工业用水与废水,2008,39(3):72-75.
    [112]陈小砖,柳建华,邢晓凯,等.流经吸收器的冷却水电磁抗垢技术试验研究[J].流体机械,2011,39(11):67-70.
    [113]王建国,张学孟,冯研.高频电磁场抑垢效果的实验研究[J].化工自动化及仪表,2010,37(12):83-85.
    [114]黄子卿.电解质溶液理论导论[M],北京:科学出版社,2010:73-84.
    [115]Colic M, Morse D. Effects of Amplitude of the RadiofrequencyElectromagnetic Radiation on Aqueous Suspensions and Solutions[J]. Journalof Colloid and Interface Science,1998,200(2):265-272.
    [116]Colic M, Morse D. Influence of Resonant rf Radiation on Gas/Liquid Interface:Can It be a Quantum Vacuum Radiation?[J]. Physical Review Letters,1998,80(11):2465-2468.
    [117]邢晓凯,马重芳,陈永昌,等.电磁抗垢强化传热技术的热态实验研究[J].石油大学学报,2005,29(1):79-83.
    [118]Colic M, Morse D. Mechanism of the Long-term Effects of ElectromagneticRadiation on Solutions and Suspended Colloids[J]. Langmuir,1998,14(4):783-787.
    [119]Gebauer D, Vo¨lkel A, Co¨lfen H. Stable Prenucleation Calcium CarbonateClusters[J], Science2008,322:1819-1822.
    [120]Tribello G. A, Bruneval F, Liew C. C, et al. A Molecular Dynamics Study ofthe Early Stages of Calcium Carbonate Growth[J]. J. Phys. Chem. B2009,113:11680–11687.
    [121]Kerisit S, Parker S. C. Free Energy of Adsorption of Water and Metal Ions onthe {1014}Calcite Surface[J]. J. Am. Chem. Soc.2004,126:10152-10161.
    [122]de Leeuw N H, Parker S C. Surface–water Interactions in the DolomiteProblem[J]. Phys. Chem. Chem. Phys.2001,3:3217-3221.
    [123]苏瑞东.一种基于电涡流的电解质溶液电导率测量方法[J].仪器仪表学报,2010,31(3):678-681.
    [124]Thmos G K,Madabushi V K C. The Application of Finite Element MethodAnalysis to Eddy Current Nondestructive Evaluation[J]. IEEE Transaction onMagnetics,1979,15(6):1956-1960.
    [125]邹本贵,曹延杰,王成学,等.单级同步感应线圈炮电枢的磁场-温度场有限元分析[J].电机与控制学报,2011,15(2):42-47.
    [126]闫照文,苏东林,李朗如,等.基于ANSYS分析的铝电解槽电磁场计算方法[J].电机与控制学报,2005,9(4):326-329.
    [127]Kore S D, Dhanesh P, Kulkarni S V, et al. Numerical Modeling ofElectromagnetic Welding[J]. International Journal of Applied Electromagneticsand Mechanics,2010,32(1):1-19.
    [128]赵永平,孙金玮,丁明理,顾洪涛,李秀峰.高压大电流坡印亭矢量原理功率变送器[J].电力系统自动化,2003,27(23):90-93.
    [129]Cho Y I, ChoI B G. Electronic Anti-fouling Technology to MitigatePrecipitation Fouling in Plate-and-Frame Heat Exchangers[J]. InternationalJournal of Heat and Mass Transfer,1998,41(17):2565-2571.
    [130]Cho Y I, Fan C F, ChoI B G. Use of Electronic Anti-fouling Technology withFiltration to Prevent Fouling in a Heat Exchanger[J]. International Journal ofHeat and Mass Transfer,199841:2961-2966.
    [131]宋卫锋,朱又春,肖云开,李海荣.低压脉冲阻垢技术的试验研究[J].工业水处理,2003,23(5):21-23.
    [132]丁健.有限长密绕圆柱形螺线管自感系数的精确表达式[J].大学物理,2009,28(5):21-23.
    [133]周开学,卢贵武,宋吉华.磁场对水溶液结晶动力学影响的计算机模拟研究[J].水处理技术,1999,25(2):98-102.
    [134]范玉东,李永庆,马世平.高频电磁式水处理装置在循环水处理中的应用[J].东北电力技术,2004,7:50-52.
    [135]姜德宁, Sintayehu Zewdu,曹继华.交变磁场对换热器阻垢效果的研究[J].中国给水排水,2008,24(7):57-59.
    [136]Kim W T, Cho Y I. Experimental Study of the Crystal Growth Behavior ofCaCO3Fouling Using a Microscope[J]. Experimental Heat Transfer,2000,13(2):153-161.
    [137]谢文惠.磁处理水的机理研究[J].磁能应用技术,1993,(1):12-18.
    [138]大连海运学院生物磁效应组.磁水表面张力初探[J].磁能应用技术,1987,(4):16-17.
    [139]卢贵武.磁场对抗磁性水溶液作用机理研究[D].东营:石油大学,1997.
    [140]Wang Y, Babchin J, Chernyi L T, et al. Rapid Onset of Calcium CarbonateCrystallization under the Influence of a Magnetic Field[J]. Wat.Res,1997,31(2):346-350.
    [141]赵钟鸣,幸福堂,方向明.一种计算粒子电迁移率的新模型[J].中国安全科学学报,1993,3(1):13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700