用户名: 密码: 验证码:
采煤塌陷地氮磷流失规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄淮海平原煤炭开采造成大面积土地塌陷,在地下水位高的矿区,塌陷造成地表大面积积水,形成采煤塌陷湿地。淮南矿区位于淮河中游两岸,其主体地貌类型是淮河冲积平原,经过几十年的开采,淮南矿区已经形成采煤塌陷区面积超过67 km2,其中积水区面积约为14 km2。采煤塌陷造成矿区土地类型改变、水土流失、土壤退化等生态环境问题,其中土壤营养元素的流失是土壤退化的关键因素。
     本文以淮南矿区潘北煤矿作为研究区域,通过现场动态监测,研究了潘北矿区采煤塌陷地土壤中氮磷的时空分布特征,分析了采煤塌陷地水体中氮磷季节性变化规律;采用室内模拟实验,探讨了采煤塌陷地土壤淹水后土壤中氮磷元素的释放机理以及土壤对上覆水中氮磷的吸附特征;对潘北煤矿塌陷区的土壤侵蚀量和氮磷流失量进行了估算。主要成果如下:
     1)分别于2009年4月、7月和12月在潘北矿区采煤塌陷地共采集了72个土壤样品,测定了总氮、硝态氮、氨氮、总磷、可溶性总磷等指标,深入研究了采煤塌陷盆地土壤中氮、磷的时空分布规律,结果表明:土壤中总氮、总磷含量较高,空间变异性较大,平均含量分别为1329.31mg/kg和326.34mg/kg;从塌陷盆地边缘到积水区,氮含量呈明显下降趋势,而磷则下降幅度较小,在季节性积水区,溶出效应使土壤氮含量下降,而干湿交替使磷呈现累积现象;氮、磷含量在垂向随土壤深度的增加而逐渐下降,且丰水期下降幅度大于枯水期。
     2)采煤塌陷湿地水中氮磷具有明显的季节性变化规律,4月(总氮平均值1.72mg/L,总磷0.10mg/L)和12月(总氮2.09mg/L,总磷0.10 mg/L)水中氮磷含量较高,存在富营养化风险;7月份属丰水期,积水面积较大,稀释作用导致氮、磷不同形态浓度降低(总氮0.90mg/L,总磷0.09 mg/L)。
     3)通过塌陷地土壤淹水条件模拟实验,研究了总氮、总磷、硝酸盐氮、氨氮、可溶性总磷的释放强度、释放速率和累积释放量的变化规律,结果表明:○1 pH对土壤氮磷释放影响最大,碱性条件下氮磷释放能力最强,酸性条件下稍弱,中性条件下最小,这是因为中性条件下土壤颗粒物中磷相对比较稳定,不易释放到水中;在酸性条件下钙磷的溶解增加了磷的释放量,碱性条件下诱发铝铁结合态磷溶解而促进了可溶性磷的释放;氮释放主要受竞争吸附和有机氮的矿化作用影响,酸性条件下,H+的竞争吸附增大了氨氮的释放,而碱性条件下OH-的竞争吸附促进了土壤中硝态氮的释放;○2溶解氧水平对土壤中氮磷释放有一定影响,厌氧使反硝化作用、氨化作用和有机氮矿化作用加强,氮不同形态释放量超过好氧条件下的释放量;在厌氧状态下三价铁被还原为二价铁离子,铁结合态磷表面的Fe(OH)3保护层转化为溶解性较强的Fe(OH)2,使PO43-脱离土壤颗粒物进入水中;○3光照对底泥氮磷释放影响不明显。可见,水体酸碱度是控制土壤中氮、磷释放的关键因素。
     4)模拟研究了塌陷地土壤对氮、磷的吸附特征,确定了塌陷地土壤“源”、“汇”功能转换的临界条件,结果表明:当上覆水中磷浓度大于0.50mg/L时,采煤塌陷地土壤对磷的吸附等温线符合Langmuir模型,最大吸附量Qm为0.28mg/g,吸附平衡常数K=0.246,当磷浓度小于0.50mg/L时,其吸附等温线为交叉型,采煤塌陷地土壤对磷的吸附/解吸平衡浓度为0.27mg/L;土壤对氮的吸附过程可以用修正的Henry模型进行拟合,K=0.0157,土壤对氮的吸附/解吸平衡浓度为3.65mg/L。截止到2009年12月,潘北煤矿采煤塌陷地水中氨氮与可溶性总磷浓度分别为0.54mg/L和0.06mg/L,均小于其吸附/解吸平衡浓度,表明淹水后的土壤仍处在氮磷释放阶段。
     5)遥感影像解译结果表明,潘北煤矿东部采区2009年4月、7月和12月的采煤塌陷积水区面积分别为0.29km2、0.53km2、0.51km2。预计到2015年12月塌陷面积将达到7.25km2,其中积水区域面积约为1.8km2,最大下沉深度约4m。利用USLE方程预计了2015年潘北矿区采煤塌陷区土壤侵蚀量约为800.93t/a,总氮、总磷的流失量分别为251.87kg/km2·a和67.38kg/km2·a,比塌陷前增加了约58%,因此,采煤塌陷加速了土壤侵蚀与氮、磷流失。
Aimed at addressing the spatio-temporal distribution of nitrogen and phosphorus in topsoil and water of Paibei coal mining subsidence land in Huainan, time-lapse monitoring was taken in this study. Moreover, simulation experiments were implemented to test the release mechanism and adsorption characteristics of nitrogen and phosphorus after soil submerge in this area. Based on the ArcInfo technique amount changes of soil erosion and losses of nitrogen and phosphorus in soil pre and post the formed of coal mining subsidence land were evaluated. The results are as follows:
     1) The content of nitrogen decreases significantly from the edge of subsidence basin to catchments. Phosphorus decreases slightly compared to nitrogen. Vertical distribution of nitrogen presents a consistent trend, which indicates that the contents of nitrogen gradually decrease with the depth. The contents decreases larger in wet season than in dry season
     2) Nitrogen and phosphorus have obvious seasonal variation in water body of Panbei coal mining subsidence wetlands. The high contents of Nitrogen and phosphorus arised the risk of water eutrophication in both April and December.The concentration of different species of nitrogen and phosphorus in July is low due to plentiful of precipitation in this season.
     3) Results of release experiment indicate that the pH of overlying water is the key factor controlling release of nitrogen and phosphorus from soil. The intensity of phosphorus release from soil is the highest when pH of the overlying water equals to 10, higher when pH equals to 4 and the lowest when pH equals to 7 separately. Nitrogen and phosphorus releases more in anaerobic condition than in aerobic condition. The effect of illumination on phosphorus release from soil is not obvious.
     4) Adsorption experiment of nitrogen and phosphorus on soil presents that when concentration of nitrogen and phosphorus is more than 0.5mg/L for phosphorus and 5.0mg/L for nitrogen, the adsorption isotherm of phosphorus fits Langmuir model with the maximum adsorption Qm of 0.28mg/g. And the adsorption isotherm of nitrogen fits Henry adsorption model. According to adsorption-desorption equilibrium of nitrogen and phosphorus in the submerge soil of Panbei coal mining subsidence land, nitrogen and phosphorus are still releasing from the submerge soil.
     5) According to the interpretation of remote sensing image, the catchments area of coal mining subsidence land in the east part of Panbei coal mine are respectively 0.29km2, 0.53km2 and 0.51km2 in April, July and December, 2009. Therefore, up to 2015, the maximum subsidence depth is 4 meter and subsidence area is about 7.25km2 of which including catchments of 1.8km2; and the amount of soil erosion around catchments within the scope of subsidence land will be 800.93t/a. Soil erosion modulus increases by 58% after subsidence compared to those before the subsidence. The losses of total nitrogen and phosphorus are 251.87 kg/km2 and 67.38 kg/km2 respectively.
引文
[1]张锦瑞,陈娟浓,岳志新,等.采煤塌陷引起的地质环境问题及其治理[J].中国水土保持,2007(4): 37-39.
    [2]吴德富,王本敏.采煤塌陷区环境整治与矿区可持续发展[J].西部探矿工程, 2004,96(5): 177-178.
    [3]张锦瑞,陈娟浓,岳志新.河北采煤塌陷区的环境治理[J].中国矿业, 2007,16(4): 43-45.
    [4]纪振,秦伟伟.徐州矿区采煤塌陷地综合利用途径分析[J].安徽农业科学,2007,35(35): 11529-11530.
    [5]吴昊.采煤塌陷第网箱养殖金鱼技术(上)[J].科学养鱼,2008,(3):72-74.
    [6]张现更,程振卿,张红波.浅谈淡水小龙虾及其在采煤塌陷地的养殖[J].北京水产,2007,(5): 31-32.
    [7]丁军,刘英军.肥城市采煤塌陷地治理利用情况[J].山东国土资源,2006,22(2):30-31.
    [8]韩宏学,何浩,高荣久.卧龙湖煤矿土地复垦与生态重建研究[J].矿山测量,2007,(1):85-88.
    [9]张成梁,黄艺.山西省煤矿区土地退化成因分析及生态恢复对策[J].农业环境科学学报,2003,25(增刊):711-715.
    [10]刘景双,王金达,张学林,等.煤矿塌陷地复垦还田生态重建研究—以抚顺煤矿为例[J].地理科学,2000,20(2):189-192.
    [11]郑希伟,宋秀杰.北京西郊煤矿采区及塌陷区的生态恢复与生态建设[J].城市管理与科技,2003,5(4):164-166.
    [12]方祖光.福州市采矿废弃地水土保持与生态恢复研究[J].亚热带水土保持,2005,17(2): 48-49,56.
    [13]张发旺,赵红梅,宋亚新,等.神府东胜矿区采煤塌陷对水环境影响效应研究[J].地球学报,2007,28(6):521-527.
    [14]邹晓锦,仇荣亮,周小勇,等.大宝山矿区重金属污染对人体健康风险的研究[J].环境科学学报,2008,28(7): 1406-1412.
    [15]陶忠明,田振环,李华,等.霍林河矿区的生态修复与建设[J].内蒙古林业调查设计,2010,33(2):1-3.
    [16]胡振琪,马保国,张明亮,等.高效硫酸盐还原菌对煤矸石硫污染的修复作用[J].煤炭学报,2009,34(3):400-404.
    [17]赵魁义.地球之肾—湿地[M].北京:化学工业出版社,2002.
    [18]熊汉锋.梁子湖湿地土壤-水-植物系统碳氮磷转化研究[D].武汉:华中农业大学图书馆,2005.
    [19]熊汉锋,王运华.湿地碳氮磷的生物地球化学循环研究进展[J].土壤通报,2005,36(2): 240-243.
    [20]陈能汪.九江流域氮的源汇过程及其机制[D].厦门:厦门大学图书馆,2006.
    [21]唐克丽,史立人,史德明,等.中国水土保持[M].北京:科学出版社,2004.
    [22]朱高洪,毛志锋.我国水土流失的经济影响评估[J].中国水土保持科学,2008,6(1):63-66.
    [23] http://news.163.com/10/0602/16/686IAQ7400014AEE.html。
    [24]王军,胡强.安庆铜矿水土流失特点及防治对策[J].水土保持研究,2001,(1):75-79.
    [25]吕春娟,白中科,赵景过.矿区土壤侵蚀与水土保持研究进展[J].水土保持学报,2003,17(6): 85-90.
    [26]倪含斌.煤炭资源开发过程中矿区水土流失动态模拟研究[D].杭州:浙江大学图书馆,2009.
    [27]白中科,段永红,杨红云,等.采煤沉陷对土壤侵蚀与土地利用的影响预测[J].农业工程学报,2006,22(6):67-70.
    [28] Miao Z, and Marrs R. Ecological restoration and land reclamation in open-cast mines in Shanxi Provinee, China [J]. Environment Management, 2000, 59: 205-215.
    [29] Wong M H. Ecological restoration of mine degraded soils, with emphasis on mental contaminated soils [J]. Chemosphere. 2003, 50: 775-780.
    [30] Kalin M. Passive mine water treatment: the correct approach? [J]. Ecological Engineering, 2004, 22: 299-304.
    [31] Brown M T. Landscape restoration following phosphate mining: 30 years of co-evolution of science, industry and regulation [J]. Ecological Engineering, 2004:309-329.
    [32]卞正富,张国良,胡喜宽.矿区水土流失及其控制研究[J].土壤侵蚀与水土保持学报,1998,4(4):31-36.
    [33] Cabello P., Roldán M.D., Castillo F., et al. Nitrogen Cycle[M]. Encyclopedia of Microbiology, 2009: 299-321.
    [34] Yang J L , Zhang,G L, Shi X Z , et al. Dynamic changes of nitrogen and phosphorus losses in ephemeral runoff processes by typical storm events in Sichuan Basin, Southwest China[J]. Soil and Tillage Research, 2009, 105(2):292-299.
    [35] Colloff M.J., Wakelin S.A., Gomez D., et al. Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management[J]. Soil Biology and Biochemistry, 2008, 40(7):1637-1645.
    [36] Dossa E.L., Khouma M., Diedhiou, et al. Carbon, nitrogen and phosphorus mineralization potential of semiarid Sahelian soils amended with native shrub residues[J]. Geoderma, 2009, 148(3-4):251-260.
    [37] Housman D C, Powers H H, Collins A D, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert [J]. Journal of Arid Environments, 2006, 66(4):620-634.
    [38]张燕,张洪,彭补拙,等.不同土地利用下农地土壤侵蚀与养分流失[J].水土保持通报,2003, 23(1):23-31.
    [39]袁东海,王兆騫,陈欣,等.红壤小流域不同利用方式氮磷流失特征研究[J].生态学报,2003,23(1)189-198.
    [40] Rey F. Influence of vegetation distribution on sediment yield in forested marly gullies [J]. Catena, 2003, 50:549-562.
    [41] Abdul G, Jens R J, Ole K B, et al. Runoff and losses of soil and nutrients from small watersheds under shifting cultivation in the Chitagong Hill Tract of Bangladed [J]. Journal of hydrology, 2003, 279:293-309.
    [42]苏子友,吴文良,张劲松,等.小浪底库区坡地不同利用方式下土壤养分的流失特征研究[J].水土保持通报,2007,27(3):27-31.
    [43]倪九派,魏朝富,高明,等.三峡库区坡耕地土壤养分流失的实验研究[J].水土保持学报,2008,22(5):38-42.
    [44]佘贵连,吴敏,韦家少,等.南山地橡胶园土壤养分流失特性研究[J].广东农业科学,2009,(5):83-85.
    [45]孟红旗,赵同谦.降雨侵蚀力对河岸滩区耕地土壤养分流失的影响[J].水土保持通报,2009,29(1):28-31.
    [46] Kleeberg A, Schapp A, and Biemelt D. Phosphorus and iron erosion from non-vegetated sites in a post-mining landscape, Lusatia, Germany: Impact on aborning mining lakes [J].Catena, 2008, 72(1):315-324.
    [47]严家平,赵志根,许光泉,等.淮南煤矿开采塌陷区土地综合利用[J].煤炭科学技术,2004, 32(10): 56-57.
    [48]刘劲松,严家平,徐良骥,等.淮南矿区不同塌陷年龄积水区环境效应分析[J].环境科学与技术,2009,32(9):140-143.
    [49]徐良骥,严家平,高永梅.煤矿塌陷水域水环境现状分析及综合利用——以淮南矿区潘一煤矿塌陷水域为例[J].煤炭学报, 2009,34( 7) :933-937.
    [50]何书金,郭焕成,韦朝阳,等.中国煤矿区的土地复垦[J].地理学报, 1996, 9 (3) : 23-32.
    [51]何书金,苏光全.矿区废弃土地复垦潜力评价方法与应用实例[J].地理研究,2000,19(2): 163-171.
    [52]苏光全,何书金,郭焕成.矿区废弃土地资源适宜性评价[J].地理科学进展,1998,17(4): 39-46.
    [53]周树理主编.矿山废弃地复垦与绿化[M].北京:中国林业出版社, 1995.
    [54]胡振琪.露天煤矿土地复垦研究[M].北京:煤炭工业出版社, 1995.
    [55]束文胜,张志泉,蓝崇玉.中国矿业废弃地的复垦对策研究[J].生态科学,2000,19(2) : 24-28.
    [56]肖兴田,王志宏.煤炭资源开发对土地破坏及土地复垦之研究[J].露天采煤技术,2001,(4):31-34.
    [57].李金柱.煤炭工业可持续发展的开发利用技术[M].北京;煤炭工业出版社,1998.
    [58] Geng D M and Jiang F X. The analysis of environmental problems in China’s mining areas [J]. China Coal, 2002, 28(7):21-24.
    [59] Duan Z H. The effects of development and environmental and geological problems in Yu-Shen-Fu mining areas [J]..Shanxi coal, 2001, (2):1-3.
    [60] Karacan C.?., Ulery J.P., Goodman G.V.R. A numerical evaluation on the effects of impermeable faults on degasification efficiency and methane emissions during underground coal mining [J]. International Journal of Coal Geology, 2008, 75(4):195-203.
    [61]李垚,黄向红.淮南矿区采空塌陷地环境影响与防治[J].淮南职业技术学院学报,2002, 2(2): 43-46.
    [62]史永红.淮南粉煤灰环境影响及沉陷地生态修复模式初探[D].淮南:安徽理工大学图书馆2005.
    [63]南京农业大学(主编).土壤农化分析(第2版) [M].北京:农业出版社,1981:29-39.
    [64]国家环保总局主编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2X(2):234-256.
    [65]晏维金,尹澄清,孙濮,等.磷氮在水田湿地中的迁移转化及径流流失过程[J].应用生态学报,1999,10(3):312-316.
    [66]王庆仁,李继云.论合理施肥与土壤环境的可持续性发展[J].环境科学进展,1999,7(2): 116-124.
    [67]徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展[J].重庆环境科学,2003,25(11): 147-149.
    [68] Correll D L. The role of phosphorus in the eutrophication of receiving waters:a review[J]. Journal of Environmental Quality, 1998, 27:261-266.
    [69]金相灿,屠清瑛主编.《湖泊富营养化调查规范》(第二版)[M].北京:中国环境科学出版社,1990.
    [70]金相灿,姜霞,王琦,等.太湖梅梁湾沉积物中磷吸附/解吸平衡特征的季节性变化[J].环境科学学报,2008,28(1):24-31.
    [71]金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响[J].中国环境科学,2004,24(6):707-71.
    [72]隋少峰,罗启芳.武汉东湖底泥释磷特点[J].环境科学,2001,22(l):102-105.
    [73] Fang T H. Partitioning and behavior of different forms of phosphorus in the Tanshui Estuary and one of its tributaries, Northern Taiwan [J]. Estuarine, coastal and, shelf Scicnce, 2000,50: 689-701.
    [74] Koski Vahala, J., Hartikainen, H. and Tallberg, P. Phosphorus mobilization from various sediment pools in response to increased pH and silicate concentration[J]. Journal of Environmenta Quality, 2001,30(2):546-552.
    [75]陈美丹,姚琪.河网底泥释放规律及其与模型耦合应用研究[S],河海大学,2007.
    [76]郭志勇.城市湖泊沉积物中磷形态的分布特征及转化规律研究——以玄武湖、大明湖、莫愁湖为例[D].河海大学图书馆, 2007.
    [77]刘静静.巢湖内源氮磷的形态、释放规律及控制研究[D].合肥工业大学图书馆,2006.
    [78]严健汉,詹重慈.环境土壤学[M].上海:华东师范大学出版社,1985.
    [79] Andersen J M. Influence of pH on release of phosphorus from lake sediments [J]. Arch. Hydrobiology, 1975, 76(4):411-419.
    [80] Lijklema L. Interaction of orthophosphate with iron (Ⅲ) and aluminum hydroxides [J].. Sci. tachnol,1980,14:537-540.
    [81]胡刚,王里奥,袁辉,等.三峡库区消落带下部区域土壤氮磷释放规律模拟实验研究[J].长江流域资源与环境, 2008, 17(5):780-784.
    [82]王雨春,万国江,黄荣贵,等.湖泊现代化沉积物中磷的地球化学作用及环境效应[J].重庆环境科学,2000(4):39-41.
    [83]商少凌,洪华生.厦门西海域磷的研究[J].海洋环境科学,1996,15(1):15-20.
    [84] Sridharan N, Lee G F. Phosphorus studies in lower Green Bay Lake Michigan [J]. Wat. Pollut. Control Fed, 1974,46:648-696.
    [85]刘晓端,徐清,刘浏.密云水库沉积物—水界面磷的地球化学作用[J].岩矿测试,2004,23(4): 246-250.
    [86] Gomez, E., Durillon, C., Rofes, G., et al. Phosphate adsorption and release from sediments of brackish lagoons: pH, O2, and loading influence [J]. Water research, 1999,33:2734-2747.
    [87]黄清辉.浅水湖泊内源磷释放及其生物有效性[D].中国科学院生态环境研究中心,2005.
    [88] Penn, M.R., Auer, M.T., Doerr, S.M., et al. Seasonality in phosphorus release rates from the sediments of a hypereutrophic lake under a matrix of pH and redox condition [J]. Can. J. Fish. Aquat. Sci., 2000, 57:1033-1041.
    [89] Gonsiorczyk, T., Casper, P., and Koschel, R. Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: importance of the permanently oxic sediment surface [J]. Arch. Hydrobiol., 2001, 151(4): 203-219.
    [90] Pettersson, K. Mechanisms for internal loading of phosphorus in lakes [J].. Hydrobiologia, 1998,373: 1-3
    [91] Gacther, R. and Myer, J. The role of microorganisms in mobilization and fixation of P in sediments [J].. Hydrobiologia, 1993, 253:103-121.
    [92] Khoshmanesh, A., Hart, B.T., Duncan, A., et al. Luxury uptake of phosphorus by sediment bacteria. Water Research, 2002, 36(3):774-778.
    [93] Hupfer, M., Gachter, R. and Giovanoli, R.. Transformation of phosphorus in setting seston and during early diagenesis [J].. Aquatic Sciences, 1995, 57:305-324.
    [94] Baldwin, D.S. The phosphorus composition of a diverse series of Australian sediments [J].. Hydtobiologia, 1996,335: 63-73.
    [95] Gacther, R., Myer, J. and Meres, A. Continuation of bacteria to the release and fixation of P in sediments [J].. Limnol. Oceanogr., 1988, 33:1542-1558.
    [96] Lazzretti, M.A. and Hanselmann, K.W. et al. The role of sediments in the phosphorus cycle in large lake Lugan:Ⅱ. Seasonal and spatial variability of microbiological processes at the sediment-water interface [J].. Aquatic Sciences, 1992, 54(3/4):285-299.
    [97] Lavery, P.S., Oldham, C.E. and Ghisalberti, M. The use of Fick’s First Law for predicting porewater nutrient fluxes under diffusive conditions [J].. Hydrological Processes, 2001, 15(13): 2435-2451.
    [98]姚扬,金相灿,姜霞,等.光照对湖泊沉积物磷释放及磷形态变化的影响研究[J].环境科学研究(增刊),2004(17): 30-33.
    [99]肖文胜,杨开,郭建林.环境因子对湖泊底泥释磷的影响研究[J]..中国给水排水,2009,25(3): 50-53.
    [100]Munch E V. Simultaneous nitrification and denitrification in benchscale sequencing batch reactors [J]. Water Research, 1996,3(2):277-284.
    [101]Gupta S K and Raja S M. Simultaneous nitrification-denitrification in a rotating biological contactor [J]. Environmental Technology, 1994, 15(2):145-153.
    [102]Zart D and Bock E. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. [J]. Archives of Microbiology, 1998, 169(4):282-286.
    [103]吴春笃,王悦,韩建刚,等.北固湿地底泥氮磷释放特征初步研究[J].环境科学与技术,2008,31(4):10-12.
    [104]王圣瑞,焦立新,金相灿,等.长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征[J]..环境科学学报,2008,28(1):37-44.
    [105]戴纪翠,宋金明,郑国侠,等.胶州湾沉积物氮的环境生物地球化学意义[J]..环境科学,2007,28(9):1925-1930.
    [106]Zhu W X and Ehrenfelc J G. Nitrogen mineralization and nitrification in suburban and undeveloped Atlantic White Cedar wetlands [J]. Journal of Environmental Quality, 1999, 28(2): 523-529.
    [107]天津大学无机化学教研室.无机化学(第二册)[M].北京:高等教育出版社,1992.
    [108]Narteh L T and Sahrawat K L. Potentially mineralizable nitrogen in West African lowland rice soils [J]. Geoderma, 1997, 76(1-2): 145-154.
    [109]高廷耀,顾国维主编.水污染控制工程(下册)[M].北京:高等教育出版社,1999.
    [110]Bates M H and Neafus N J. Phosphorus release from sediments from Lake Carl Blackwell, Oklahoma [J]. Water Research, 1980,14:1477-1481.
    [111]Axler R P, Reuter J E. Nitrate uptake by phytoplankton and periphyton: whole lake enrichments and mesocosm 15N experiments in an oligotrophic lake [J]. Limnol Oceanogr, 1996,41: 659-671.
    [112]Jansson M. Role of benthic algae in transport of nitrogen from sediment to lake water in a shallow clearwater lake [J]. Arch Hydrobiol, 1980, 89:101-109.
    [113]Kelderman P, Lindeboom H J and Klien J. Light dependent sediment-water exchange of dissolved reactive phosphorus and silicon in a producing microflora mat [J]. Hydrobiologia, 1988,159: 137-147.
    [114]徐彬,刘敏,侯立军,等.光照对长江口潮滩沉积物-水界面可溶性硅和无机氮通量的影响[J]..环境科学研究,2009,22(3):327-331.
    [115]何少华,文竹清,娄涛.试验设计与数据处理[M].长沙:国防科技大学出版社,2002
    [116]孙权,韩秀云,郭晓宁.宁夏主要土壤的磷酸吸附特征及影响因素[J].土壤通报,2003, 34(5): 418~421.
    [117]何文寿.宁夏灌淤土对磷吸附的初步研究闭[J].土壤学报,1992,29(2):142-148.
    [118]Syers, J. K,et al . Soil Phosphorus chemistry [M]. 1981: 571~599.
    [119]王圣瑞,金相灿,庞燕.湖泊沉积物对磷的吸附特征及其热学参数[J].地理研究,2006, 25(1):19-26.
    [120]张静.鄱阳湖南矶山湿地土壤对磷的吸附与释放特性的研究[D].南昌大学硕士论文. 2006.
    [121]Sims J T, Edwards A C, Schouman O F, et al. Integration Soil Phosphorus Testing into Environmentally Based Agricultural Management Practices [J]. J Environ Qual, 2000, (29): 60-70·
    [122]石孝洪,魏世强,谢德体,等.三峡水库消落区土壤磷吸附特征[J]..西南农业大学学报(自然科学版) 2004,26,(3):331-335.
    [123]邓焕广,张菊,张超.干湿交替对徒骇河沉积物磷的吸附解吸影响研究[J].土壤通报,2009,40(5):1040~1039.
    [124]BarrowN J. Amechanistic model for describingthe sorption and desorption of phosphate by soil [J]. J Soil Sci, 1983, 34(4):733-750.
    [125]潘纲.亚稳平衡态吸附(MEA)理论—传统吸附热力学面临的挑战与发展[J].环境科学学报,2003,23(2):156-173.
    [126]Pan G, KromM D, Herut B. Adsorption-Desorption of phosphate on airborne dust and riverborne particulates in east Mediterranean seawater[J].Environ Sci Technol,2002, 36:3519—3524)
    [127]林荣根,吴景阳.黄河口沉积物对磷酸盐的吸附与释放[J].海洋学报, 1994,16(4): 82-90.
    [128]李曰嵩,杨红.长江口沉积物对磷酸盐的吸附与释放的研究[J].海洋环境科学, 2004,23(3): 39-42.
    [129]杨龙元,蔡启铭,秦伯强,等.太湖梅梁湾沉积物-水界面氮迁移特征初步研究[J].湖泊科学,1998,10(4):41-47.
    [130]吴丰昌.云贵高原湖泊沉积物和水体氮磷和硫的生物地球化学作用和生态环境效应[J].地质地球化学,1996,(6):88-89.
    [131]王娟,王圣瑞,金相灿,等.长江中下游浅水湖泊表层沉积物对氨氮的吸附特征[J].农业环境科学学报2007,26(4):1224-1229.
    [132]Mackin J E and Aller R C. Ammonium adsorption in marine sediment[J]. Limnol Oceanogr, 1984,29: 250-257.
    [133]Rysgaa S, Thastum P, Dalsgaard T, et al. Effects of salinity on NH4+ adsorption capacity, nitrification,and denitrification in Danish estuary sediments[J].Estuaries,1999,22:21-30.
    [134]王圣瑞,金相灿,赵海朝,等.长江中下游浅水湖泊沉积物对磷的吸附特征[J].环境科学,2005,26(3):38-43.
    [135]Xiang C J and Sheng R W. The adsorption of phosphate on different trophic lake sediments [J].Colloids and Surfaces A: Physico chem Eng Aspects,2005, 254:241-248.
    [136]Huang Q H,Wang Z J and Wang D H. Phosphorus sorption capacity of the surface sediment in the Lake Taihu and risk assessment of phosphorus release[J].Journal of Lake Sciences,2004,16(2),97-104.
    [137]姜桂华.铵态氮在土壤中吸附性能探讨[J].长安大学学报,2004,21(2):32-38.
    [138]Qunhe W, Renduo Z, Shan H, et al. Effects of bacteria on nitrogen and phosphorus release from river sediment[J]. Journal of Environmental Sciences, 2008, 20(4): 404-412.
    [139]Meng Q, Feng Q, Wu Q, et al. Distribution characteristics of nitrogen and phosphorus in mining induced subsidence wetland in Panbei coal mine, China. Procedia Earth and Planetary Science, Volume 1, Issue 1, September 2009, 1(1): 1237-1241.
    [140]Wischmeier W H and Smith D D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains (R). USDA Agricultural Handbook No. 282,1965
    [141]Renard K G, Foster G R, Weesies G A, et al. Coordinators. Predicting soil erosion by water: aguide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) (S). USDA Agricultural Handbook No.703, 1997.
    [142]Laffen J M, Lwonard J L and Foster G R. WEEP a new generation of erosion prediction technology[J]. Journal of Soil and Water Conservation,1991,46(1):34-38.
    [143]Renschler C S. Designing geo-spatial interfaces to scale process models:The GeoWEPP approach[J]. Hydrological Processes,2003,17:1 005-1 017.
    [144]GeoWEPP. The geo-spatial ivterface for the water erosion prediction project. http://www. geog.buffalo.edu/~rensch/geowepp/
    [145]牛志明,解明曙.新一代土壤水蚀预测模型-WEPP[J].中国水土保持,2001,1:20-21.
    [146]刘宝元,谢云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001.
    [147]周正朝,上官周平.土壤侵蚀模型研究综述[J].中国水土保持科学,2004,2(1):52-56.
    [148]Williams J R, Neitsch S L and Arnold J G. Soil and Water Assessment Tool User's Manual[M]. Texas Blackland Research Center: Texas Agricultural Experiment Station,1999.
    [149]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86
    [150]Di Luzio, Srinivasan M R, Arnold J G, et al. Arc-View Interface For SWAT2000 User's Guide[M]. Texas:Texas Water Resources Institute,College Station,2002.
    [151]De Jong S M, Paracchini M L, Bertolo F,et al. Regional assessment of soil erosion using the distributed mode SEMMED and remotely sensed data[J]. Catena,1999, 37:291-308.
    [152]史培军,刘宝元,张科利.土壤侵蚀过程与模型研究[J].资源科学,1999,21(5):9-18.
    [153]景可,王万忠,郑粉莉著.中国土壤侵蚀与环境[M].北京:科学出版社,2005.73-82.
    [154]王万忠,焦菊英,郝小品,等.中国降雨侵蚀力R值的计算与分布(Ⅰ)[J].水土保持学报,1995,9(4):5-18.
    [155]王万忠,焦菊英.中国降雨侵蚀力R值的计算与分布(Ⅱ)[J].土壤侵蚀与水土保持学报,1996,2(l):29-39.
    [156]Wischmeier W H and Smith D D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains (R). USDA Agricultural Handbook No. 282,1965.
    [157]Wisehmeier W H and Mannering J V. Relation of soil properties to its erodibility [J]. Soil Science Society of American Proceeding,1969,33(l):131-137.
    [158]Williams J R, Neitseh S L, Amold J G. Soil and Water Assessment Tool-User’s Manual(R)、Texas: Blackland Research Center,Texas Agricultural Experiment Station.1999.
    [159]柯克比MJ,摩根RPC.王礼先译.土壤侵蚀[M].北京:水利电力出版社.1987.
    [160]Renard K G, Foster G R, Weesies G A, et al. Coordinators. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) (S).USDA Agricultural Handbook No.703, 1997.
    [161]张岩,刘宝元,史培军,等.黄土高原土壤侵蚀作物覆盖因子计算[J].生态学报,2001, 21(7):1050-1055.
    [162]马超飞,马建文,布和敖斯尔.USLE模型中植被覆盖因子的遥感数据定量估算[J].水土保持通报,2001,21 (4): 6-9.
    [163]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1996,16(5):1-20.
    [164]傅世锋,查轩.基于GIS和USLE的东圳库区土壤侵蚀量预测研究[J].地球信息科学, 2008,10(3):390-396.
    [165]徐天蜀,彭世揆,岳彩荣.基于GIS的小流域土壤侵蚀评价研究.南京林业大学学报(自然科学版)[J], 2002, 26 (4): 43~46
    [166]倪九派,傅涛,李瑞雪,等.应用ARC/INFO预测芋子沟小流域土壤侵蚀量的研究[J].水土保持学报,2001, 15 (4): 29~32.
    [167]傅世锋,查轩.基于GIS和USLE的东圳库区土壤侵蚀量预测研究[J].地球信息科学, 2008,10(3):390-396.
    [168]蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,1(2):19-24.
    [169]李璧成.小流域水土流失与综合治理遥感监测[M].北京:科学出版社,1995.14-18, 186-242.
    [170]Renard K G, Foster G R, Weesies G A, et al. Coordinators. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) (S). USDA Agricultural Handbook No.703, 1997.
    [171]淮南市统计局,国家统计局淮南调查队.淮南统计年鉴2008[M],.北京:中国统计出版社,2009.
    [172]范英宏,陆兆华,程建龙,等.中国煤矿区主要生态环境问题及生态重建技术[J].生态学报, 2003,23(10):2144-2153.
    [173]Reddy K R and Patrick W H. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil[J]. Soil Biol.Biochem., 1975,7: 87~94.
    [174]石孝洪.三峡水库消落区土壤磷素释放与富营养化[J ].土壤肥料,2004(1): 40-44.
    [175]袁辉,王里奥,胡刚,等.三峡库区消落带受淹土壤氮和磷释放的模拟实验[J].环境科学研究, 2008,21(1):103-106.
    [176]Watss C. Seasonal phosphorus release from exposed, re-inundated littoral sediments of two Austracian reservoirs [J]. Hydrobiologia, 2000, 431: 27-39.
    [177]张路,范成新,王建军,等.长江中下游湖泊沉积物氮磷形态与释放风险关系[J].湖泊科学,2008,20(3):263-270.
    [178]吴敏,汪雯,黄岁樑.疏浚深度和光照对海河表层沉积物氮磷释放的实验研究[J].农业环境科学学报2009,28(7):1458-1463.
    [179]徐徽,张路,商景阁,等.太湖水土界面氮磷释放通量的流动培养研究[J].生态与农村环境学报,2009,25 (4): 66-71.
    [180]文威,孙学明,孙淑娟,等.海河底泥氮磷营养物静态释放模拟研究[J].农业环境科学学报2008,27(1):295-300.
    [181]李宝,丁士明,范成新,等.滇池福保湾底泥内源氮磷营养盐释放通量估算[J].环境科学,2008, 29(1):114-120.
    [182]艾应伟.土壤生态系统氮素循环[M].北京:化学工业出版社,2008.
    [183]李辉,陈晓玲.不同空间尺度下的土壤侵蚀模型研究进展[J].华中师范大学学报(自然科学版),2006,40(4):621-624.
    [184]Jarvie H.P., Withers P.J.A., Bowes M.J., et al. Streamwater phosphorus and nitrogen across a gradient in rural–agricultural land use intensity. Agriculture, Ecosystems & Environment, 2010,135(4):238-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700