用户名: 密码: 验证码:
基于BAP的岩体结构面粗糙度与峰值抗剪强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体是自然界中具有一定结构特征的地质体,其内部发育有各种各样具有一定方向、规模和形态的结构面,如层面、节理、断层、裂隙、不整合接触面等等。结构面的存在使得岩体不同于其他材料,物理力学性质存在不连续性、各向异性、非均一性等特点,同时也降低了岩体的完整性和整体强度。岩体往往不是因为本身材料破坏发生失稳,而是沿着岩体内部的软弱结构面发生破坏。甚至可以说,岩体的稳定性在一定程度上是由这些结构面(特别是控制性结构面)所决定的。因此,开展结构面抗剪强度力学参数的研究是评价岩体稳定性的关键所在。而作为影响岩体结构面抗剪强度的重要因素之一,粗糙度与抗剪强度之间具有明显的相关性,结构面越粗糙,抗剪强度越大。基于粗糙度的结构面峰值抗剪强度估算模型研究一直是岩体力学与工程地质领域的重要研究课题,估算模型的成败在于能否寻找出合理的指标来表征岩体结构面的真实粗糙程度。然而,目前关于结构面粗糙度的研究仍然存在以下几个问题:
     (1)采集装备落后,试验周期长,不能满足岩体稳定性的快速评价要求。对于发展迅速的岩体破坏过程,如高速远程滑坡,还有一些重大地质灾害抢险工程,时间就是生命,需要研究学者能够在短时间内给出评价结果,并预测受灾范围,提出合理的工程治理方案。而恰恰由于测量仪器本身问题,却体现不出估算模型的优势。
     (2)评价方法对采样方向、采样尺寸以及采样间距具有很大的依赖性,缺乏系统地开展粗糙度影响因素的研究及其相应合理的解决对策。
     (3)粗糙度评价指标仅仅依据结构面的几何信息,忽视了结构面粗糙度的力学特征,结构面粗糙度与结构面的受力状态、受力方向是密切相关的。
     本论文研究目的就是借助先进的采样手段,系统分析采样参数(采样方向、采样尺寸以及采样间距)对结构面粗糙度评价结果的影响,进而提出一种快速精确的粗糙度评价方法,并力求在此基础上建立结构面峰值抗剪强度估算模型。
     以重庆武隆鸡尾山高速远程滑坡研究区域的灰岩结构面为例,本论文主要开展以下几方面的研究工作:
     (1)天然岩体结构面粗糙度数据的快速采集。LS05-1岩体结构面为散落在堆积区内的灰岩层面,非原位产状,采用ILRIS-36D三维激光扫描仪,获取野外大尺寸结构面粗糙度点云数据,这部分数据主要用于岩体结构面粗糙度影响因素、基于光亮面积百分比(BAP)的粗糙度表征方法和结构面峰值抗剪强度估算模型研究工作中,原始点云数据扫描尺寸(ROI)为4.7×2.5m,采样间距为0.8mm,共采集扫描点约1800多万个。JWO2-1BL、 JW02-2BL、JW03-1BL、JW03-2BL和JW03-3BR岩体结构面为采自于滑动面上的灰岩节理,运用VZ-400三维激光扫描仪,获取室内小尺寸结构面粗糙度点云数据,这部分数据主要服务于结构面峰值抗剪强度估算模型的研究工作,为数值模拟试验提供参数并验证计算结果,原始点云数据平均扫描尺寸(ROI)为0.181×0.362m,采样间距为1.0mm,每个结构面共采集65500左右个扫描点。对采集的原始点云数据进行预处理,主要包括点云数据解析、去噪和精简、几何模型建立三大部分,综合协调计算机运算能力、精度与处理时间等因素,最后LS05-1结构面精简成尺寸为4.70×1.14m,间距为0.01m,约54000个扫描点的点云数据;而JW02-1BL、JW02-2BL、JWO3-1BL、JW03-2BL和JW03-3BR结构面精简成平均尺寸为0.06×0.06m,间距保持不变仍为1.0mm,每块约3600个扫描点的点云数据,利用编写的Matlab程序,建立岩体结构面三维几何模型。
     (2)岩体结构面粗糙度影响因素研究。以LS05-1岩体结构面预处理后的点云数据为主,Weierstrass-Mandelbrot分形随机函数产生为辅,分别从二维与三维角度,分析采样方向、采样尺寸以及采样间距对结构面粗糙度评价结果影响。分析过程中做到单一变量原则,其余两因素保持固定。以15。为间隔,选取从0。到345。共24个采样方向,采用分形理论计算各个方向下的结构面二维剖面分形维数D,对于三维结构面,采用改进的赤平投影极点图法求出相应方向下的法向量数量NV。选取9种不同尺寸(长度或面积)的岩体结构面,基于分形理论求出相应尺度下的分形维数D。以0.01m为间隔,选取从0.01m到1.00m共100种采样间距,采用分形理论计算相应间距下的分形维数D。并且针对每一种影响因素,提出切实可行的解决方法。
     (3)基于光亮面积百分比(BAP)粗糙度表征方法的提出。从无充填低法向应力下的岩体结构面剪切破坏机制入手,以结构面中面向剪切方向的微小平面为研究对象,提出表征结构面粗糙度的新指标-BAP。基于Matlab软件平台,编写了光源模拟程序,并基于图像分割技术,给出BAP的定义和计算方法。对光源模拟与图像分割过程中涉及的两重要参数-光源入射角β和灰度阈值TL取值问题进行了探讨。通过描述结构面粗糙度的各向异性、尺寸效应以及间距效应,检验BAP法的适用性。
     (4)基于BAP的结构面峰值抗剪强度估算模型的建立。基于Matlab软件平台编写XYZ23DEC程序,简便快捷地建立起结构面三维复杂离散元模型。通过与室内直剪试验结果对比,来调整和验证数值试验所需的岩块、节理力学参数。在此参数基础上,以抗剪强度的各向异性、尺寸效应以及对法向应力敏感性等特征为参照点,验证数值模型的可靠性。设置合理的采样尺寸与采样间距常量,考虑结构面的粗糙度BAP、各向异性(剪切方向α)、岩块强度(JCS)、结构面基本摩擦角(φb)以及法向应力(σ)等参数,开展60例结构面直剪数值试验,统计分析模拟结果,建立粗糙度评价指标BAP与结构面峰值抗剪强度之间的关系,提出后者估算模型。
     (5)结构面峰值抗剪强度估算模型的应用。将该模型应用于重庆武隆鸡尾山高速远程滑坡岩体稳定性评价当中,结合研究区域具体的粗糙度BAP、法向应力σ、基本摩擦角φh以及壁面强度JCS参数,估算出滑动面抗剪力学参数(内摩擦角φ和黏聚力C)的变化区间。选择最小值、最大值、平均值三种组合,基于大型三维离散元软件3DEC,再现滑体初期破坏演化过程,分析其变形特征。
     在上述研究内容与方法的基础上,得出如下几点结论:
     (1)运用三维激光扫描技术可以实现岩体结构面粗糙度数据的快速采集目的。扫描时间与扫描间距、扫描范围直接相关。扫描间距越小,扫描范围越大,所花费的扫描时间会随之增加。除此之外,扫描时间还受到非技术因素的影响,如操作不当、电量供给、操作环境等等。扫描得到的原始点云数据需要对其进行预处理工作,点云数据的预处理是一个重复的过程,需要不断根据反馈进行修正与改善,预处理工作花费的时间很大程度上取决于工作人员的专业素质,操作越熟练所用时间越短。
     (2)采样方向对岩体结构面粗糙度评价影响分析显示:不同采样方向上的粗糙度之间存在较大差异,解决采样方向引入误差的最直接最有效方法,就是在数据采集过程中,确保采样方向与研究方向保持一致,研究方向包括滑动方向、剪切方向、渗流方向等等,这些研究方向需要在地质调查阶段进行判别,如滑动方向可根据滑动面上的擦痕和阶步等现象进行确定。采样尺寸对岩体结构面粗糙度评价影响分析显示:不同采样尺寸的结构面其粗糙度也各不相同,粗糙度会随着采样尺寸的增加而减小,当尺寸增加到有效尺寸(3.5m和3.5×0.84m)时,结构面粗糙度基本趋于平稳不再下降,通过增加采样尺寸的方法可以有效消除粗糙度的尺寸效应,但是受目前测量仪器的量程限制,也可以通过增加测量数量来弥补测量尺寸的不足,同样可以达到有效消除尺寸效应的目的,该思路在当前阶段具有较强的实用价值。采样间距对岩体结构面粗糙度评价影响分析显示:不同采样间距的结构面具有不同的粗糙度,整体上随着采样间距的减小,更多细节信息被获取,相应的粗糙度也越来越大,当采样间距小到有效间距时,粗糙度上升趋势变缓,趋于稳定状态,同时当采样间距过大时,大量信息被忽略,使得岩体结构面不再具备分形特征。有效采样问距与采样尺寸呈正比关系,建议采样间距与采样尺寸的比值不应高于0.05,在此条件下,可以有效降低采样间距对粗糙度评价结果的影响。
     (3)在无充填低法向应力作用下的岩体结构面剪切破坏过程中,面向剪切方向的微小平面主要发生剪切破坏,抗剪作用较大,结构面粗糙度表征方法的研究对象应集中在该接触部分。灰度阈值TL的选取至关重要,应结合结构面剪切破坏力学机制,遵循具体情况具体分析原则进行选取。模拟光源入射角β对BAP计算结果存在显著影响,BAP会随着入射角β的增大而增大,建议最佳入射角β取值范围为35。与70。之间。具体案例应用中,入射角β与灰度阈值TL的选取应该相互协调配合,给出合理组合。提出的BAP表征新方法可以很好地反映出岩体结构面粗糙度的各向异性、尺寸效应以及间距效应特性,该法是综合考虑结构面几何与力学因素下提出的粗糙度表征新方法,具有独特优势。
     (4)结合室内岩体结构面直剪试验展开的数值模拟结果显示:数值试验可以很好地体现出结构面抗剪强度的各向异性、尺寸效应以及与法向应力密切相关等特征。用于图像分割中的灰度阈值TL,其数值选取受法向应力σ的影响。以重庆武隆鸡尾山高速远程滑坡堆积区的LS05-1结构面为例,在光源入射角β=35°的前提下,法向应力所对应的合理灰度阈值TL如下所示,
     法向应力σ=0.5MPa时,灰度阈值TL=160;
     法向应力σ=1.0MPa时,灰度阈值TL=155;
     法向应力σ=1.5MPa时,灰度阈值TL=150;
     法向应力σ=2.0MPa时,灰度阈值TL=145;
     法向应力σ=2.5MPa时,灰度阈值TL=140。在大量数值模拟数据的基础上,经过多元统计分析,拟合出结构面峰值抗剪强度估算新模型,其形式如下,
     (5)通过27个案例估算出武隆鸡尾山高速远程滑坡滑动面9组黏聚力C和内摩擦角φ建议值,对比已出版文献数据,与各学者采用参数具有相似的统计规律,黏聚力C和内摩擦角φ的最小值组合为:φ=3.977°, C=0.443MPa,最大值组合为:φ=38.080°, C=1.917MPa,平均值组合为:(p=17.162°, C=1.094MPa,工况一(最小值组合)中提供的滑动面黏聚力C和内摩擦角φ比较符合实际情况。以工况一为基础,模拟滑坡破坏初期滑体的位移变化规律,数值模拟结果显示:滑体不同部位处的岩体具有不同的变形规律。滑体前缘和后缘块体具有较大的位移,前缘滑体沿T2裂缝走向滑动,后缘块体沿滑动面和T1裂缝交线方向滑动,滑体前缘块体由于临空面的存在较先发生破坏;相同位置处的滑体上部块体位移量比下部要大,上部块体先于下部块体发生破坏;滑体外侧(东侧)块体位移量要大于内侧位移量,尤其滑体后缘部分差异更为明显,不同步移动造成滑体破坏过程中发生旋转运动。通过与现场地质调查结果对比,证明了数值模拟结果的合理性,同时也证明了BAP结构面峰值抗剪强度估算模型得到了较为成功的应用。
     本论文主要创新成果有:
     (1)提出表征岩体结构面粗糙度的新指标BAP。它是一种三维评价方法,可以考虑粗糙度的各向异性、尺寸效应与间距效应等特征,并且结合了岩体结构面的剪切破坏机制;该法基于三维激光扫描试验获取的点云数据,所有计算过程实现了程序化,评价精度和速度得到大幅度提高。
     (2)基于三维粗糙度评价新指标BAP,建立岩体结构面峰值抗剪强度估算新模型。该模型是在合理的采样尺寸与采样间距下,考虑了与结构面相关法向应力σ、壁面强度JCS、基本摩擦角φb、粗糙度BAP以及剪切方向等因素而提出的;结构相对来说比较简单,具有很强的力学含义,模型中涉及到的统计参数是在大量数值试验结果基础上拟合而得,具有一定的可靠性;由该模型的实际工程应用显示,适用性较强,能够估算出合理的结构面抗剪力学参数。
Rock mass is a kind of geological body that has certain structure. Inside the rock mass, discontinuities with direction, size and shape are developed, such as bedding planes, joints, faults, fractures, unconformable interfaces and so on. The existence of discontinuities makes rock mass different from any other materials, the physical and mechanical properties of rock mass are characterized with discontinuity, anisotropy, and non-homogeneity, also the integrity and overall strength of rock mass are reduced. The failure of rock mass usually does not occur through the part of intact material, but the weak structural plane within it. It can be said that the stability of rock mass is determined by the discontinuities, especially by the control ones. Therefore, research on the shear strength of the discontinuities is the key to evaluate the rock mass stability. One of the most important factors that have effect on the shear strength of the discontinuities is the roughness, and it has obvious connection with shear strength of the discontinuities. The rougher the discontinuity is, the greater the shear strength is. The study carried on peak shear strength estimation model based on the roughness has always been an important research topic. The reliability of estimation model much depends on the reasonable index used to represent the roughness of discontinuities. Unfortunately, the following problems exist in the current study of roughness of discontinuities,
     (1) The acquisition equipment is too backward to meet the quick evaluation of rock mass stability. To the rapid failure process of some rock mass, for example, high-speed long-distance landslide and some other important geological disaster emergency projects, time is valuable to save lives. This situation means the researchers have to react quickly to evaluate the stability of rock mass and predict the scope of the disaster and put forward rational treatment scheme. But due to time-consuming and low-accuracy of equipment, the advantages of the evaluation model cannot be shown.
     (2) The results of roughness evaluation depend much on the sampling direction, sampling size, and sampling interval. Lack of systematic study on the factors that has effects on roughness is also a research interest awaiting settlement.
     (3) The most of exiting evaluation index of roughness were proposed only based on the geometric information of the discontinuities, the mechanical properties was ignored. However, the roughness of discontinuities connects closely to the stress condition and stress direction.
     The objective of this paper is to carry systematic analysis of influence of sampling parameters, including sampling direction, sampling size and sampling intervals, on the roughness evaluation based on advanced sampling methods, to propose a more appropriate approach to describe the roughness of discontinuities, then to build a corresponding estimation model for peak shear strength of discontinuities base on the roughness index above mentioned.
     Taking Jiweishan landslide in Wulong, Chongqing as example, several research works is conducted as follows:
     (1)The rapid acquisition of the roughness data for natural rock discontinuities. LS05-1discontinuity is the limestone bedding plane that scattered in the accumulation area and the occurrence is not in-situ. ILRIS-36D3D laser scanner is applied to obtain the roughness data of the field size discontinuities, this kind of data is mainly used to evaluate the effect of sampling parameters on the roughness, to propose new representation method of roughness, to establish new estimation model of the peak shear strength based on BAP and so on. The preliminary point cloud date with sampling size of4.7×2.5m and sampling interval of0.8m has more than18,000,000points in total. On the other hand, all JW02-1BL, JW02-2BL, JW03-1BL, JW03-2BL, and JW03-3BR discontinuities belong to limestone joints collected on the sliding plane of landslide. The VZ-4003D laser scanner is employed for the rapid acquisition of topography information for small scale discontinuities. This kind of data is applied in the building of new estimation model for peak shear strength and corroboration of numerical simulation results. The sampling size and interval of original points cloud is0.181×0.362m and1mm respectively. There are about65,500points for each discontinuity. It is necessary and, also important, to conduct preprocessing for original point cloud data, including parsing, reduction, and denoising. Comprehensively combining the factors of computer calculation, accuracy and time together, the sampling size of LS05-1discontinuity is reduced to4.70×1.14m, the sampling interval is increased to0.01mm, after preprocessing near54,000points concerning to the roughness of discontinuity are left. In the meantime, as for JW02-1BL, JW02-2BL, JW03-1BL, JW03-2BL, and JW03-3BR discontinuities, their average sampling size are decreased to be0.06×0.06m, and the sampling interval keep constant with value of0.001m, the point cloud for each discontinuity has about3600points under this circumstance. Based on Matlab software, the code used to rebuild the topography of discontinuities surfer is completed.
     (2) Investment of the effect from sampling parameters on the roughness of discontinuities. Based on the pretreated point cloud data of the LS05-1discontinuity and supplemented date generated by Weierstrass-Mandelbrot fractal random functions, the influence of sampling direction, sample size and sampling interval on roughness is assessed in2D and3D level respectively. The analysis process obeys to the single variable principle with the other two factors remain fixed. For the anisotropy of roughness, from0°to330°, with a15°interval,24profiles are contracted from the geometry model of discontinuities, the fractal dimension D is computed to describe the roughness of each profiles, and for the3D joint surface, the improved stereographic projection pole diagram method is applied to calculate the quantity of normal vectors NV used to capture the anisotropy with respect to rock joint surface roughness; For the scale effect of roughness,9profiles with different length and9surface with different area was collected from pretreated point cloud data, the fractal dimension D for each profiles and surfaces is computed based on box counting method; For the interval effect of roughness, with a0.01m interval,100different intervals are selected from0.01m to1.00m, calculating the fractal dimension D for all cases. Practical solutions are put forward for each sampling parameters.
     (3) Based on Bright Area Percentage(BAP), a new representation method of rock joint roughness is proposed. Starting from the shear failure mechanism of rock discontinuities with no filling and low normal stress, the tiny plane facing the shear direction are taken as the object of study, a new index used to characterize the roughness is provided. The simulative light source program is written on the basis of Matlab, and definition and computing method for BAP are given according to the image segmentation technique, and value issue of the crucial parameters, gray threshold TL and light incidence angle β in the light source simulating process, is discussed to choose optimal one. Through describing the anisotropy, scale effect and the interval effect of the joint roughness, the applicability of the BAP is verified.
     (4) Establishment of new estimation model for the peak shear strength based on the BAP. Upon the platform of Matlab, the XYZ23DEC program is written to generate the three-dimensional complex discrete element model in short time. Through comparing with the results from direct shear testing, the physical and mechanical parameters for rocks and joints with regard to numerical simulation are adjusted and verified; on the basis of abovementioned parameters, the corroboration referring to reliability of the numerical model is carried out via describing the anisotropy, the scale effect and the sensibility on the normal stress of shear strength; by setting a reasonable sampling size and sampling interval, taking joint roughness index(BAP), anisotropy (shear direction a), rock strength(JCS), basic friction angle(φb) and normal stress (σ) into accounted,60direct shear simulation tests are conducted to provide the desired date for regression analysis. Finally, the relationship between BAP and the peak shear strength τp of discontinuities is established, and a estimation model (equation) is put forward to evaluate peak shear strength based on BAP.
     (5) Application of the new estimation model for the peak shearing strength to slope stability analysis. The new model is applied to the stability evaluation of Jiweishan landslide in Wulong, Chongqing. Combined with the new index BAP, normal stress σ, basic friction angle (φb and joint surface strength JCS, the range of shearing strength parameters such as internal friction φ and cohesion C for sliding plane are evaluated based on new estimation model of peak shear strength. By selecting the combination of the minimum, the maximum, and average as case study, failure evolutionary process of the sliding block is reappeared based on3DEC, and deformation characteristics of sliding block are also analyzed.
     Based on the abovementioned research content and techniques, the conclusions can be reached as followings:
     (1) With the3D laser scanning technology, the joint roughness data can be collected for a short time. The scanning time is directly related to the sampling interval and the sampling scope. The smaller the sampling interval is, the larger the sampling size is, and the greater scanning time will be. Additionally, the scanning time is supposed to be influenced by non-technical factors, for example improper operation, power supplement, operating environment, etc.; The original point cloud data need to be preprocessed, preprocessing of point cloud data is a try and error procedure, the improvement need to made on the basis of the feedback, and the time spent on the preprocessing depends greatly on the professional quality of the staff, and the more skilled the operator is, the shorter the work time will be cost.
     (2) Evaluation of the effect of sampling direction on the rock joint roughness shows:the roughness in different sampling directions is quite distinguished, and the most direct and effective way to solve the sampling direction error is to ensure that the sampling direction should be consistent with the interested direction in the data collecting process. The interested directions include sliding, shear, and seepage direction relating to rack mass. These interested directions should be identified in the geological investigating stage, for example, the surface scratches and fault steps is the clue to find the sliding and shear direction. Evaluation of the effect of sampling size on the rock joint roughness shows:sampling size has a significant impact on the roughness of rock joints, and the roughness will decrease with the increasing of sample size. When the size increases to the effective sampling size (3.5m for profile and3.5×0.84m for surface), the roughness is basically stable and no longer declines. The roughness size effect can be effectively eliminated by increasing the sampling size, but restricted by the limited range of measuring instruments, the result reveals that scale effect on roughness can be figured out by increasing the number of measurements, rather than enlarging the range of measurements aforesaid, and stronger practical meaning of previous approach is demonstrated at moment. Evaluation of the effect of sampling intervals on the rock joint roughness shows:discontinuities with different sampling intervals have distinguished roughness. Generally, with the sampling intervals decreased, more detailed information about the topography of joint surface is acquired, and the corresponding roughness increase. When the sampling interval decreases to be effective interval, the roughness of rock joint will trend to stable. On the other hand, when the sample interval is too large, a lot of geometric data of joint surface will be ignored, which makes the shape of rock discontinuity no longer have the fractal characteristics. The effective sampling interval has a positive correlation with the sampling size, and in order to both getting the real joint roughness and eliminating test period and cost, it is recommended that the ratio between sampling interval and sample size should be less than0.05. In this condition, the impact on the roughness from the sampling interval can be effectively reduced.
     (3) In the shear failure process of the discontinuities with no filling and low normal stress, the tiny planes facing the direction is likely to primarily occur shear failure, these planes play a great role in shear resistance. Therefore the new joint roughness representative method should be focused on the these kind of tiny planes; the selection of gray threshold TL is the key, which should be combined with the failure mechanics mechanism of the discontinuities, to describe the roughness appropriately, and it should follow the specific conditions principle to select; The simulated light incidence angle β has a significant impact on the calculated result of BAP, and the BAP will increase with the increasing of incidence angle β, the best recommended angle β is located in the range of from35°to70°; In specific cases, the selection of TL and β should mutually coordinate and then make a reasonable combination; Based on the BAP method, the anisotropy, size effect and interval effect of rock discontinuities can be well reflected, this method has a unique advantage since both of geometric and mechanical information are considered in the roughness evaluation.
     (4) The numerical simulation results which is combined with direct shear tests in laboratory show:the numerical experiments can reflect the anisotropy, the size effect and sensitivity to normal stress of the shear strength very well; the value of the gray threshold TL which is used in the image segmentation, is affected by the normal stress σ. Taking the LS05-1rock joint as a studying case, with the light incidence angle β=35°, a variety of reasonable gray threshold TL corresponded with the normal stress σ are found as follows,
     When the normal stress σ=0.5MPa, the gray threshold TL=160;
     When the normal stress σ=1.OMPa, the gray threshold TL=155;
     When the normal stress σ=1.5MPa, the gray threshold TL=150;
     When the normal stress σ=2.OMPa, the gray threshold TL=145;
     When the normal stress σ=2.5MPa, the gray threshold TL=140.
     Based on large quantities of numerical simulation data and multivariate statistical analysis, the new estimation model of the rock joint peak shear strength is built,
     (5) The recommended values of9pairs of cohesion C and friction angle φ are estimated on the basis of27cases, and compared with the data form published literature, the values have the similar statistical regularity with other scholars. The minimum combination of cohesion C and friction angle φ is φ=3.977°and C=0.443MPa, and the maximum combination of C and φ is φ=38.080°, C=1.917MPa, and average combination of cohesion C and friction angle φ is φ=17.162°, C=1.094MPa. Minimum one is relatively in line with the actual situation. According to case with minimum combination, the displacement variation law of the slide mass failure in the early stage is simulated, and the result shows that the sliding block has different deformation law at different part. The leading and trailing edges of the sliding block have large displacement, the leading edge moves along the strike of T2fracture, and the trailing edge slides along the crossing direction of T2fracture and sliding surface, the failure firstly occurs at leading edge of the sliding block due to the existence of the free space. At the same location of the sliding block, the displacement magnitude of the upper one is larger than the lower one, and the upper block will happen failure firstly. The displacement magnitude in the outer side (east side) is also bigger than the inner side, and in the trailing edge the difference is more manifest. As the movement is not synchronized for the outer and inner block, rotational motion is taken place during the failure process. Compared with field geological investigation, the rationality of the numerical simulation result is verified and it is proved that the new estimation model for peak shear strength has made a successful application on the stability analysis for slope.
     The main innovation points of this paper are:
     (1) The new representation method named BAP for discontinuities roughness is proposed. This method is a3D evaluation method, the anisotropy, size effect and interval effect of the roughness can be considered using this method, and what is more, the shear failure mechanism of the rock mass can be captured with it. Based on point cloud data and code made in Matlab software, BAP method make a great improvement on roughness evaluation accuracy and period
     (2) Based on BAP, the new estimation model for the peak shear strength is established. This mode is put forward on the basis of reasonable sample size and sampling interval, taking the normal stress σ, the basic friction angle φb, the surface strength parameter JCS, the roughness BAP and shear direction into account. The structure of model is relatively simple but with great mechanical meaning. The statistical parameters involved in the model are matched out on the basis of plenty of numerical experiments, which are relatively reliable. Seeing from the engineering application, the model also has a good application, and can succeed in estimating rational shear failure mechanical parameters of discontinuities.
引文
[1]孙玉科,李建国.岩质边坡稳定性的工程地质研究[J].地质科学,1965,4:330-352.
    [2]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [3]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [4]李智毅,杨裕云.工程地质学概论[M].武汉:中国地质大学出版社,1994.
    [5]张倬元,王士天,王兰生,等.工程地质分析原理(第三版)[M].北京:地质出版社,2009.
    [6]徐光黎,潘别桐,唐辉明,等.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993.
    [7]杜时贵.结构面与工程岩体稳定性[M].北京:地震出版社,2006.
    [8]陈祖煜,汪小刚,杨健,等.岩质边坡稳定性分析-原理·方法·程序[M].北京:中国水力水电出版社,2005.
    [9]冯寺燄.法国马尔帕塞坝的失事调查和分析[J].大坝与安全,1988,1:23-28.
    [10]GENEVOIS R, GHIROTTI M. The 1963 vajont landslide [J]. Giornale di Geologia Applicata,2005,1:41-52.
    [11]HUDSON J A, HARRISON J P. Engineering rock mechanics-an introduction to the principles [M]. Elsevier,2000.
    [12]FENG Q, FARDIN N, JING L, et al. A new method for in-situ non-contact roughness measurement of large rock fracture surface [J]. Rock Mechanics and Rock Engineering, 2003,36(1):3-25.
    [13]FECKER E, RENGERS N. Measurement of larger scale roughness of rock planes by means of profilograph and geological compass [C]. In Proceedings Symposium on Rock Fracture. Nancy, France,1-18,1971.
    [14]BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice [J]. Rock Mechanics and Rock Engineering,1977,10(1):1-54.
    [15]WEISSBACH G A new method for the determination of the roughness of rock joints in the laboratory [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978,15 (3):131-133.
    [16]STIMPSON B. A rapid field method for recording joint roughness profiles[J]. International Journal of Rock Mechanics and Mining,1982,19 (6):345-346.
    [17]吉锋,石豫川,冯文凯.一种新型的结构面起伏形态测量工具-接触打孔器的研制[c].第三届全国岩土与工程学术大会论文集.成都:四川科学技术出版社,2009:651-653.
    [18]KIM D H, GRATCHEV I, BALASUBRAMANIAM A. Determination of joint roughness coefficient (JRC) for slope stability analysis:a case study from the Gold Coast area, Australia [J]. Landslides,2013,10 (5):657-664.
    [19]杜时贵.简易纵剖面仪及其在岩体结构面粗糙度系数研究中的应用[J].地质科技情报,1992,11(3):91-95.
    [20]AYDAN O, SHIMIZU Y, KAWAMOTO T. A portable system for in-situ characterization of surface morphology and frictional properties of rock discontinuities [C]. In Proceedings of 4th International Symposium on Filed Measurements in Geomechanics (FMGM95). Bergamo, Italy,1995,463-470.
    [21]AYDAN O, SHIMIZU Y, KAWAMOTO T. The anisotropy of surface morphology characteristics of rock discontinuities [J]. Rock Mechanics and Rock Engineering,1996,29 (1):47-59.
    [22]尹红梅,张宜虎,孔祥辉.结构面剪切强度参数三维分形估算[J].水文地质工程地质,2011,38(4):58-62.
    [23]夏才初,孙宗颀.节理表面形貌的室内和现场量测及其应用[J].勘察科学技术,1994,4:27-31.
    [24]DEVELI K, BABADAGLI T, COMLEKCI C. A new computer-controlled surface-scanning device for measurement of fracture surface roughness [J]. Computers & Geosciences,2001, 27(3):265-277.
    [25]FRANKLIN J A, MAERZ N H, BENNETT C P. Rock mass characterization using photoanalysis [J]. International Journal of Mining and Geological Engineering,1988,6 (2): 97-112.
    [26]MAERZ N H, FRANKLIN J A, BENNETT C P. Joint roughness measurement using shadow profilometry [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1990,27 (5):329-343.
    [27]WERNER B T, HAFF P K, LIVI R P, et al. Measurement of eolian sand ripple cross section shapes [J]. Geology,1986,14 (9):742-745.
    [28]朱伟.风成沙波纹形成和发展过程研究[博士学位论文][D].兰州:兰州大学,2011.
    [29]HAKAMI E, LARSSON E. Aperture measurement and flow experiments on a single natural fracture [J]. International Journal of Rock Mechanics and Mining Sciences and Goemechanics Abstract,1996,33 (4):395-404.
    [30]王卫星,杨记明.一种基于图像处理的岩石裂隙粗糙度几何信息算法[J].重庆邮电大学学报(自然科学版),2010,22(4):454-457.
    [31]BAE D S, KIM K S, KOH Y K, et al. Characterization of joint roughness in granite by applying the scan circle technique to images from a borehole televiewer [J]. Rock Mechanics and Rock Engineering,2011,44(4):497-504.
    [32]GRASSELLI G. Shear strength of rock joints based on quantified surface description [Ph. D. Thesis][D]. Lausanne, Switzerland:Swiss Federal Institute of Technology,2001.
    [33]GRASSELLI G, EGGERB P. Constitutive law for shear strength of rock joints based on three-dimensional surface parameters [J]. International Journal of Rock Mechanics & Mining Sciences,2003,40:25-40.
    [34]夏才初,王伟,丁增志TJXW-3D型便携式岩石三维表面形貌仪的研制[J].岩石力学与工程学报,2008,27(7):1505-1512.
    [35]马骏.岩石表面线结构光扫面三维测量方法的研究[硕士学位论文][D].天津:天津大学,2007.
    [36]曾勇.三维激光扫描岩石表面仪[硕士学位论文][D].天津:天津大学,2010.
    [37]FARDIN N, STEPHANSSON O, JING L R. The scale dependence of rock joint surface roughness [J]. International Journal of Rock Mechanics & Mining Science,2001,38 (5): 659-669.
    [38]KULATILAKE P H S W, BALASINGAM P, PARK J, et al. Natural rock joint roughness quantification through fractal techniques [J]. Geotechnical and Geological Engineering, 2006,24(5):1181-1202.
    [39]BELEM T, SOULEY M, HOMAND F. Modeling Surface roughness degradation of rock joint wall during monotonic and cyclic shearing [J]. Acta Geotechnic,2007,2:227-248.
    [40]MLYNARCZUK M. Description and classification of rock surface by means of laser profilometry and mathematical morphology [J]. International Journal of Rock Mechanics & Mining Science,2010,47 (1):138-149.
    [41]曹平,范祥,蒲成志,等.节理剪切试验及其表面形貌特征变化分析[J].岩石力学与工程学报,2011,30(3):480-485.
    [42]曹平,贾洪强,刘涛影,等.岩石节理表面三维形貌特征的分形分析[J].岩石力学与工程学报,2011,20(Supp.2):3839-3843.
    [43]董秀军.三维激光扫描技术及其工程应用研究[硕士学位论文][D].成都:成都理工大学,2007.
    [44]施星波.基于三维激光扫描数据的岩体结构面产状识别方法研究[硕士学位论文][D].北京:中国地质大学(北京),2010.
    [45]张文.基于三维激光扫描技术的岩体结构信息化处理方法及工程应用[硕士学位论文][D].成都:成都理工大学,2010.
    [46]霍俊杰,LOVLIE R,董秀军.3D激光扫面工艺与锦屏Ⅰ级水电工程右岸建基面绿片岩实测迹长分布研究[J].工程地质学报,2010,18(5):790-795.
    [47]朱云福.基于三维激光扫描数据的岩体结构面识别方法研究及系统研制[硕士学位论文][D].北京:中国地质大学(北京),2012.
    [48]MAERZ N H, YOUSSEF A M, OTOO J N, et al. A simple method for measuring discontinuity orientation from terrestrial LIDAR data [J]. Environmental & Engineering Geoscience,2013,19 (2):185-194.
    [49]FEKETE S, DIEDERICHS M. Integration of three-dimensional laser scanning with discontinuum modelling for stability analysis of tunnel in blocky rockmasses [J]. International Journal of Rock Mechanics & Mining Science,2013,57:11-23.
    [50]TAM C C Y. Study on rock joint roughness using 3D laser scanning technique [Master Thesis][D]. Hong Kong:University of Hong Kong,2008.
    [51]TANG H M, GE Y F, WANG L Q, et al. Study on estimation method of rock mass discontinuity shear strength based on three-dimensional laser scanning and image technique [J]. Journal of Earth Science,2012,23 (6):908-913.
    [52]葛云峰,唐辉明,黄磊,等.岩体结构面三维粗糙度系数表征新方法[J].岩石力学与工程学报,2012,31(12):2508-2517.
    [53]GE Y F, TANG H M, WANG L Q, et al. Error Analysis of Sampling Spacing on Roughness of Rock Joint Based on Three Dimensional Laser Scanning Testing [C]. In Proceedings of 47th US Rock Mechanics/Geomechanics Symposium. San Francisco:ARMA,2013.
    [54]GE Y F, KULATILAKE P H S W, TANG H M, et al. Investigation of natural rock joint roughness [J]. Computers and Geotechnics,2014,55:290-305.
    [55]MAH J, SAMSON C, MCKINNON S D, et al.3D laser imaging for surface roughness analysis [J]. International Journal of Rock Mechanics & Mining Science,2013,58:111 117.
    [56]FENG Quanhong. Novel methods for 3-D semi-automatic mapping of fracture geometry at exposed rock face [Ph. D. Thesis] [D]. Stockholm, Sweden:Royal Institute of Technology, 2001.
    [57]MANDELBROT B B, NESS VAN NESS J W. Fractional Brownian motions, fractional noises and applications [J]. SIAM Review,1968,10 (4):422-437.
    [58]MANDELBROT B B. Stochastic models for the Earth's relief, the shape and the fractal dimensions of the coastlines and number-area rule fro islands [C]. In Proceeding of the National Academy of Sciences,1975,72 (10):3825-3828.
    [59]梁俊,蒋金龙,赵雪莲,等.随机中点位移法在三维地形插值显示的适用性分析[J].测绘科学,2007,32(3):44-46.
    [60]梁俊,王琪,刘坤良,等.基于随机中点位移法的三维地形模拟[J].计算机仿真,2005,22(1):213-215.
    [61]陶闯,林宗坚,卢健.分形地形模拟[J].计算机辅助设计与图形学学报,1996,8(3):178-186.
    [62]FOURNIER A, FUSSELL D, CARPENTER L. Computer rendering of stochastic models. Communications of the ACM,1982,25 (6):371-384.
    [63]VOSS R F. Random fractal forgeries [J]. Fundamental Algorithms for Computer Graphics, 1985, (17):805-835.
    [64]KULATILAKE P H S W, UM J, PAN G. Requirement for accurate quantification of self- affine roughness using the variogram method [J]. International Journal of Solids and Structures,1998,35 (31-32):4167-4189.
    [65]GOTHALL R, ERIKSSON M, STILLE H. A modification of the random midpoint displacement method for generating rock fracture similar surface.2005.
    [66]BABANOURI N, NASAB S K, SARAFRAZI S. A hybrid particle swarm optimization and multi-layer perceptron algorithm for bivariate fractal analysis of rock fractures roughness [J]. International Journal of Rock Mechanics & Mining Science,2013,600:66-74.
    [67]HUANG S L, OE1FKE S M, SPECK R C. Applicability of fractal characterization and modeling to rock joint profile [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1992,29 (2):89-98.
    [68]VOSS, R F. Fractals in nature:from characterization to simulation, in The Science of Fractal Images [M]. Springer New York,1988:21-70.
    [69]王庆,荣冠,陈特.大理岩节理表面形态对剪切强度影响的数值模拟[J],水电能源科学,2012,30(6):70-73.
    [70]BARNSLEY M F.Fractal functions and interpolation [J]. Constructive Approximation,1986, 2(1):303-329.
    [71]XIE H P, SUN H Q. The Study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces [J]. Fractals,1997,5 (4):625-634.
    [72]XIE H P, SUN H Q, JU Y, et al. Study on generation of rock fracture surfaces by using fractal interpolation [J]. International Journal of Solids and Structures,2001,38 (32-33): 5765-5787.
    [73]冯志刚.岩石断面分形插值稳定性的实验研究[J].江苏大学学报(自然科学版),2002,23(5):1-03.
    [74]孙洪泉,谢和平.岩石断裂表面的分形模拟[J].岩石力学,2008,29(2):347-352.
    [75]孙洪泉.分形几何与分形插值[M].北京:科学出版社,2011.
    [76]吴金花.具有分形表面裂隙的渗流特性研究[硕士学位论文][D].大连:大连理工大学,2010.
    [77]乔忠云.基于Matlab复合材料磨损表面形貌W-M分形模型及其模拟[J].煤矿机械,2007,28(10):37-38.
    [78]刘远东,刘林.两向异性的W-M分形插值[J].科学技术与工程,2011,11(13):3098-3101.
    [79]李成贵,董申.三维表面形貌的分形维数计算方法[J].航空精密制造技术,2000,36(4):36-40.
    [80]刘东远.基于分形表述的表面功能结构的数字化建模[硕士学位论文][D].广州:华南理工大学,2011.
    [81]张楠,王立华,何雨松,等.分形粗糙表面的计算机模拟[J].新技术新工艺,2013,6:82
    [82]郑山锁,任梦宁,谢明,等.混凝土断裂面多重分形谱的二次拟合研究[J].工程力学,2013,30(5):97-103.
    [83]周创兵,叶子桐,韩冰.岩石节理面形态与水力特性研究[J].水科学进展,1997,8(3):233-239.
    [84]张鹏,李宁,陈新民.一种新的裂隙三维表面粗糙度表征方法[J].岩石力学与工程学报,2009,28(Supp.2):3477-3483.
    [85]BARTON N. Review of a new shear-strength criterion for rock joints [J]. Engineering Geology,1973,7 (4):287-332.
    [86]BARTON N, BANDIS S. Some effects of scale on the shear strength of joints [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1980,17(1):69-73.
    [87]WU T H, ALI E M. Statistical representation of joint roughness [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1978,15(5):259-262.
    [88]TSE R, CRUDEN D M. Estimating joint roughness coefficients [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1979,16(2):303-307.
    [89]BELEM T, ETIENNE F H, SOULEY M. Quantitative parameters for rock joint surface roughness [J]. Rock Mechanics and Rock Engineering,2000,33(4):217-242.
    [90]GRASSELLI G, WIRTHC J, EGGERB P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing [J]. International Journal of Rock Mechanics & Mining Sciences,2002,39(6):789-800.
    [91]HERDA H H W. An algorithmic 3D rock roughness measure using local depth measurement clusters [J]. Rock Mechanics and Rock Engineering,2006,39(2):147-158.
    [92]吴月秀,刘泉声,刘小燕.岩体节理粗糙度系数与统计参数的相关关系研究[J].岩石力学与工程学报,2011,30(S1):2593-2598.
    [93]RAFEK A G, GOH T L. Correlation of joint roughness coefficient (JRC) and peak friction angles of discontinuities of Malaysian Schists [J]. Earth Science Research,2012,1(1): 57-63.
    [94]MANDELBROT B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension [J]. Science,1967,156 (3775):636-638.
    [95]MANDELBROT B B. The fractal geometry of nature [M]. New York:Freeman,1983.
    [96]MANDELBROT B B. Self-affine fractals and fractal dimension [J]. Physica Scripta,1985, 32 (4):257-260.
    [97]FALCONER K J. The geometry of fractal sets-Cambridge tracks in mathematics [M]. Cambridge:Cambridge University Press,1985.
    [98]曾文曲,王向阳,陆夷(译).分形几何中的技巧[M].沈阳:东北大学出版社,1999.
    [99]谢和平.分形-岩石力学导论[M].北京:科学出版社,1997.
    [100]KULATILAKE P H S W, SHOU G, HUNAG T H, et al. New peak shear strength criteria for anisotropic rock joints [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1995,32 (7):673-697.
    [101]孙辅庭,佘成学,蒋庆仁.一种新的岩石节理面三维粗糙度分形描述方法[J].岩土力学,2013,34(8):2238-2242.
    [102]FEDER J. Fractal [M]. New York:Plenum Press,1988.
    [103]OREY S. Gaussian simple functions and Hausdorff dimension of level crossing [J]. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete,1970,15 (3):249-256.
    [104]BERRY M V, LEWIS Z V. On the Weierstrass-Mandelbrot fractal function [C]. In Proceedings of the Royal Society of London, Series A 1980,370 (1743):459-484.
    [105]MALINVERNO A. A simple method to estimate the fractal dimension of a self-affine series [J]. Geophysical Research Letters 1990; 17 (11):1953-1956.
    [106]MATSUSHIT M, OUCHI S. On the self affinity of various curves [J]. Physica D 1989; 38 (1):246-251.
    [107]CLARK K C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method [J]. Computers and Geoscience,1986,12 (5):713-722.
    [108]FRIEL J J, PANDE C S. Direct determination of fractal dimension of fracture surfaces using scanning electron microscopy and stereoscopy [J]. Journal of Materials Research, 1993,8(1):100-104.
    [109]XIE H P, WANG J A, STEIN E. Direct fractal measurement and multifractal properties of fracture surface [J]. Physics Letters A,1998, A242:41-50.
    [110]XIE H, WANG J A, KWASNIEWSKI M A. Multifractal characterization of rock fracture surfaces[J]. International Journal of Rock Mechanics and Mining Science,1999,35 (1): 19-27.
    [111]XIE H P, ZHOU H W, FENG Z G. Further research on the Projective Covering Method [J]. International Journal of Solids and Structures,2000,37 (33):4627-4630.
    [112]ZHOU H W, XIE H. Direct estimation of the fractal dimensions of a fracture surface of rock [J]. Surface Review and Letters,2003,10 (5):751-762.
    [113]孔祥辉.结构面表面形态与力学性质相关性研究[硕士学位论文][D].武汉:长江科学院,2008.
    [114]张亚衡,周宏伟,谢和平.粗糙表面分形维数估算的改进立方体覆盖法[J].岩石力学与工程学报,2005,24(17):3192-3196.
    [115]杜时贵,唐辉明.岩体断裂粗糙度系数的各向异性研究[J].工程地质学报,1993,1(2):32-42.
    [116]王金安,谢和平.岩石断裂面的各向异性分形和多重分形研究[J].岩土工程学报,1998,20(6):16-21.
    [117]ZHOU H W, XIE H. Anisotropic characterization of rock fracture surfaces subjected to profile analysis [J]. Physics Letters A,2004,325(5-6):355-362.
    [118]何满潮,胡江春,王红芳.岩石表面形态的各向异性及其摩擦特性研究[J].采矿与安全工程学报,2006,23(2):151-154.
    [119]殷黎明.甘肃北山花岗岩节理水力、力学特性研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2008.
    [120]殷黎明,杨春和,王贵宾,等.甘肃北山花岗岩节理表面形态特性研究[J].岩石力学,2009,30(4):1046-1050.
    [121]徐磊,任青文,叶志才,等.基于小波分析的岩体结构表面形貌各向异性研究[J].武汉理工大学学报,2010,32(11):73-76.
    [122]ROKO R O, DAEMEN J J K, MYERS D E. Variogram characterization of joint surface morphology and asperity deformation during shearing [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(1):71-84.
    [123]BAKER B R, GESSNER K, HOLDEN E J, et al. Automatic detection of anisotropic features on rock surfaces [J]. Geosphere,2008,4(2):418-428.
    [124]NASSERI M H B, GRASSELLI G, MOHANTY B. Fracture toughness and fracture roughness in anisotropic granitic rocks [J]. Rock Mechanics and Rock Engineering,2010, 43(4):403-415.
    [125]GRASSELLI G. Manuel rocha medal recipient shear strength of rock joints based on quantified surface description [J]. Rock Mechanics and Rock Engineering,2006,39(4): 295-314.
    [126]唐志成,夏才初,宋英龙,等Grasselli节理峰值抗剪强度公式再探[J].岩石力学与工程学报,2012,31(2):356-364.
    [127]TATONE B S A, GRASSELLI G. A new 2D discontinuity roughness parameter and its correlation with JRC [J]. International Journal of Rock Mechanics and Mining Sciences, 2010,47(8):1391-1400.
    [128]BANDIS S, LUMSDEN A C, BARTON N R. Experimental studies of scale effects on the shear behaviour of rock joints [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1981,18:1-21.
    [129]BARTON N. Modeling rock joint behaviour from in-situ block test:Implication for nuclear waste repository design [R]. ONWI-308 Columbus, OH,1982,381-385.
    [130]杜时贵,陈禹,樊良本.JRC修正直边法的数学表达[J].工程地质学报,1996,4(2):36-43.
    [131]杜时贵.岩体结构面的工程性质[M].北京:地震出版社,1999.
    [132]杜时贵.岩体结构面抗剪强度经验估算[M].北京:地震出版社,2005.
    [133]夏才初.岩石结构面的表面形态特征研究[J].工程地质学报,1996,4(3):71-78.
    [134]FARDIN N, FENG Q, STEPHANSSON O. Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:329-335.
    [135]吉锋,石豫川.硬性结构面表面起伏形态测量及其尺寸效应研究[J].水文地质工程地质,2011,38(4):63-68.
    [136]TATONE B S A, GRASSELLI G. An investigation of discontinuity roughness scale dependency using high-resolution surface measurements [J]. Rock Mechanics and Rock Engineering,2013,46:657-681.
    [137]YU, X B, VAYSSADE B. Joint profiles and their roughness parameters [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1991, 28(4):333-336.
    [138]HONG E S, LEE J S, LEE I M. Underestimation of roughness in rough rock joints [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2008, 32(11):1385-1403.
    [139]郭霄.岩体结构面抗剪强度经验估算方法的试验对比研究[硕士学位论文][D].杭州:浙江工业大学,2001.
    [140]颜育仁.岩体结构面抗剪强度经验估算方法的工程应用研究[硕士学位论文][D].杭州:浙江工业大学,2005.
    [141]PATTON, FRANKLIN D. Multiple modes of shear failure in rock [C]. In Proceeding 1st ISRM Congress,1966,1:509-513.
    [142]范雷.鄂西志留系裂隙砂岩岩体结构特征及其力学参数研究[博士学位论文][D].武汉:中国地质大学(武汉),2009.
    [143]LADANYI B, ARCHAMBAULT G. Simulation of shear behavior of a jointed rock mass [C]. In The 11th US Symposium on Rock Mechanics (USRMS),1969,7:105-125.
    [144]JAEGER J C. Friction of rocks and stability of rock slopes [J]. Geotechnique,1971,21 (2): 97-134.
    [145]BARTON N. The shear strength of rock and rock joints [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1976,13 (9):255-279.
    [146]KULATILAKE P H S W, UM J, PANDA B B, et al. Development of New Peak Shear-Strength Criterion for Anisotropic Rock Joints [J]. Journal of Engineering Mechanics,1999,125 (9):1010-1017.
    [147]许强,黄润秋,殷跃平,等.2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J].工程地质学报,2009,17(4):433-444.
    [148]北京中翰仪器有限公司.中翰仪器网,http://www.zhinc.com.cn,2013.
    [149]BARBARELLA M, FIANI M. Monitoring of large landslides by Terrestrial Laser Scanning techniques:field data collection and processing [J]. European Journal of Remote Sensing,2013,46:126-151.
    [150]RIEGL Laser Measurement Systems GmbH官方网站,http://www.riegl.com,2014.
    [151]PIROTTI F, GUARNIERI A, VETTORE A. State of the art of ground and aerial laser scanning technologies for high-resolution topography of the earth surface [J]. European Journal of Remote Sensing,2013 (46):66-78.
    [152]Geomagic Inc.官方网站, http://www.geomagic.com/en/,2013
    [153]成思源,谢韶旺.Geomagic studio逆向工程技术及应用[M].北京:清华大学出版社,2010.
    [154]邓乾旺,刘小燕,于德介.快速反求工程及其在快速成形制造中的应用[J].机械设计与制造,2000,4(1):59-60.
    [155]戴静.逆向工程数据处理关键技术研究[硕士学位论文][D].南京:南京理工大学,2003.
    [156]廖华奎,王宝富.解析几何教程[M].北京:科学出版社,2000.
    [157]朱鼎勋,陈绍菱.空间解析几何[M].北京:北京师范大学出版社,1981.
    [158]黄宣国.空间解析几何与微分几何[M].上海:复旦大学出版社,2003.
    [159]丘维生.解析几何[M].北京:北京大学出版社,2013.
    [160]朱志澄.地质构造[M].武汉:中国地质大学出版社,1999.
    [161]陈欢欢,李星,丁文秀.Surfer 8.0等值线绘制中的十二种插值方法[J].工程地球物理学报,2007,4(1):52-57.
    [162]Golden Software Inc. Surfer 8 user's guide [M]. Golden, Colorado, USA,2002.
    [163]李少梅.数字地貌晕渲理论与技术的研究[博士学位论文][D].郑州:解放军信息工程大学,2004
    [164]王运琼,游志胜,刘直芳.基于空间特征的汽车阴影分割方法[J].光电工程,2003,30(2):64-67.
    [165]LEONE A., DISTANTE C.. Shadow detection for moving objects based on texture analysis [J]. Pattern Recognition,2007,40:1222-1233.
    [166]JOHANSSON B., WIKLUND J., FORSSEN P. E., et al.. Combining shadow detection and simulation for estimation of vehicle size and position [J]. Pattern Recognition Letters, 2009,30:751-759.
    [167]陈晓东,陈建裕,毛志华,等.基于MPHD算法的高分辨率遥感影像对海洋上空的云及其阴影的识别与匹配[J].海洋学研究,2009,27(2):51-57.
    [168]郭雷,吴成柯,陆心如.矽肺小阴影的计算机识别[J].西北电讯工程学院学报,1987,14(1):3844.
    [169]梅雪良,张祖勋,张剑清.基于约束满足网络的建筑物阴影结构提取[J].武汉测绘科技大学学报,1996,21(3):265-268.
    [170]于庆磊,唐春安,唐世斌.基于数字图像的岩石非均匀性表征技术及初步应用[J].岩石力学与工程学报,2007,26(3):551-559.
    [171]Itasca Consulting Group, Inc.3DEC-3 Dimensional Distinct Element Code User's Guide Version 4.1 [M]. Minneapolis, Minnesota, USA,2007.
    [172]CUNDALL P A. A computer model for simulation progressive large-scale movements in blocky rock system [C]. In:Processing of the International Symposium Rock Fracture, ISPM. Proc 2,1971, pp.129-136.
    [173]LEMOS J V, HART R D, CUNDALL P A. A generalized distinct element program for modeling jointed rock mass [C]. In:Proceedings of the international Symposium on Fundamentals of Rock Joints, Bjorkliden, Sweden,1985, pp.335-343.
    [174]CUNDALL P A. Formulation of a three-dimensional distinct element model-part 1. A scheme to detect and represent contacts in a system composed of many polyhedral blocks [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract,1988,25 (3):107-116.
    [175]HART R, CUNDALL P A, LEMOS J. Foundation of a three dimensional distinct element model-Part 2. Mechanical calculation for motion and interaction of a system composed of many polyhedral blocks [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract,1988,25 (3):117-126.
    [176]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社.1991.
    [177]周莲君,彭振斌,何忠明,等.结构面剪切特性的试验与数值模拟分析[J].科技导报,2009,27(4):31-35.
    [178]江泊洧,项伟,JOACHIM R,等.基于三维形态空间分析和仿真试验的岩体结构面剪切强度参数研究[J].岩石力学与工程学报,2012,31(10):2127-2138.
    [179]周喻,MISRA A,吴顺川,等.岩石节理直剪试验颗粒流宏细观分析[J].岩石力学与工程学报,2012,31(6):1245-1256.
    [180]祝艳波,杨艳霞,曾洪彪,等.泥质白云岩结构面抗剪强度各向异性的数值模拟[J].水电能源科学,2013,31(7):127-130.
    [181]余华中,阮怀宁,褚卫江.岩石节理剪切力学行为的颗粒流数值模拟[J].岩石力学与工程学报,2013,32(7):1482-1490.
    [182]赵延林,万文,王卫军,等.随机形貌岩石节理剪切数值模拟和非线性剪胀模型[J].岩石力学与工程学报,2013,32(8):1666-1676.
    [183]宋英龙,夏才初,唐志成,等.不同接触状态下粗糙节理剪切强度性质的颗粒流数值模拟和试验验证[J].岩石力学与工程学报,2013,32(10):2028-2035.
    [184]BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints [J]. Computers and Geotechnics,2013,51:10]-115.
    [185]PARK J W, SONG J J. Numerical method for the determination of contact areas of a rock joint under normal and shear loads [J]. International Journal of Rock Mechanics & Mining Sciences,2013,58:8-22.
    [186]王彦东.岩质高边坡关键块体的确定及稳定性评价研究-以汤屯高速公路为例[硕士学位论文][D].成都:成都理工大学,2007.
    [187]仿真科技论坛.http://forum.simwe.com/,2013.
    [188]岩土论坛.http://bbs.yantuchina.com/,2013.
    [189]许强,黄润秋,殷跃平,等.2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J].工程地质学报,2009,17(4):433444.
    [190]殷跃平.斜倾厚层山体滑坡视向滑动机制研究—以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报,2010,29(2):217-226.
    [191]刘传正.重庆武隆鸡尾山危岩体形成与崩塌成因分析[J].工程地质学报,2010,18(3):297-304.
    [192]XU Q, FAN X M, HUANG R Q, et al. A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009:background, characterization, and causes [J]. Landslides,2010, 7 (1):75-87.
    [193]冯振,殷跃平,李滨,等.重庆武隆鸡尾山滑坡视向滑动机制分析[J].岩土力学,2012,33(9):2704-2712.
    [194]彭国喜.西南山区“关键块体”控制型滑坡的形成条件与失稳机理研究-以重庆武隆鸡尾山滑坡为例[硕士学位论文][D].成都:成都理工大学,2011.
    [195]邹宗兴,唐辉明,熊承仁,等.大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J].岩石力学与工程学报,2012,31(11):2222-2231.
    [196]王灵敏,刘志刚,耿协威,等.鸡尾山大型高速滑坡近程飞行数值分析[J].人民长江,2012,43(2):62-65.
    [197]YIN Y P, SUN P, ZHANG M, et al. Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China [J]. Landslides,2011,8 (1): 49-65.
    [198]张龙,唐辉明,熊承仁,等.鸡尾山高速远程滑坡运动过程PFC3D模拟[J].岩石力学与工程学报,2012,31(增1):2601-2611.
    [199]李腾飞,李晓,李守定,等.地下开采诱发斜坡失稳破坏机制研究-以武隆鸡尾山崩滑为例[J].岩石力学与工程学报,2012,31(增2):3803-3810.
    [200]唐辉明,熊承仁,苏爱军,等.高速远程滑坡形成机制研究新开工作项目设计书[R].武汉:中国地质大学,2010. (TANG Huiming, XIONG Chengren, SU Aijun, et al. The study on the forming mechanism of high speed and long distance landslide [R]. Wuhan: China University of Geosciences,2010. (in Chinese))
    [201]KULATILAKE P H S W, UCPIRTI H, WANG S, et al. Use of the Distinct element method to perform stress analysis in rock with non-persistent joints and to study the effect of joint geometry parameters on the strength and deformability of rock masses [J]. Rock Mechanics and Rock Engineering,1992,25 (4):253-274.
    [202]刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700