用户名: 密码: 验证码:
蛹拟青霉对三种重要微量元素的有机转化及有机转化物的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用蛹虫草无性型——蛹拟青霉(Paecilomyces militaris)为载体,采用液体深层发酵法对硒、锌、锗三种重要微量元素进行富集和有机转化,探索了蛹虫草菌丝体对三种微量元素的富集、有机转化情况、蛹虫草菌丝体活性成分变化情况、微量元素与蛹虫草菌丝体代谢物的结合形式、微量元素在菌丝体内的分布以及有机转化物的生物活性和功能等问题,为更好地研制和开发对人体有益,且安全、高效,既能补充微量元素又具有生理活性的功能性食品和医用药物奠定基础。
     1、以生物量和微量元素硒、锌、锗的富集能力为指标,对本实验室已有的30株蛹拟青霉进行了筛选。实验结果表明,不同菌株对硒、锌、锗的富集能力各不相同,富集能力的高低基本上与菌丝体生物量和硒、锌、锗有机转化率有关。菌丝体的耐硒能力最弱,耐锌能力较好,耐锗能力最强;从有机转化率来看,硒最高,锌次之,锗最低。
     (1)富硒能力最强的菌株为PM14号菌株,在Na2Se03浓度为20μg/mL条件下,有机硒转化率达到31.6%。其生物量在相同浓度下也最高,达到17.0 mg/mL。
     (2)富锌能力较好的菌株为PM28号和PM14号菌株,在ZnS04浓度为200μg/mL条件下,有机锌转化率分别达到6.65%和5.78%。在相同浓度下,其生物量达到最大分别为19.5 mg/mL,17.6 mg/mL
     (3)富锗最佳菌株为PM28号菌株和PM14号菌株,在锗浓度为500μg/mL条件,有机锗转化率分别达到2.3%和1.9%。在相同浓度下,其生物量分别为15.1 mg/mL,13.8 mg/mL。
     从总体上衡量,由于PM14号菌株富集硒、锌、锗的能力都很强,因此,确定PM14号菌株为进一步研究的菌株。
     2、研究了有机硒、锌、锗在蛹拟青霉菌丝体内蛋白质、多糖和核酸等大分子物质中的含量分布情况。实验结果表明,有机硒、锌、锗含量在蛋白质中最多,其次是多糖,最少的是核酸。硒、锌、锗浓度对其含量有影响,当浓度过高或过低时其含量均降低。
     (1)当培养基中Na2Se03浓度为20μg/mL时,蛋白质、多糖、核酸中有机硒含量均达到最多,分别为221.5μg/g、86.2μg/g和0.6μg/g;当Na2Se03浓度为10μg/mL时,蛋白硒、多糖硒和核酸硒分别占菌丝体总有机硒的比例最大,分别为菌丝体总有机硒的65.8%、28.1%和0.2%,分别是空白的2.7倍、3.9倍和3.8倍。蛋白、多糖、核酸中总的有机硒含量在培养基Na2Se03浓度为20μg/mL时最多为308.4μg/g。在培养基Na2Se03浓度为10μg/mL时,蛋白硒、多糖硒、核酸硒在菌丝体总有机硒中占的比例最大,达到94.1%。
     (2)在实验锌浓度范围内,随着培养基中锌浓度的增加,蛋白质、多糖、核酸中有机锌的含量不断增加,蛋白质、多糖中有机锌占菌丝体总有机锌的比例都随着培养基中锌浓度的增加而增加,而核酸中有机锌比例却不断减少,但变化不明显。当ZnSO4浓度为200μg/mL时,有机锌含量最多,其在体内的分布情况是,蛋白质最多占菌丝体总有机锌的65.6%,其次是多糖有机锌占7.2%,核酸中有机锌最少,只占0.8%。此时蛋白锌和多糖锌分别是空白的2.2倍和1.1倍,而核酸锌却比空白少了33.9%。由此可见锌对蛋白质和多糖中有机锌合成的促进作用比较明显。
     (3)实验表明,低浓度锗对蛋白质、多糖、核酸中有机锗的含量有促进作用,高浓度锗对有机锗的形成有一定的抑制作用。当Ge02浓度为500μg/mL时,蛋白质、多糖、核酸中有机锗含量均达到最大,分别达到284.0μg/g、261.5μg/g和137.6μg/g,分别是空白组的4.4倍、5.4倍和8.3倍。蛋白锗和多糖锗所占菌丝体总有机锗比例相似。当Ge02浓度在100μg/mL时,蛋白质、多糖和核酸中的有机锗含量占菌丝体总有机锗的比例最高,分别达到39.8%,36.8%和18.2%。蛋白、多糖和核酸中有机锗之和在Ge02浓度为100μg/mL时,所占菌丝体总有机锗比例最大,达到94.8%。
     3、探讨了硒、锌、锗浓度对蛹拟青霉菌丝体的生物量和主要活性成分(胞内多糖、微量元素含量、虫草素、菌丝体SOD、蛋白质含量、氨基酸含量等)的影响。结果表明,硒、锌、锗在适宜浓度范围内,对菌丝体的主要活性成分有促进作用,浓度过大,对相关活性成分有抑制作用,不同的生物学指标所需的硒、锌、锗浓度各不相同。硒、锌、锗的适宜浓度分别为:10-20μg/mL,100μg/mL和200μg/mL-300μg/mL。
     4、抗氧化作用实验表明,富硒、锌、锗多糖均具有较好的清除超氧自由基、羟自由基和有机自由基DPPH的能力,硒、锌多糖清除自由基的能力与空白多糖相比具有显著差异。从清除自由基的种类来看,它们清除DPPH的能力最强,其次是羟自由基,最后是氧自由基。总体来看,硒多糖清除自由基能力最好,其次是锌多糖,最后是锗多糖。
     5、果蝇寿命实验表明,硒、锌、锗多糖对果蝇的半数死亡时间、平均寿命和最高寿命都有显著影响,对果蝇具有明显的延缓衰老作用。多糖对半数死亡时间的延长最好,而且是雄性好于雌性;硒多糖对最高寿命和平均寿命的影响无显著差异,锌、锗多糖对之的影响是最高寿命好于平均寿命,从性别差异来看,基本上是雌性优于雄性。硒多糖对于增加体弱果蝇的寿命效果显著,锌、锗多糖对于延长体魄强壮果蝇的寿命较好。
     6、小鼠负重游泳力竭实验、血乳酸含量和血尿素氮含量测定以及小鼠常压耐缺氧实验结果表明,富硒、锌、锗这三种蛹虫草菌丝体不同浓度对小鼠不同生理时期具有不同的耐疲劳能力。它们可以显著延长小鼠负重游泳力竭实验时间,具有明显减少小鼠在疲劳状态下体内产生乳酸的作用,对疲劳过程中产生的血尿素氮也有显著的减少或清除作用。然而,它们的耐缺氧效果不够明显。
     7、蚕豆微核实验表明,富硒、锌、锗多糖没有致突变作用,对抑制丝裂霉素和紫外线诱发的蚕豆根尖细胞微核的产生具有显著作用,多糖浓度与微核抑制率有明显的剂量-效应关系,微核抑制率随着多糖浓度的增加而增加。当多糖浓度为100μg/mL时,富硒、锌、锗多糖对丝裂霉素和紫外线诱发微核的抑制率分别为46.5%、37.2%、34.1%和53.3%、48.6%、43.8%。对微核的抑制效果是富硒多糖>富锌多糖>富锗多糖。
     8、体外抗肿瘤实验表明,硒多糖、锌多糖对肺腺癌A549细胞株生长的抑制作用与空白对照具有极显著差异,可以显著提高对肺腺癌A549细胞株生长的抑制作用,当多糖浓度为4 mg/mL时,硒多糖和锌多糖对肺腺癌A549细胞株生长的抑制率分别为54.2%和53.9%,分别比空白菌丝体多糖的抑制率提高38.8%和38.0%。
     硒、锌、锗多糖对鼻咽癌CNE-1细胞株生长的抑制作用与空白对照均具有极显著差异,当多糖在浓度为4 mg/mL时,硒、锌、锗多糖对鼻咽癌CNE-1细胞生长的抑制率分别为40.2%,32.1%和39.56%,分别比空白对照提高128.8%、82.4%和125.2%。硒、锌、锗多糖可以显著提高鼻咽癌CNE-1细胞株生长的抑制作用。
     9、小鼠急性经口毒理实验表明,蛹拟青霉富硒、锌、锗菌丝体属于无毒级产品。
     本研究表明,蛹拟青霉液体培养菌丝体具有较好的富集硒、锌、锗的能力,在适当的微量元素浓度时,富集微量元素后的菌丝体主要活性成分含量有明显提高,富硒、锌、锗菌丝体及微量元素有机物的抗氧化、抗疲劳、抗突变和抗肿瘤能力有显著增强,小鼠急性经口毒理实验和蚕豆根尖细胞微核实验表明,富硒、锌、锗蛹拟青霉菌丝体没有致突变作用,对小鼠无毒性。
In this study, anamorphic strains of Cordyceps militaris, Paecilomyces militaris were used as carrier for accumulation and transform of 3 trace elements, selenium, zinc and germanium, and enrichment and organic transform of the three trace elements, change of P. militaris mycelium composition, combination form of trace elements and P. militaris mycelium metabolites, distribution of trace elements in mycelium and bioactive and function of organic transformant were investigated for the development of healthy functional food and medical drugs of bioactivities and as an effective supplement of trace element.
     1. With biomass and enrichment capacity of Se, Zn and Ge as estimates,30 strains of P. militaris were screened. The result showed that different strains had different enrichment capability. The capacity was generally related with mycelium biomass and organic conversion rate of Se, Zn and Ge. Their mycelia were poorly tolerant to Se, tolerant to Zn and strongly tolerant to Ge. Se had the highest transformation rate, followed by Zn and Ge.
     (1) The strain PM14 showed the strongest Se-enrichment capacity. With sodium selenite concentration at 20μg/mL, the transformation rate of organic Se was up to 31.6%. At these concentration, the biomass was the highest up to 17.0 mg/mL.
     (2) Strains PM28 and PM14 showed strong Zn-enrichment capacity. With ZnSO4 concentration at 200μg/mL, the transformation rates of organic Se reached 6.65% and 5.78%, respectively. At these concentrations, the biomasses were the highest up to 19.5 mg/mL and 17.6 mg/mL, respectively.
     (3) Strains PM28 and PM14 showed the strongest Ge-enrichment capacity. With GeO2 concentration at 500μg/mL, the transformation rates of organic Ge reached 2.3% and 1.9%, respectively. At these concentrations, the biomasses were up to 15.1 mg/mL and 13.8 mg/mL, respectively.
     In general, because strain PM14 was chosen for further study due to its strong capacity of enrichment of Se, Zn and Ge.
     2. The distribution of the organic Se, Zn and Ge in the macromolecules such as protein, polysaccharide and nucleic acid was investigated. The results showed that protein, polysaccharide and nucleic acid were the main vectors and existing forms of organic Se, Zn and Ge. In addition, small portions of organic Se, Zn and Ge were combined with other substances. The content of organic Se, Zn and Ge was mainly in the protein, followed by polysaccharide and the nucleic acid. The concentration of Se, Zn and Ge had some influence on the content of the 3 elements. When the concentration was too high or too low, the content of the elements decreased.
     (1) As the sodium selenite concentration was at 20μg/mL in the culture medium, the organic Se content in protein, polysaccharide and nucleic acid reached the the peak,221.5μg/g,86.3μg/g and 0.6μg/g, respectively. When sodium selenite concentration was 10μg/mL, the protein-Se, polysaccharide-Se and nucleic acid-Se of the total mycelium took the highest proportion, up to 65.8%,28.1% and 0.2% of organic Se, respectively. They were 2.7,3.9 and 3.8 times of the corresponding controls. The whole organic Se content in the protein, polysaccharide and nucleic acid was 308.4μg/g when the sodium selenite concentration was 20μg/mL. As the sodium selenite concentration decreased to 10μg/g, of the total mycelium organic Se, protein Se, polysaccharide Se and nucleic acid Se showed the highest proportion, up to 94.1%.
     (2) Within the experiment range of Zn concentration, the organic Zn content in protein, polysaccharide and nucleic acid rose with increase of the Zn concentration in the culture medium, organic Zn proportion in protein and polysaccharide rose with increase of Zn concentration, while the proportion in nucleic acid delined, but with the change not obvious. When ZnSO4 concentration was 200μg/mL, the content of organic Zn was the highest. The distribution of the organic Zn in the mycelium was as following:the proportion of protein-Zn was the highest up to 65.6%, followed by polysaccharide Zn (7.2 %) and nucleic acid Zn (0.8%). The protein-Zn and polysaccharide-Zn were 2.2 and 1.1 times of the corresponding control, respectively, but nucleic acid Zn was decreased 33.9% compared with the control. This indicating that the Zn has promotive effect on synthesis of organic Zn in protein and polysaccharide.
     (3) Low concentration Ge had promotive effect on the organic Ge content in protein, polysaccharide and nucleic acid, while high concentration Ge had inhibitive effect on organic Ge formation. When GeO2 concentration was 500μg/mL, the organic Ge content in the protein, polysaccharide and nucleic acid reached the highest up to 284.0μg/g,261.5μg/g and 137.6μg/g, respectively. They were 4.4,5.4 and 8.3 folds of the control group. The proportion of the protein-Ge to total organic Ge in mycelium was similar with polysaccharide-Ge. When the GeO2 concentration was 100μg/mL, of the total organic Ge in the mycelium, protein-Ge, polysaccharide-Ge and nucleic acid-Ge showed highest proportion, which were 39.8%,36.8% and 18.2%, respectively. When GeO2 concentration was 100μg/mL, the proportion of the sum of protein-Ge, polysaccharide-Ge and nucleic acid-Ge to total organic Ge was the highest (94.8%).
     3. The effects of Se, Zn and Ge concentration on biomass and the main active ingredients (intracellular polysaccharide, trace elements content, cordycepin, mycelium SOD, protein content, amino acids content and so on) in mycelium were investigated. The results showed that the Se, Zn or Ge at an appropriate concentration had promotive effect on the main ingredients of mycelium. However, when the concentrations were excessive, they had inhibitive effect on the related ingredients. Different biological directors needed different Se, Zn and Ge concentrations. The most appropriate concentration of Se, Zn, and Ge were 10-20μg/mL,100μg/mL and 200μg/mL-300μg/mL, respectively.
     4. Antioxidation test indicated that Se, Zn or Ge-enriched polysaccharide had substantial function of scavenging superoxide radical, hydroxyl radical and DPPH. Compared with the control, the capability of scavenging radical was significantly stronger for Se-olysaccharide and Zn-polysaccharide. From the point of the radical type, the scavenging capability of DPPH was the highest, followed by those of hydroxyl radical and superoxide radical. Generally, for the capability of scavenging radical, Se-polysaccharide was the strongest, followed by Zn- and Ge-polysaccharide.
     5. The drosophila life-span experiment showed that the Se, Zn or Ge-polysaccharides all had significant effect on the half death time, average and maximum life span, suggesting obvious antisenescence effect. The polysaccharides dramatically elongated half death time, particularly to the males. Se-polysaccharide had no obvious effect on maximum and average life-span, but with Zn- and Ge-polysaccharide, the effect on maximum life-span was stronger than that on average life-span. In general, the effect on the males was more obvious than that on the females. The elongating effect on weak drosophila was significant with Se-polysaccharide, while that on healthy drosophila was with Zn- or Ge- polysaccharide.
     6. The exhaustive swimming experiments of mice and tests on contents of blood lactic acid and blood urea nitrogen, hypoxia-tolerance under normal air pressure showed that different concentrations of mycelium enriched with Se, Zn or Ge had different fatigue tolerance effect on the mice at different physiological periods. They significantly elongated exhaustive swimming time of the mice and showed the effects of reducing lactic acid production at the status of fatigue and reducing or removing blood urea nitrogen. However, the effect of hypoxia-tolerance was not obvious.
     7. Micronucleus test of broad bean showed that the polysaccharides enriched with Se, Zn or Ge had no mutagenic effects. Instead, they significantly inhibited the production of cell micronucleus in broad beans induced by mitomycin and ultraviolet radiation. Concentration of polysaccharide and the inhibition rate had obvious dose-effect relationship. The micronucleus inhibition rate rose with increase of the polysaccharide concentration. When concentration of the polysaccharide enriched with Se, Zn or Ge was at 100μg/mL, the inhibition rates induced by mitomycin and UV radiation were 46.5%, 37.2%,34.1% and 53.3%,48.6%,43.8%, respectively. The Se-polysaccharide had the highest inhibition, followed by Zn-polysaccharide and Ge-polysaccharide.
     8. In vitro antitumor experiments showed that Se-polysaccharide or Zn-polysaccharide had significant inhibition effect on lung cancer cell line, as comppared with control group. They significantly inhibited the growth of the lung cancer cell A594. When the polysaccharide concentration was 4 mg/mL, the inhibition rates of Se-polysaccharide and Zn-polysaccharide were 54.2% and 53.9%, respectively. Compared with the control of mycelium without the trace elements added, the inhibition rates increased by 38.8% and 38.0%, respectively.
     Se-polysaccharide, Zn-polysaccharide or Ge-polysaccharide all displayed significant inhibitionx on cell line CNE-1 of nasopharyngeal carcinoma, as compared to the control group. At concentration of 4 mg/mL, the inhibition rate of Se-polysaccharide, Zn-polysaccharide and Ge-polysaccharide were 40.2%,32.1% and 39.6%, respectively. As compared with the control of mycelium without the trace elements added, the inhibition rates increased by 128.8%,82.4% and 125.2%, respectively, suggesting strong inhibition of the growth of CNE-1.
     9. Acute oral toxicity test of mice showed that the mycelium of P. militaris enriched with Se, Zn and Ge belonged to nontoxic products.
     It is concluded that the mycelium of P. militaris produced in liquid culture enriched Se, Zn and Ge. At appropriate concentration of trace elements, the content of main active ingredients in the mycelium enriched with trace elements increased significantly and the antioxidant, antimutagenic and anti-tumor functions of the enriched mycelium rose significantly. The mycelium enriched with Se, Zn and Ge had no mutagenic effect and displayed no toxicity to mice.
引文
[1]邵力平.真菌分类学[M].北京:中国林业出版社,1984.
    [2]Li C R, Fan M Z, Huang B, et al. The genus Cordyceps and its allies from Anhui I [J]. Mycostema.2002,21(2):167-171.
    [3]Kirk P M, Cannon P F, David J C, et al. Ainsworth & Bisby's dictionary of the fungi(9th ed) [M]. Wallingford, Oxon, UK:CAB International,2001:1-655.
    [4]王建芳,杨春清.蛹虫草有效成分及药理作用研究进展[J].中医药信息.2005,22(5):30-32.
    [5]林群英,宋斌,李泰辉.蛹虫草研究进展[J].微生物学通报.2006,33(4):154-157.
    [6]梁宗琦.蛹虫草无性型——蛹草拟青霉的确证[J].食用菌学报.2001,8(4):28-32.
    [7]胡丰林,李增智.虫草及相关真菌的次生代谢产物及其活性[J].菌物学报.2007,26(4):607-632.
    [8]顾宇翔,王尊生,李素霞等.HPLC分析虫草发酵制品中多种核苷及碱基[J].药物分析杂志.2006,26(7):953-957.
    [9]周洪英,边银丙.蛹虫草虫草素高产原生质体融合子鉴定与筛选[J].食用菌学报.2007,14(2):65-70.
    [10]李艳玲,苏延友,苗苗等.泰山蛹虫草菌产胞外多糖发酵工艺的研究[J].泰山医学院学报.2007,28(12):942-944.
    [11]刘红锦,蒋宁,李建军等.蛹虫草多糖提取及纯化工艺研究[J].江西农业学报.2007,19(12):80-82.
    [12]朱姣,王德源,任燕.蛹虫草菌丝体液体培养条件研究[J].山东科学.2007,20(3):45-48.
    [13]顾宇翔,宋聿文,范立强等.虫草及其发酵制品抗氧化能力研究[J].中国中药杂志.2007,32(11):1028-1031.
    [14]代君君,范涛,吴传华等.人工栽培蛹虫草研究的概述[J].安徽农业科学.2007,35(18):5469-5471.
    [15]李翠新,张国庆,何永珍等.野生蛹虫草的分离与高产菌株的筛选[J].中国食用菌.2007,26(2):20-21.
    [16]岳春,姬鄂豫,黄达伟等.利用蛹虫草菌培养基生产保健酱油的研究[J].中国调味品.2007(03):34-37.
    [17]苏瑛,牟林.蛹虫草超氧化物歧化酶理化性质的研究[J].化学研究与应用.2007,19(3):281-283.
    [18]麻兵继,阮元,刘吉开.人工蛹虫草中核苷类化学成分的研究[J].中药材.2007,30(8):957-958.
    [19]郑婷婷.蛹虫草液体培养及其有效成分含量分析[D].西北大学,2006.
    [20]赵明文,吴燕娜,李玉祥等.蛹虫草产胞外多糖的液体优化培养条件研究[J].中国食用菌.2000,19(04):30-32.
    [21]赵彩云,安冬,张华彬.蛹虫草的栽培技术[J].上海蔬菜.2007(03):86.
    [22]张显科,刘文霞.蛹虫草化学成份测定[J].菌物系统.1997,16(1):78-80.
    [23]张秀娟,杨姗姗,刘佰华等.蛹虫草提取物对H22小鼠抗氧化能力的影响[J].时珍国医国药.2008,19(4):943-944.
    [24]苑贵华,吴国山.蛹虫草生物学特性初探[J].食用菌.1988(04):10-11.
    [25]郁利平,李华娟,李修义等.蛹虫草对癌诱变剂-MMS所致BALB/C小鼠脾细胞DNA损伤的拮抗作用[J].实用肿瘤学杂志.1994,8(2):7-8.
    [26]于溢,安家彦,马军香等.蛹虫草胞外多糖的提取和纯化[J].大连轻工业学院学报.2000(04):268-270.
    [27]夏敏,尹起范,温鲁等.高效液相色谱法测定蛹虫草中腺苷和虫草素[J].理化检验(化学分册).2007,43(5):386-388.
    [28]温鲁,夏敏,宋虎卫等.液体培养蛹虫草虫草素和腺苷的代谢量[J].微生物学通报.2005,32(3):91-94.
    [29]王蕾,于荣敏,张辉等.人工培养蛹虫草多糖的分离纯化及其结构的初步研究[J].中国生化药物杂志.2003,24(1):23-25.
    [30]汪宇,于荣敏,佟志清等.蛹虫草液体培养条件的优化及生长动力学考察[J].中国野生植物资源.2003,22(4):56-60.
    [31]孙科峰,石伟,刘丽等.蛹虫草子实体抗肿瘤作用的实验研究[J].辽宁中医杂志.2004,31(6):520-521.
    [32]梁月,张国珍,安沫平等.蛹虫草子囊孢子萌发及其后代群体培养性状观察[J].菌物学报.2005,24(4):525-532.
    [33]李祝,梁宗琦,刘爱英.培养基成分对提高虫草菌素含量的影响(英文)[J].菌物研究.2003,1(1):9-12.
    [34]李美娜,吴谢军,李春燕等.人工栽培蛹虫草退化现象的分子分析[J].菌物系统.2003,22(2):277-282.
    [35]李春如,黄勃,南圣姬等.具抗癌活性的RCEF0718虫草菌株的鉴定研究[J].莱阳农学院学报.2006,23(4):263-267.
    [36]车振明,王燕,周黎黎等.原生质体紫外诱变选育蛹虫草新菌种的研究[J].食品与发酵工业.2004,30(8):35-38.
    [37]车振明.蛹虫草复合运动保健饮料[J].食品工业.2003,24(2):22-23.
    [38]林群英,钟月金,李泰辉.虫草属生物学研究进展[J].食用菌学报.13(2):89-92.
    [39]钟石,计东风,陈诗等.蛹虫草研究进展[J].蚕桑通报.2007,37(4):6-10.
    [40]施英,吴娱明,廖森泰等.蛹虫草药理作用研究进展[J].广东蚕业.2006,40(3):43-45.
    [41]杨冠煌.中国昆虫资源利用和产业化[M].北京:中国农业出版社,1998.
    [42]李宗军,温琼英.蛹虫草无性型的研究1.分生抱子形态观察与发酵液的检测[J].湖南农业大学学报.1997,23(4):352-359.
    [43]王国栋.冬虫夏草类生态培植应用[M].北京:科学技术文献献出版社,1995:1-307.
    [44]薛建娥,冉翠香.蛹虫草人工栽培种的分离与复壮[J].食用菌.2002,24(2):17-18.
    [45]李楠,龚长虹.北冬虫夏草人工栽培技术研究[J].食用菌.2001,23(4):34-35.
    [46]李亚洁,王鹤,孟楠等.蛹虫草菌种复壮技术的研究[J].食用菌.2006,28(2):18-19.
    [47]李宗军,温琼英.蛹虫草无性型的研究Ⅰ.分生孢子形态观察与发酵液的检测[J].湖南农业大学学报.1997,23(4):352-354.
    [48]李春如,陈安徽,王蒙等.柱形虫草及其紫色野村菌无性型[J].菌物学报.2005,24(1):14-18.
    [49]梁宗琦.虫草的无性型及其确定[J].西南农业学报.1991,4(4):1-8.
    [50]李增智,黄勃,李春如等.确证冬虫夏草无性型的分子生物学证据Ⅰ.中国被毛抱与冬虫夏草之间的关系[J].菌物系统.2000,19(1):60-64.
    [51]黄勃.几种重要虫生真菌分子系统学研究[D].中国科技大学,2001.
    [52]左登平,李春如,黄勃等.台湾虫草及其无性型关系的分子确证[J].菌物学报.2008(02):224-229.
    [53]Chen Y Q, Wang L, Qu L H, et al. Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8S rDNA[J]. Biochemical Systematics and Ecology.2001(29):597-607.
    [54]Liu Z Y, Liang Z Q, Liu A Y, et al. Molecular evidence for eleomorph anamorph connections in Cordyceps based on ITS-5.8S rDNA sequence.[J]. The British Mycological Society.2002,106(9): 1100-1108.
    [55]姜泓,刘珂,孟舒等.人工蛹虫草子实体化学成分[J].药学学报.2000,35(09):663-668.
    [56]王刚,麻兵继,刘吉开.人工蛹虫草化学成分研究[J].中草药.2004,35(5):493-495.
    [57]黄蕾,许滨竑,苏颖等.虫草属真菌中主要活性成分含量的比较[J].上海交通大学学报(农业科学版).2008,26(1):74-77.
    [58]汪宇,于荣敏,汪晓宁.利用虫草属药用真菌提取分离核苷类物质的研究进展[J].中国药房.2004,15(1):53-54.
    [59]柴建萍,白兴荣,谢道燕.蛹虫草主要有效成分及其药理功效[J].云南农业科技.2003(04):22-23.
    [60]Cunningham K G, Manson W, Spring F S, et al. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris(Linn.) Link[J]. Nature.1950,166(4231):949.
    [61]Ahn Y J, Park S J, Lee S G, et al. Cordycepin:Selective growth inhibitor derived from liquid culture of Cordyceps militaris against clostridium[J]. Agriculture Food Chemistry.2000,48(7): 2744-2748.
    [62]Alan M S, Ronald P M. Antifungal activity of 3'-eoxyadenosine (cordycepin) [J]. Antimicrobial Agents and Chemotherapy.1998,42(6):1424-1427.
    [63]Wittek R, Koblet H, Menna A, et al. The effect of cordycepin on the multiplication of semliki forest virus and on polyadenylation of viral RNA[J]. Arch Virol.1977,54(1-2):95-106.
    [64]Kim J, Yeon S, Kim H, et al. Larvicidal activity against plutella xylostella of cordycepin from the fruiting body of Cordyceps militaris[J]. Pest Manag Science.2002,58(7):713-717.
    [65]宾文,于荣敏,白秀峰.人工培养蛹虫草多糖的研究[J].沈阳药科大学学报.2000,17(5):361-364.
    [66]盖新杰,张伸翼.蛹虫草胞外多糖的研究Ⅰ半乳甘露聚糖CM-1的纯化和结构研究[J].真菌学报.192,11(4):300-307.
    [67]江晓路,葛蓓蕾.北虫草菌Y3胞内与胞外多糖的免疫药理研究[J].青岛海洋大学学报.1998,28(2):192-197.
    [68]李连德,李增智,樊美珍.虫草多糖研究进展[J].安徽农业大学学报.2000,27(4):413-416.
    [69]肖建辉,蒋侬辉,梁宗琦.山地农业生物学报.2003,22(1):70-76.
    [70]孙纳新.蛹虫草多糖降血糖的机理研究[D].山东师范大学,2005.
    [71]王永敏.发酵蛹虫草胞外多糖的分离提取及对巨噬细胞的激活作用研究[D].济南:山东师范大学,2006.
    [72]朱凯.蛹虫草多糖分离纯化及其对大鼠肾小球系膜细胞增值的影响[D].长春:吉林大学,2007.
    [73]苏亮,楼凤昌,赵守训.虫草头孢菌丝体化学成分的研究[J].药学进展.2001,25(1):43-44.
    [74]江晓路,孙月.蛹虫草活性成分的测定[J].食用菌学报.1999,6(1):47-50.
    [75]王青牡,孙姝媛.我国液体培养药用虫草菌丝体的研究进展[J].食用菌.1997(3):2-3.
    [76]陈国卿,陈应山,李春燕.辽宁虫草研究[J].食用菌.1989(2):4。
    [77]付鸣佳.蛹虫草产类胡萝卜素的研究[J].食品与生物技术学报.2005,24(5):107-110.
    [78]马骁驰,黄健,刘丹等.蛹虫草培养液成分研究(Ⅰ)[J].沈阳药科大学学报.2003,20(4):255-257.
    [79]Jagger V D, Kredich N M, Guarino A J. Inhibition of ehrlich mouse ascites tumor growth by cordycepin[J]. Cancer Res.1961(21):216-220.
    [80]吴洪臻,江伟马,德恩.虫草素对小鼠S180瘤抑制作用研究[J].时珍国医国药.2000,11(10):873-874.
    [81]刘洁,陈正,杨旭等.蚕蛹虫草抗肿瘤作用的研究[J].白求恩医科大学学报.1992,18(5):423-425.
    [82]刘洁,杨世杰,杨旭等.蚕蛹虫草的抗肿瘤及激素样作用[J].中国中药杂志.1997,22(2):111-114.
    [83]孙艳,官杰,王琪.人工蛹虫草子实体对荷肝癌小鼠的抑瘤作用及提高NK,IL-2活性的实验研究[J].药物研究.2002,11(7):39-40.
    [84]孙科峰,石伟,刘丽等.蛹虫草子实体抗肿瘤作用的实验研究[J].辽宁中医杂志.2004,31(6):520-521.
    [85]刘凤安,郑效.蚕蛹虫草与冬虫夏草抗癌作用对比研究[J].白求恩医科大学学报.1995,21(1):39-40.
    [86]汤新强,杨彤,李传勋等.人工蛹虫草胞外多糖对卡铂抗癌和骨髓抑制作用的影响[J].中医药学刊.2004,22(3).
    [87]Kodama E N, Mccaffrey R P, Yusa K, et al. Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells [J]. Biochemistry Pharmacol.2000,59(3):273-281.
    [88]王蕾.人工培养蛹虫草多糖成分的研究[D].沈阳药科大学,2002.
    [89]郁利平,李华娟,李修义等.蛹虫草对癌诱变剂-MMS所致BALB/C小鼠脾细胞DNA损伤的拮抗作用[J].实用肿瘤学杂志.1994,8(2):7-8.
    [90]Price P J, Suk W A, Peters R L. Cordycepin inhibition of 3-methylcholanthrene-induced transformation in vitro[J]. Proceedings of the Society for Experimental Biology and Medicine. 1975,150:650-653.
    [91]杨企震,郭用庄.蛹虫草治疗癌症疗效初探[J].中成药.1995,17(5):22-23.
    [92]Koc Y, Urbano A G, Sweeney E B, et al. Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells[J]. Leukemia.1996,10(6):1019-1024.
    [93]Fuller B B, Lunsford J B, Iman D S. Alpha-melanocyte-stimulating hormone regulation of tyrosinase in cloudman S-91 mouse melanoma cell cultures[J]. Biological Chemisry.1987, 262(9):4024-4033.
    [94]江晓路,葛蓓蕾.北虫草菌Y3胞内与胞外多糖的免疫药理研究[J].青岛海洋大学学报.1998,28(2):192-198.
    [95]李信,许雷.蛹虫草产生的胞外多糖及其理化性能和抗氧化活性的初步研究[J].微生物学杂志.1997,17(3):13-17.
    [96]王艳珍.安络小皮伞、蛹虫草及混菌共酵与多糖生物活性的比较研究[D].吉林大学,2007.
    [97]沈齐英.北虫草对四氯化碳诱导的脂质过氧化的影响[J].天然产物研究与开发.2002,14(2):22-25.
    [98]沈齐英,沈秋英.北虫草抗氧自由基和羟自由基作用的研究[J].广西植物.2001,21(3):252-254.
    [99]孟兆丽,朱凯,冯云等.蛹虫草多糖抑菌及抗氧化作用研究[J].食品研究与开发.2008,29(9):31-33.
    [100]陈畅,罗珊珊,孙迎节等.3种虫草抗氧化活性的研究[J].中国生化药物杂志.2004,25(4):212-214.
    [101]顾宇翔,宋聿文,范立强等.虫草减轻自由基引起的细胞氧化损伤[J].食品科学.2008,29(2):387-390.
    [102]陈宏伟,朱蕴兰,邵颖等.蛹虫草乙醇分级多糖生理功能研究[J].食品与发酵工业.2008,34(9):16-19.
    [103]秦建春,李晓明,张鞍灵等.蛹虫草发酵液抗菌活性初步研究[J].西北植物学报.2006,26(2):402-406.
    [104]宾文,宋丽艳,于荣敏等.人工培养蛹虫草多糖的抗炎及免疫作用研究[J].时珍国医国药.2003,14(1):1-2.
    [105]陈桂宝,罗梅初,刘实晶等.蛹虫草的药理作用研究[J].中草药.1997,28(07):415-417.
    [106]徐廷万,王丽波,段文健等.人工蛹虫草胞外多糖对受抑制的免疫功能的影响及抗疲劳作用[J].中药药理与临床.2002,18(6):17-18.
    [107]沈齐英,沈秋英.北虫草对正己烷所致肝损伤的保护作用[J].中国工业医学杂志.2002,15(5):284-285.
    [108]刘洁,杨旭,陈亚等.蚕蛹虫草镇静及性激素作用的研究[J].白求恩医科大学学报.1999,20(1):14-16.
    [109]徐维蓉,王奕,叶其明等.北冬虫夏草子实体对大鼠睾丸功能的影响[J].上海中医药大学学报.2001,15(4):50-54.
    [110]冯云.蛹虫草抗慢性肾衰有效成分及其分离方法的研究[D].吉林大学,2005.
    [111]侯阿澧.蛹虫草多糖的分离纯化及其对慢性肾衰药理作用的研究[D].吉林大学,2008.
    [112]戴瑛,张斌,周勇等.蛹虫草提取物对内毒素引起小鼠急性肺损伤的保护作用[J].中国临床药理学与治疗学.2004,9(4):386-388.
    [113]陈敬民,李友娣,洪庚辛.蛹虫草的镇静催眠作用[J].中药药理与临床.1997,13(6):44-45.
    [114]管代义.北虫草抗氧化作用的实验研究[J].中国药学杂志.1993,28(8):472-474.
    [115]邹奎昌.人工栽培北冬虫夏草对大鼠脑垂体促性腺激素细胞影响的超微结构研究[J].上海中医药杂志.2003,37(7):43-45.
    [116]张显科,刘文霞.不同培养料栽培蛹虫草试验研究[J].中国食用菌.1997,16(2):21-22.
    [117]何次平.蛹虫草米饭栽培工艺要领[J].食用菌.2003(S1):35-36.
    [118]蒋本律,徐银根.蓖麻蚕蛹蛹虫草人工培养研究[J].中国野生植物资源.1996(02):12-13.
    [119]王建芳,杨春清.蛹虫草人工栽培及产品开发研究概况[J].时珍国医国药.2006,17(2):268-269.
    [120]于淼,康凯.蛹虫草的栽培方法[J].中国农村科技.2003(10):12.
    [121]温鲁,夏敏,葛宜和等.以虫草素和腺苷含量为指标优化蛹虫草人工栽培[J].江苏农业学报.2005,21(4):359-363.
    [122]李维光,苏凤岩,黄荣年.北冬虫夏草菌丝体吨级液体深层发酵及生理活性物质的研究.[J].微生物学杂志.1997,17(1):32-37.
    [123]傅岚,黄红英,陈作红.古尼虫草液体深层发酵条件的研究[J].湖南师范大学自然科学学报.2004,27(2):71-74.
    [124]肖建辉,刘金伟,刘祖林等.江西虫草液体深层培养条件优化[J].食用菌学报.2004,11(1):26-31.
    [125]陈晋安,黄浩,郑忠辉等.蛹虫草液体发酵条件的研究[J].集美大学学报:自然科学版.2001,6(3):219-223.
    [126]Mao X B, Eksriwongb T, Chauvatcharins, et al. Optimization of carbon source and carbo/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris[J]. Process Biochemistry.2005,40:1667-1672.
    [127]Li Z, Liang Z Q, Liu A Y. Effect of the components of medium on increasing the content of cordycepin. [J]. Journal of Fungal Research.2003,1(1):9-12.
    [128]侯友松,周广麒,于玲等.麦芽汁培养基中蛹虫草液体发酵的研究[J].大连轻工业学院学报.2000,19(04):271-273.
    [129]邵爱娟,戴如琴,兰红丽.虫草菌丝的生理研究[J].中国中医药科技.1994,1(15):22-23.
    [130]李宗军,温琼英.蛹虫草无性型的研究Ⅱ液体发酵培养菌丝体及胞外多糖的提制[J].湖南农业大学学报.1998,24(5):375-386.
    [131]李信,许雷,裴鑫德.蛹虫草菌丝体培养基的优化和发酵条件的研究[J].核农学报.1998,12(1):35-40.
    [132]Park J P, Kim S W, Hwang H J, et al. Optimization of submerged culture conditions for the mycelial growth and exobiopolymer production by Cordyceps militaris[J]. Letters in Applied Microbiology.2001,33(1):76-81.
    [133]Kim S W, Hwang H J, Xu C P, et al. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738[J]. Journal of Applied Microbiology.2003(94):120-126.
    [134]Kim H O, Yun J W. A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures [J]. Journal of Applied Microbiology.2005(99):728-738.
    [135]王飞,陈柳萌,肖婧等.北虫草液体发酵产多糖培养基优化研究[J].江西农业学报.2007,19(5):86-87.
    [136]王飞,刘霞,陈明辉.响应面法优化北虫草产多糖液体发酵培养基[J].安徽农业科学.2007,35(8):2218-2224.
    [137]张红霞,吴畏,陈伟等.北冬虫夏草发酵液中虫草素和腺苷含量的HPLC分析[J].上海农业学报.2005,21(4):53-56.
    [138]李乐农,张季平,江涛等.富硒螺旋藻中含硒藻蓝蛋白的纯化、结晶及初步晶体学研究[J].中国科学(C辑).2000,30(5):449-455.
    [139]朱善良.硒的生物学作用及其研究进展[J].生物学通报.2004,39(6):6-8.
    [140]刘建华,田成,吴永尧.微量元素硒的微生物转化研究进展[J].湖北民族学院学报(自然科学版).2006,24(3):288-291.
    [141]Rotruck J T, Pop A L, Ganther H E, et al. Selenium:biochemical role as a component of glutathione peroxidase[J]. Science.1973:588-590.
    [142]Florhe L, Gunzler W A, Shack H H. Glutathione perocidase:a seleno enzyme[J]. FEBS Letter. 1973,32:132-134.
    [143]别同玉,许加生.硒与肿瘤[J].微量元素与健康研究.2002,19(1):64-66.
    [144]张俊杰.硒的生理功能及富硒强化食品的研究进展[J].微量元素与健康研究.2006,23(3):58-60.
    [145]Walsh D M, Kennedy D G, Goodall E A, et al. Antioxidant enzyme activity in the muscles of calves depleted of vitamin E or selenium or both[J]. Br. J. Nutr.1993,70:621-630.
    [146]Yiin S J, Chern C L, Sheu J Y, et al. Cadmium induced lipid peroxidation in rat testes and protection by selenium[J]. Biological Material.1999,12:353-359.
    [147]Rayman M P. The importance of selenium to human health[J]. The Lancet.2000,356(9225): 233-241.
    [148]Arthur J R, Mckenzie R C, Beckett. Selenium in the immune system[J]. The Journal of Nutrition. 2003,133(5S):1457-1459.
    [149]Anonymous. Selenium & colon cancer[J]. Nutrition Action Health Letter.2005,32(4):9.
    [150]颜雪明,洪敏,张华等.微量元素硒及有机硒药物研究进展[J].广东微量元素科学.2003,10(9):1-10.
    [151]王新风,戴传超,田林双等.液体培养杏鲍菇富集硒的条件与机理研究[J].食品科学.2005,26(11):149.
    [152]于克学.冬虫夏草液体发酵富集硒、锌、锗研究[D].山东农业大学,2003.
    [153]李娟.泰山羊肚菌液体培养条件优化及富铁、锌、硒研究初探[D].山东农业大学,2005.
    [154]张建辉.冬虫夏草、蛹虫草、姬松茸的液体培养条件及其富锌、硒的研究[D].东北农业大学,2003.
    [155]刘威.富硒香菇与富硒黑木耳有效成分的研究[D].黑龙江大学,2003.
    [156]赵镭.灵芝生物富硒及富硒灵芝硒蛋白的分离纯化和抗氧化性研究[D].中国农业大学,2004.
    [157]胡敏,谭新国.富硒虫草菌丝体的发酵培养及其生物学功能研究[J].湖北大学学报(自然科学版).2006,28(3):309-312.
    [158]钟鸣,王丽贺.蛹虫草中硒的赋存形态及蛋白硒分析[J].广东微量元素科学.2008,15(3):35-40.
    [159]姚敏.富硒灵芝中硒含量分布和赋存形态研究[J].上海大学学报.1997,3(5):485-491.
    [160]谭新国,何昌义,陈向东.富硒虫草菌丝体的发酵生产和功能研究[J].武汉生物工程学院学报.2005,1(1):31-34.
    [161]于克学,贾乐,王汉忠.冬虫夏草深层发酵富硒初步研究[J].食品研究与开发.2003,24(4):3-5.
    [162]左志宇,王泉,宋晓涛等.蛹虫草菌丝体循环富硒法的建立及其硒多糖抑癌作用初探[J].食用菌.2008(3):9-11.
    [163]于田田,钱和.生物富硒对蛹虫草菌丝体化学成分的影响[J].食品科技.2006,31(1):133-135.
    [164]胡昆,钟鸣,刘玉东等.硒对蛹虫草营养成分及活性成分的影响[J].微量元素与健康研究.2006,23(1):6-8.
    [165]王志武,孙建钢,孙锐锋等.微量元素锌的生物学功能及其应用进展[J].饲料研究.2005(8):12-16.
    [166]张春善.动物必需微量元素营养学[M].北京:高等教育出版社,2007.
    [167]孙希雯,李奇庚.金针菇富锌条件及锌结合形态的研究[J].微生物学报.1997,37(1):40-46.
    [168]金萍.茶薪菇富锌深层培养条件研究[J].食用菌.2003,25(5):5-7.
    [169]董学卫,朱启忠,郭锦等.大绿菇菌丝体富锌能力的研究[J].食品与机械.2007,23(5):17-20.
    [170]张琪林,王红.大球盖菇液体培养富锌特性研究[J].农业与技术.2007,27(5):58-59.
    [171]贾乐,于克学,姚良同等.富锌冬虫夏草菌丝体有机化程度及氨基酸含量分析[J].食品与发酵工业.2004,30(11):95-98.
    [172]张笑然,丁重阳,章克昌.富锌姬松茸胞内多糖的分离及体内抑制小鼠肝癌的研究[J].食品与生物技术学报.2007,26(2):43-48.
    [173]莫宝庆.富锌金针菇中锌生物利用的研究[D].南京医学院,1989.
    [174]张水成,王德芝.锌离子对香菇生育的影响[J].河南农业科学.2000(8):23-24.
    [175]刘坤,丁重阳,王玉红等.三种药用真菌灵芝、灰树花和姬松茸富锌能力的初步研究[J].食品研究与开发.2005,26(5):29-33.
    [176]孙希雯,李奇庚.金针菇深层发酵富锌培养条件[J].微生物学报.1997,37(1):40-46.
    [177]魏华,谢俊杰,傅金衡.金针菇培养及产品研制[J].南昌大学学报.1995,19(4):385-389.
    [178]钟恒,刘振声.锌等矿质元素在草菇子实体内的富集和分布的研究[J].食用菌学报.1995,2(1):26-31.
    [179]邹祥,章克昌.富锌培养对姬松茸生长代谢的影响[J].无锡轻工大学学报.2003,22(2):48-52.
    [180]叶明,陈辉,章建国等.香菇富锌及其培养条件优化[J].食品科学.2006,27(12):572-576.
    [181]黄仁术,李耀亭.液体培养富锌金针菇锌源与锌添加量的研究[J].食品与发酵工业.2007,33(12):48-51.
    [182]王红庚.微量元素锗在灵芝体内的富集特性及其分布规律的研究[D].河北农业大学,2001.
    [183]陆龙根,钱亚玲.灵芝富锗栽培实验[J].中国食用菌.1993,12(2):20-21.
    [184]陈石良,许正宏,陶文沂等.灰树花富锗培养研究[J].无锡轻工大学学报.2000,19(3):248-251.
    [185]李秋蕊.富锗羊肚菌菌丝体深层发酵的研究[D].吉林大学,2005.
    [186]车振明.人工培育的蛹虫草纯子实体食用安全性研究[J].食用菌.2003,25(3):45-46.
    [187]车振明.利用人工蛹虫草培养基酿制功能型酱油的研究[J].食品科学.2003,24(3):67-69.
    [188]李楠,龚长虹,张宏.北冬虫夏草人工栽培技术研究及保健品研制[J].长春师范学院学报.2001,20(1):36-37.
    [189]张雁,徐志宏,梁洁珍.新型虫草保健软糖的研制[J].食品工业.2003(6):10-11.
    [190]刘桂君,文华安.新产品虫草酸奶的研制[J].2007,10(12):20-22.
    [191]张雁,魏振承,池建伟.虫草营养保健果冻的工艺研究[J].中国食用菌.,23(1):42-43.
    [192]赵丰丽,林严,陈睿等.北冬虫夏草保健茶饮料的研制[J].食品工业科技.2007,28(1):132-134.
    [193]王华丽,徐海蒂,王晶.虫草枸杞葡萄酒的研制[J].食品工业科技.2005,26(7):126-128.
    [194]赵丰丽,林严.北冬虫夏草保健酱油的研制[J].中国酿造.2006(9):75-77.
    [195]王雅玲,代玲玲.虫草功能食品开发的现状及前景[J].食用菌.2008(3):1-2.
    [196]周小理,陈树俊,刘诚.虫草黄梨汁增强机体免疫调节功能的研究[J].食品科学.2002,23(7):103-108.
    [197]施忠,沈均,刘云芳.虫草灵口服液的制备与临床应用[J].交通医学.2000,14(6):703-704.
    [198]王莉,冉翠香.虫草柿叶保健饮料的研制[J].山西食品工业.2000(4):15-16.
    [199]董玉新,李永娥.保健型虫草蜜汁饮料的研制[J].食品及农副产品加工.1998(2):42.
    [200]林少娟.蛹虫草膏的研制初报[J].食用菌.2004,26(3):44-45.
    [201]赵金星.蛹灵保健饮料的制作[J].食用菌.1995(6):38-39.
    [202]王芮东.冬虫夏草金银花山楂果茶的研制[J].山东食品科技.2004(4):28-30.
    [203]包春杰,李波,王利兵等.冬虫夏草菌丝体冻干口服制品的研制[J].第四军医大学学报.2000,21(4):436.
    [204]林松毅.复方中药功能液抗疲劳和耐缺氧作用功能学评价的方法研究[D].长春:吉林大学,2005.
    [205]卫生部法监司.保健食品功能学评价程序和检验方法[S].北京,1996.
    [206]李宜明,沈业寿,王清等.抗肿瘤药物的筛选方法[J].安徽大学学报.2005,29(1):90-96.
    [207]中华人民共和国卫生部.GB 15193.1-94.食品安全性毒理学评价程序和方法[S].北京:中华人民共和国国家标准化委员会,2003.
    [208]张建辉.冬虫夏草、蛹虫草、姬松茸的液体培养条件及富集锌硒研究[D].东北农大,2003.
    [209]于田田,王乐,钱和.蛹虫草富硒研究[J].食品研究与开发.2006,27(3):19-21.
    [210]雷泓志,张进武,万益琴.金针菇富锌深层培养的研究[J].食用菌.2001(5):11.
    [211]刘国湘,胡文祥.有机锗抗癌药物研究进展[J].中国药物化学杂志.1993,3(3):216-221.
    [212]于颖,冯晓舟.石墨炉原子吸收光谱法测定银杏中锗[J].理化检验-化学分册.2008,44(6):275.
    [213]王志高,温鲁,袁小转等.加硒对蛹虫草主要活性成分含量的影响[J].安徽农业科学.2007,35(29):9293-9294.
    [214]贲松彬,黄子琪,王莹等.蛹虫草富硒条件优化及硒对其中主要活性成分的影响[J].食品科学.2009,30(17):266-269.
    [215]于田田.富硒蛹虫草液体深层发酵研究[D].江南大学,2006.
    [216]陈宏伟,陈小莉,朱蕴兰.虫草液体深层发酵富硒的研究[J].食用菌.2005(5):10-12.
    [217]贺立东.分光光度法测定富硒酵母中有机硒的含量[J].食品工业科技.2000,21(5):67-68.
    [218]张济新,孙海森,朱明华.仪器分析实验[M].北京:高等教育出版社,1992.
    [219]Laurence M C, John L M. An improved method for determination of selenium in biological material[J]. Anal Chemistry.1965(3):137.
    [220]中华人民共和国卫生部.GB/T 5009.124-2003.食品中氨基酸的测定[S].北京:中国国家标准化管理委员会,2003.
    [221]徐凌洁,刘迪成,李淑芳.虫草锌对小鼠免疫功能影响[J].贵阳医学院学报.2005,2:130-132.
    [222]周祥,章克昌.富锌培养对姬松茸生长代谢的影响[J].无锡轻工业大学学报.2003,22(2):48-52.
    [223]田娟,何佳,赵启美.锌对金针菇生长的影响及子实体的富集作用[J].中国食用菌.2001(2):19-20.
    [224]张建辉.冬虫夏草、蛹虫草、姬松茸的液体培养条件及其富锌、硒的研究[D].东北农业大学,2003.
    [225]于颖,冯晓舟.石墨炉原子吸收光谱法测定银杏中锗[J].理化检验-化学分册.2008,44(6):275.
    [226]党建章,孙海燕,许柏球等.富锗灵芝菌丝体氨基酸及超氧化物歧化酶含量的测定[J].时珍 国医国药.2005,16(12):1221-1222.
    [227]赵镭,高海燕,吴继红等.富硒灵芝不同提取物清除自由基活性的ESR研究[J].中国食品学报.2007,7(2):11-]6.
    [228]南蓬,龚复俊,陈春英等.用ESR技术研究含硒蛋白抗羟基自由基作用的活性[J].武汉植物学研究.1999,17(1):87-90.
    [229]陈国静,焦志勤,姚月梅.香菇硒多糖抗氧化作用的研究[J].医药产业资讯.2006,3(17):9-10.
    [230]孙中涛,王汉忠,孙凤鸣等.硒在香菇体内的生物转化及硒蛋白的生物活性[J].食品与发酵工业.2003,29(8):57-60.
    [231]王艳预,吴海歌,高大彬等.硒多糖的研究进展[J].化学与生物工程.2008,25(2):7-10.
    [232]王代刚.酵母菌富集微量元素锌和酵母锌生物学效价的研究[D].四川农业大学,2004.
    [233]孔涛,曲韵笙,朱连勤.微量元素锗的生物学功能[J].微量元素与健康研究.2007,24(1):59-60.
    [234]熊正英,华杨.锗的生物学功能及其在运动中的应用[J].2008(4):85-88.
    [235]罗建光.液体发酵条件对虫草(Cordyceps sinensis)菌丝体有效成分、免疫及抗氧化活性的影响[D].上海师范大学,2007.
    [236]陈宏伟,陈安徽,邵颖等.蛹虫草胞外锌多糖抗氧化能力的研究[J].食品与发酵工业.2009,35(06):54-58.
    [237]李春如,宗文明,杨成等.细脚拟青霉不同菌株清除DPPH自由基活性研究[J].生物学杂志.2006,23(2):28-31.
    [238]胡丰林.安徽省一些用材树种鲜叶提取物清除DPPH自由基的活性初探[J]。安徽农业大学学报.2004,31(2):197-202.
    [239]王菊凤,李鹄鸣.蛹虫草多糖对果蝇寿命影响的研究[J].中国野生植物资源.2008,27(3):38-42.
    [240]Kirkwood T B, Austad S N. Why do we age? [J]. Nature.2000,408(9):233-238.
    [241]王秀琴,黄淑峰,李宗芸.硫酸钵对果蝇寿命及繁殖力的影响[J].环境与职业医学.2007,24(6):614-616.
    [242]5种珍稀食药用真菌活性提取物对果蝇寿命影响的研究[J].生命科学研究.2006,10(2):166-171.
    [243]席昭雁,赵起华,向前等.蝙蝠蛾拟青霉菌丝体抗疲劳功能实验研究[J].中国自然医学杂志.2006:143-145.
    [244]陈宏伟,朱蕴兰,邵颖等.蛹虫草深层发酵富集微量元素锌的研究[J].安徽农业科学.2007,35(26):8193-8194.
    [245]于海玲,李华伟,李雪花等.复方黄芪多糖对小鼠的抗疲劳和耐缺氧作用[J].延边大学医学 学报.2009,32(3):160-162.
    [246]王文燕,邢晓冬,王婧婧等.北五味子提取液对小鼠耐缺氧及抗疲劳能力的影响[J].中国实用医药.2009,4(12):159.
    [247]刘冬,姚文兵,张健等.富锗金针菇多糖对小鼠肝脏的保护作用[J].中国药科大学学报.2006,37(6):565-568.
    [248]涛孔,曲韵笙,朱连勤.微量元素锗的生物学功能[J].2007,24(1):59-60.
    [249]韩善华.蚕豆微核试验及其在重金属遗传毒害中的应用[J].中国微生态学杂志.2008,20(1):93-94.
    [250]黄幸纡,陈星若.环境化学物致突变致畸致癌试验方法[M].杭州:浙江科技出版社,1985.
    [251]陈光荣,金波,李明等.利用蚕豆根尖的微核试验检测农药和诱变剂损伤[J].华中师院学报.1983,4:69-74.
    [252]邢卫平,赵恒奎,姜宗荣.微核及微核试验在遗传毒理学中的应用[J].安徽预防医学杂志.2002,8(5):317-320.
    [253]中华人民共和国卫生部药政局.新药(西药)临床研究指导原则汇编(毒理学)[M].1993.
    [254]Sofuni T. Japanese guidelines for mutagenicity testing[J]. Environ Mole Mutagen.1993,21(1): 2-7.
    [255]Angela E. Mutagenicity test schemes and guidelines:U S EPA office of pollution prevention and toxics and office of pesticide programs[J]. Environ Mole Mutagen.1993,21(1):38-45.
    [256]朱蕴兰,邵颖,陈安徽等.蛹虫草多糖对紫外线诱发蚕豆根尖细胞微核的影响[J].食品科学.2009,27(01):231-234.
    [257]陈宏伟,朱蕴兰,王慧春等.虫草多糖对丝裂霉素诱发蚕豆根尖细胞微核的影响[J].食品科学.2006,27(1):231-234.
    [258]Reese E T, Mandels M. Enzymatic hydrolysis of cellulose and its derivatives[M]. New York: Academic Press,1963:139.
    [259]纪朋艳,罗速,崔新颖等.中药蛹虫草的抗肿瘤活性及机制研究[J].北华大学学报:自然科学版.2005,6(4):324-329.
    [260]尚德静,李庆伟,崔乔等.灵芝硒多糖SeGLP-1抗氧化与抗肿瘤作用的研究[J].营养学报.2002,24(3):249-251.
    [261]王雷.硒抗肿瘤作用机制研究及前列腺癌小鼠荷瘤模型的建立[D].中国农业大学,2005.
    [262]张煜,王宝贵,张桂英等.有机锗多酸衍生物的抗肿瘤作用及其机制[J].癌变·畸变突变.2004,16(1):39-42.
    [263]朱功华,兰宁,徐朝斌.硒蛋白抑制肿瘤的动物试验[J].基层医学论坛.2006,10(3):195-196.
    [264]陈彻,楚惠媛,郝军等.富硒姬松茸提取物硒蛋白多糖对荷瘤小鼠的影响[J].中药材.2006,29(11):1215-1217.
    [265]崔侨.灵芝硒多糖的分离纯化及其抗肿瘤、诱导肿瘤细胞凋亡作用的研究[D].辽宁师范大学,2004.
    [266]刘坤.姬松茸深层发酵富锌工艺的研究[D].江南大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700