用户名: 密码: 验证码:
祖厉河流域水—土盐化及苦咸水淡化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界范围内每分钟有lOha的土地遭到破坏,其中有3ha是由于盐化造成的。全国每年因盐化废弃的土地约25万hm2,农林牧用地受盐化危害的土地面积有3630万hm2。中国土地盐化造成的净经济损失年平均为129亿元,盐化土地综合治理共需投资约660亿元。地球的面积是14亿km2,97.5%的面积是盐水,只有一少部分是可以直接应用的。水资源和土地资源是社会发展的两种基本资源,是国家的基础,经济的根基。所以,防止水、土的进一步盐化,治理改良现有的水、土盐化是势在必行的一项长期工程。
     祖厉河流域水、土盐化问题,已经严重制约着本地区的发展,影响人们的正常生产和生活。祖厉河多年平均含盐为7264mg/L,居全国之冠,是世界平均值(100mg/L)的73倍。祖厉河流域冬季多年温度为0℃--11.9℃范围内,平均日最低气温≤0℃的天数150-200天,有着丰富的冷能资源,可为冷冻法淡化本地区的咸水提供能源。本文研究分析祖厉河流域的水、土的盐化成因及咸水的冷冻淡化研究,可为本地区水、土盐化防治提供依据,利用本地区的自然条件淡化盐水资源,丰富本地区供水需求。
     论文的主要研究内容及成果如下:
     (1)搜集祖厉河流域的气候、水文、地形地貌、地质构造、人文等基础资料,开展流域内水、上的盐化调查,选取流域内具有代表性地点进行取样(水样,上样)分析,通过实验研究水、土的盐分变化规律。从气候、地质、地形地貌等自然因素和人为因素的角度探讨祖厉河流域水、土盐化的成因。祖厉河流域内水、上盐化是水、上、盐的耦合过程。流域内母岩富含盐分,风化形成的上体中必然含有大量的盐分,在长期的蒸发量大于降水量的条件下,使土体的盐分富集到土壤表层,引起土壤的盐化;流域内的水体含盐量高,耕地长期灌溉这种咸水,导致土壤次生盐化。流域地处干旱区,降雨少而且多以暴雨形式出现,致使流域内水土流失特别严重,表面盐化的土壤被侵蚀冲刷汇流到水中,土壤的盐分溶解汇集到水中,造成流域内的水不断盐化。流域内人类活动是造成水土次生盐化的主要因素。
     (2)分析咸水淡化方法的优劣性,冷冻法净化咸水受多种因素的影响,本文主要分析冷冻过程中各种影响因素与脱盐的关系,通过研究,随着冷冻温度的降低和咸水矿化度的增加,脱盐率呈下降趋势;种冰对脱盐率没有明显影响,而种冰能促使水样结晶,抑制水样的过冷现象;水样初始温度对脱盐效果影响不大;随着冷冻容器表面积的增加,脱盐率呈下降趋势。
     (3)在冷冻法净化苦咸水过程中,由于人为原因或是各种影响因素的作用都会导致冰晶中含有一定量的盐分,导致冰晶质量不高,甚至达不到淡化目的。通过研究,冰晶中的盐分都是以盐泡的形式存在冰晶当中,为了进一步净化冰晶,本文采用碎冰离心的方式对冰晶做进一步处理。经研究发现,碎冰离心打破了冰晶中盐泡的屏障,通过离心脱水的方式使夹在冰晶中的盐分被很好地分离出来,从根本上达到脱盐的目的。采用碎冰离心可以弥补冷冻过程中自然因素和人为因素导致高浓度水样脱盐效果差的不足,而且此种方法对冰晶的脱盐效果是随着冰晶浓度的增高而增高。
There is about 10ha of land which is spoiled every minute all around the world, within which about 3ha is due to salinization. In China, about 2.5×105 hm2 land was spoiled each year, and about 3.63×108 hm2 of land which is used for grazing、forest and agriculture are suffering salinization. The net economic loss caused by salinization is 129 million every year in China, and 66 billion yuan are invested for the restoration of the salinized soil.97.5% of the of the earth's surface is covered with salt water, only a small part can be drunk directly. Water and land are two basic resources for social development. Therefore, to prevent the continuing salinization of water and soil, long-term restoration work is need.
     Zuli River Basin is suffering severe water and soil salinization, which greatly restrict the development of the region. The average salt concentration of Zuli River for many years is 7264mg/L, which is the maximum value in the nation, and is 73 times as high as the world average level (100mg/l). In the present study, the reason of the water and soil salinization was analyzed, and we also conducted study about purifying of the brackish water using the freezing method. The study aimed to help control the water and soil salinization in this area by taking advantage of the natural conditions, purify the brackish water, thus improve the clean water supply.
     The main study contents and results are as follows:
     (1) The main study contents includes:collecting information of climate, hydrology, geomorphology, geological structure and culture in Zuli River Basin; investigating the situation of water and soil salinization; selecting representative samples (water and soil) sites in the basin; analyzing the changing rules of water and soil; finding out the reason of water and soil salination based on the climate, geology, topography and other natural factors and human factors in Zuli River Basin. The water and soil salinization is a process of coupling of water, soil and salt. The rock is rich in salt, so the soil that originate from the rock contains a lot of salt.Under the situation of higher evaporation and lower rainfall, the salt of soil can be concentrated in the surface soil, leading to soil salinization. Because the water has higher salt concentration in the basin, long-term irrigation with the water also lead to soil salinization. Zuli river basin is located in arid areas, lower rainfall, most of which is in the form of heavy rain, would cause serious soil erosion. The surface soil can be washed into the water, thus cause the water salinization in the basin.
     (2) In the present study, the advantages and disadvantages of desalination methods were analyzed. The freezing process was affected by many factors. In the study, the relationship between the factors and desalination rate in the process of freezing was analyzed. The results showed that with the decrease of freezing temperature and increase of the concentration, the desalination rate reduced. The seed ice had no effect on the desalination rate, but it could generate extra ice crystals, resulting in no super-cooling. The influence of initial temperature on the quality of ice was not notable. With the increase of the surface area of the freezing containers, the desalination rate decreased.
     (3) Because of both the human and other factors, salt can be entrapped into ice crystals in the freezing process, resulting in low quality of ice crystals. It was found out that the salt was trapped in ice in the form of brine pockets. To further purify the ice crystals, the method of crushing ice and centrifugation was introduced. The result showed that the method can further improved the quality of ice by breaking the "ice-salt pocket" and releasing the brine. On the other hand, when the concentration of ice crystals was higher, the desalination rate was higher.
引文
[1]J D Rhoddes, Kandiah and A M Mashali. The use of saline waters for production[J]. FAO irrigation and drainage.1984, (48):42-43.
    [2]张启海,周玉香.微咸水灌溉发展的基础与措施探讨[J].中国农业水利水电,1998,(10):12-13.
    [3]刘兆昌,李广贺,朱琨.供水水文地质[M].北京:中国建筑工业出版社,2002:57-67.
    [4]E Bresler, B L McNeal, Carter. Saline and sodic soils. principles-dynamics-modeling[M], Berlin Heidelberg New York:Springer-Verlag,1982.
    [5]Hinrich L Bohn, Brian L McNeal, George A O Connor. Soil chemistry, second edition[M]. A wiley-interscience publication, John wiley& sons, New York, Chichester, Brisbane, Toronto, Singapore,1985:234-261.
    [6]郭新红.硫酸盐渍土低温压缩特性研究[D].西安:长安大学硕士论文,2006.
    [7]中国土壤学会盐渍士专业委员会编.中国盐渍土分类分级文集[M].南京:江苏科技出版社,1989.
    [8]王东.土壤盐渍化.中国建筑工程网,2005.
    [9]中华人民共和国建设部.岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2002.
    [10]关宏.盐渍土地基的加固处理[J].山西建筑,2003,29(3):62.
    [11]周亮臣.柴达木盆地西部盐渍土及其工程地质特性[A].中国建筑学会第二届工程勘察学术交流会议论文选集[C].北京:中国建筑工业出版社,1984.
    [12]行业标准.“公路路基设计规范”(JTGD30-2004)[S].北京:人民交通出版社,2004.
    [13]郭兴.盐渍土中易溶盐迁移规律与基本性质[J].青海交通科技,2008,4:21-22.
    [14]铁路工程特殊岩上勘察规程(TB10038-2001、J126-2001)[S].北京:中国铁道出版社.2001.
    [15]交通部第二公路勘察设计院.公路设计手册·路基(第2版)[S].北京:人民交通出版社.1996.
    [16]公路路基设计规范(JT.J013-95)[S].北京:人民交通出版社,1996.
    [17]公路工程地质勘察规范(JTJ064-98)[S].北京:人民交通出版社,1999.
    [18]T P Croughan and D W Rains. In CRC handbook of biosolar resources[M]. Vol.1. Eds.A Mitsui and C C Black. CRC Press, Boca Raton, FL.1982:245-255.
    [19]吕殿青,王文焰,工全九.入渗与蒸发条件下上壤水盐运移的研究[J].水上保持研究,1999, 6(2): 60.
    [20]宇振荣,王建武.中国土地盐碱化及其防治对策研究[J].农村生态环境,1997,13(3):1-5.
    [21]A Hamdy. Saline irrigation management for a sustainable use. In:A Hamdy. (Ed.)[A]. Proceedings of Eighth IWRA World Congress on Water Resources[C]. Cairo,1994:1-3.
    [22]水利部南京水文水资源研究所.21世纪中国水供求[M].北京:中国水利水电出版社,1999.
    [23]王遵亲.中国盐渍土[M].北京:科学出版社,1993:1-34.
    [24]王双合,胡兴林,蓝永超,等.甘肃省苦咸水资源量及时空分布规律研究[J].中国沙漠,2009,29(5):995-1002.
    [1]R B Salama, C J Otto, R W Fitzpatrick. Contributions of groundwater conditions to soil and water salinisation. Hydrogeol. J.1999,(7):46-64.
    [2]王东.土壤盐渍化.中国建筑工程网,2005.
    [3]王遵亲.中国盐渍土[M].北京:科学出版社,1993:1-34.
    [4]A Valenza, J C Grillot, J Dazy. Influence of groundwater on the degradation of irrigated soils in a Semi-arid region, the inner delta of the Niger River, Mali, Hydrogeol. J,2000,8: 417-429.
    [5]吕殿青,王文焰,王全九.入渗与蒸发条件下土壤水盐运移的研究[J].水土保持研究,1999,6(2):60.
    [6]S Olivella, J Carrera, A Gens and E E Alonso. Non-isothermal multiphase flow of brine and gas thorough saline media[J]. Transport in Porous Media,1994,15:271-293.
    [7]徐攸在.盐渍土地基[M].北京:中国建筑工业出版社,1993.
    [8]雷志栋.土壤水动力学[M].北京:清华大学出版社,1988:25-37.
    [9]于昆.盐渍土地区高等公路设计施工[J].山西交通科技,2002,6:23-25.
    [10]SY/T0317-97,盐渍土地区建筑规范[S].北京:中国建筑工业出版社,1997.
    [11]陈涛,李永红.安西南干渠盐渍土地基的冻胀试验研究[J].防渗技术,2000,6(2):13-15.
    [12]邓友生,蒲毅彬,周成林.冻结过程对盐渍土结构变化的试验研究[J].冰川冻土,2008,30(4):632-640.
    [13]罗金明,邓伟,张晓平.冻融季节苏打盐渍土的水盐变化规律[J].水科学进展,2008,19(4):599-607.
    [14]包卫星,杨晓华.冻融条件下盐渍土抗剪强度特性试验研究[J].公路,2008,(1):5-10.
    [15]刘娉慧,王俊臣,蒋剑,等.硫酸盐渍土盐胀特性试验及分析[J].吉林大学学报(地球科学版),2005,35(1):74-78.
    [16]邱国庆.莫玲粘土冻结过程中的离子迁移、水分迁移和冻胀[J].冰川冻土,1986,8(1):1-13.
    [17]吴紫旺.土的冻胀性实验研究[A].中国科学院兰州冰川冻土研究所集刊第2号[C],北京:科学出版社,1981:82-96.
    [18]陈肖柏.冻结速率与超载应力对冻胀的作用[A].第二届全国冻土学术会议论文集[C].兰州:甘肃人民出版社,1987:223-228.
    [19]朱强.论季节冻土冻胀沿深度的分布[J].冰川冻土,1988,10(1):1-7.
    [20]吴紫旺.冻土工程分类[J].冰川冻土,1982,4(1):43-48.
    [21]李斌.不同密度硫酸盐渍土盐胀规律的试验研究[J].冰川冻土,1994,16(3):251-258.
    [22]孔庆栓.素混凝土板衬砌渠道地基冻胀土壤的分级及防冻措施[A].第二届全国冻土学术会议论文集[C].兰州:甘肃人民出版社,1987:200-204.
    [23]赵景森,王宪政.盐湖盐渍土地区建筑防腐工程施工[J].山西建筑,1996,(2):33-35
    [24]公路路基设计规范(JTJ013-95)[S].北京:人民交通出版社,1996.
    [25]李连志,柳俊哲,刘彦书,吕丽华.除冰盐对混凝土的早期破坏机理及防治[J].低温建筑技术,2005,4:13-14.
    [26]黄领海,沈冰.水盐运动研究评论[J].西北水资源与水工程,2000,11(1):6-12.
    [27]杨建锋,万书勤,邓伟,等.地下水浅埋条件下包气带水和溶质运移数值模拟研究述评[J].农业工程学报,2005,21(6):158-165.
    [28]韩淑敏,田魁祥,刘小京,雷玉平.点源入渗与蒸发条件下土壤水盐运移试验研究[J].河北农业大学学报,2002,25(1):24-28.
    [29]叶笃止.中国的气候变化研究[M].北京:地质出版杜,1992:187-208.
    [30]张蔚臻,张瑜芳.土壤水盐运移数值模拟的初步研究[A].大连:土壤物理学术讨论会论文[C],1982.
    [31]刘亚平.稳定蒸发条件下土壤水盐运动的研究[A].国际盐渍土改良学术讨论会论集[C],1985.
    [32]李韵珠,陆景文,黄坚.蒸发条件下粘土崖与士壤水盐运移[A].国际盐渍土改良学术讨论会论文集[C],1985:176-190.
    [33]贾大林.利用同位素和数学模拟研究十壤水盐运动[A].国际盐渍土改良学术讨论会论文集[C].1985.
    [34]袁红,李斌.硫酸盐渍土起胀含盐量及容许含盐量的研究[J].中国公路学报,1995,8(3): 10-14.
    [35]高江平,李芳.含氯化钠硫酸盐渍土盐胀过程分析[J].西安公路交通大学学报,1997,17(4):19-24.
    [36]铁道第一勘测设计院.盐渍土地区铁路工程[M].北京:铁道出版社,2002.
    [37]周亮臣.柴达木盆地西部盐渍土及其工程地质特性[A].中国建筑学会第工届工程勘察学术交流会议论文选集[C].北京:中国建筑工业出版社,1984.
    [38]徐攸在.盐渍土地基[M].北京:中国建筑工业出版社,1993.
    [39]褚彩平,李斌,侯仲杰.硫酸盐渍土在多次冻融循环时的盐胀累加规律[J].冰川冻土,1998,20(2):108-111.
    [40]高江平,吴家惠,杨荣尚,等.硫酸盐渍土盐胀特性各影响因素交互作用规律的分析[J].中国公路学报,1997,10(1):10-15.
    [41]雷华阳,张文殊,张喜发,等.超氯盐渍土的工程特性指标研究[J].长春科技大学学报,2001,31(1):70-73.
    [42]陈炜韬,王明年,王鹰,等.含盐量及含水量对氯盐盐渍土抗剪强度参数的影响[J].中国铁道科学,2006,27(4):1-5.
    [43]Zhang Leina, Feng Yongjun, ZangHong. Simulation study on rule of water and salt movement of seashore saline soil[J]. Journal of Shandong Agricultural University (Natural Science).2000,3(4):55-58.
    [44]Yao Deliang, Zhu Jingsheng, Xie Zhengtong, et al. Model on water-saly movement and application in field of arid land[J]. Journal of Desert Research,2001,21(3):286-290.
    [45]VenGenuchten MT, W J Alves. Analytical solutions to one-dimension convective-dispersive solute transport equation[J]. USDATech. Bull.1661. U. S. Gov. Print Office. Washington, D, C.1982.
    [46]贝尔.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [47]Rifai MNE, W J Kaufman, D K Todd. Dispersion phenomena in laminar flow through porousm, edia[J]. Inst. of Eng. Res. Ser. Sanitary Eng. Res. Lab. Univ. of Calif., Berkeley. 1956,93(2).
    [48]乔云峰.黄土中水盐运动实验研究[D].西安:西安理工大学硕士论文,2001.
    [49]代涛.西北干旱区水盐动态模拟及排水优化模型研究[D].武汉:武汉大学硕士学位论文,2004.
    [50]雷志栋.土壤水动力学[M].北京:清华大学出版社,1988:25-37.
    [51]王全九.土壤溶质迁移特性的研究[J].水土保持学学报,1993,7(2):10-15.
    [52]隋红建,饶纪龙.土壤溶质运移的数学模拟研究—现状及展望[J].土壤学进展,1992,(5): 1-7
    [53]T N Narasimhan. Hydraulic characterization of aquifers, reservoir rocks and soils:A history of ideas[J], Water Resources Research,1998,34(1):33-46.
    [54]Buchingham. Studies on the movement of soil water[J]. Bull, U. S. Dep. of Agric., Washington, D. C,1907:38,61.
    [55]L A Richards. Capillary conduction of liquids in porous mediums[J], Physic,1931, (1): 318-333.
    [56]同延安,王全九.土壤-植物-大气连续体系中水运移理论与方法[M].西安:陕西科学技术出版社,1998.
    [57]李广辉,魏世强.土壤溶质运移特性研究进展[J].土壤通报,2003,34(6):85-89.
    [58]徐力刚,杨劲松.农田土壤中水盐运移理论与模型的研究进展[J].干旱区研究,2004,21(3):254-258.
    [59]E Bresler, B L Mcneal, D L Carter. Saline and sodic soils; principles dynamics-modelling, Springer verlag,New York.1982,(10):236.
    [60]J R Philip, D A Vries. Moisture movement in porous materials under temperature gradients[J]. Trans. Am. Geophy. Unionk,1957,38:222-231.
    [61]P C D Milly. Moisture and heat transport in hysteretic, inhomogeneous porous media:A matric head-based formulation and a numerical model [J]. Water Resources Res.,1982, 18(3):489-498.
    [62]林家鼎,孙菽芬.土壤内水分流动、温度分布及其表面蒸发效应的研究:上壤表面蒸发阻抗的探讨[J].水利学报,1983,(7):1-8.
    [63]任理,张瑜芳,沈荣开.条带覆盖下土壤水热动态的田间试验与模型建立[J].水利学报,1998,(2):1-9.
    [64]隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟I一数学模型[J1.地理学报,1992,47(1):74-79.
    [65]王同科,孙景生.SPAC系统中水热祸合运移方程的有限元迭代算法[J].水利学报,1997,(3):65-68.
    [66]蔡树英,张瑜芳.温度影响下土壤水分蒸发的数值分析[J].水利学报,1992,(11):1-8.
    [67]黄兴法,曾德超.冻结期土壤水盐热运动规律的数值模拟[J].北京农业工程大学学报,1993,13(3):43-50.
    [68]I N Nassar, Robert Horton. Water transport in unsaturated non-isothermal salty soil:experimental results[J]. Soil Sci. Soc. Am. J.,1989,53:1323-1329.
    [69]岳汉森.土壤在冻融过程中水-热-盐祸合运移数学模型之初探[J].冰川冻土,1994,16(4):308-311.
    [70]胡和平,雷志栋,杨诗秀.土壤冻结时水热迁移规律的数值模拟[J].水利学报,1992,(7):1-8.
    [71]李春友,任理,李保国.秸秆覆盖条件下土壤水热盐耦合运动规律模拟研究进展[J].水科学进展,2000,11(3):325-332.
    [72]李法虎.土壤中水、热、溶质运移的研究现状及展望[J].灌溉排水,94,13(1):7-9.
    [73]B P Leonard. A stable and accurate convective modelling procedure based on quadratic upstream interpolation[J]. Cornput. Meths. Appl. Mech. Engrg.,1979.
    [1]刘惠明.祖厉河流域土地利用与产沙量关系研究[D].兰州:兰州大学硕士论文,2007.
    [2]陈剑霞.黄维东.祖厉河流域年径流趋势预测分析[J].2007,13(12):919-920.
    [3]张正强.浅析祖厉河流域水沙特性及其变化趋势[J].甘肃水利水电技术,2004,40(1):53-54.
    [4]李常斌.陇西黄土高原祖厉河流域分布式水文模拟研究[D].兰州:兰州大学博士学位论文,2006.
    [5]韩通,陈少勇,乔立.祖厉河流域近50a降水变化及典型人类活动对降水的影响[J].干旱气象,2009,27(3):220-227.
    [6]牛最荣.祖厉河泥沙特性及流域生态环境建设[J].东北水利水电,2002,5(20):43-44.
    [7]R B Salama, C J Otto, R W Fitzpatrick. Contributions of groundwater conditions to soil and water salinisation. Hydrogeol. J,1999,7:46-64.
    [8]蔺海明.干旱半干旱地区盐渍土的形成与改良[J].世界农业,1994,(12):23-25.
    [9]刘虎俊,王继和,杨自辉.干旱区盐渍化土地工程治理技术研究[J].中国农学通报,2005,21(4):329-333.
    [10]卜秋霞.甘肃省中部干旱地区苦咸水灌区土壤次生盐渍化分析[J].甘肃农业,2004,221(12):66.
    [11]施鑫源,张元禧.地下水水文学[M].北京:中国水利水电出版社,2002:18-32,152-155.
    [12]刘兆昌,李广贺,朱琨.供水水文地质[M].北京:中国建筑工业出版社,2002:57-67.
    [13]秦大河,丁一汇.中国西部环境演变评估[M].北京:科学出版社,2002:114-129.
    [14]魏文涛,袁玉江,喻树龙,等.中国天山山区235a气候变化及降水趋势预测[J].中国沙漠,2008,28(5):803-807.
    [15]王锡稳,王毅荣,张存解.黄土高原典型半干旱区水热变化及土壤水分响应[J].中国沙漠,2007,27(1):123-129.
    [16]林纾,工毅荣.中国黄土高原地区降水时空演变[J].中国沙漠,2007,27(3):502-508.
    [17]周长进,董锁成,张小军.党河水环境特征与水资源可持续利用[J].水资源保护,2008, 24(1):42-44.
    [18]余应中.甘肃水旱灾害[M].郑州:黄河水利出版社,1996:153-172.
    [1]A Hamdy. Saline irrigation management for a sustainable use. In:A Hamdy. (Ed.)[A]. Proceedings of Eighth IWRA World Congress on Water Resources[C]. Cairo,1994:1-3.
    [2]R Popkin. Desalination:Water for the World's Future[M]. Praeger, New York,1968.
    [3]沈振荣,苏人琼.中国农业水危机对策研究[M].北京:中国农业科技出版社,1998:4-5.
    [4]肖洪浪,李锦秀,赵良菊,程国栋.土壤水异质性研究进展与热点[J].地球科学进展,2007,22(9):954-959.
    [5]杨金凤.季节性冻融期不同地表条件下土壤水热动态变化规律的试验研究[D].太原理工大学硕士论文,2005.
    [6]水利部南京水文水资源研究所.21世纪中国水供求[M].北京:中国水利水电出版社,1999.
    [7]霍雅勤,姚华军,王瑛.中国水资源危机与节水潜力分析[J].资源·产业,2002,2(1):10-14.
    [8]卢彦越.反渗透膜法海水淡化过程最优化设计的研究[D].青岛:中国海洋大学博士学位论文,2007.
    [9]乔玉辉,宇振荣,张银锁,等.微咸水灌溉对盐渍化地区冬小麦生长的影响和土壤环境效应[J].土壤肥料,1999,(4):11-14.
    [10]逢焕成,杨劲松,严惠峻.微咸水灌溉对土壤盐分和作物产量影响研究[J],植物与肥料学报,2004,10(6):599-603.
    [11]潘家铮,张泽祯.中国北方地区水资源的合理配置和南水北调问题[M].北京:中国水利水电出版社,2001.
    [12]李少华,黄伟,闫金龙,等.充分利用咸水微咸水资源发展高效生态模式养殖[J].河北工程技术高等专科学校学报,2001,3(1):79.
    [13]王卫光,王修贵,沈荣开,等.微咸水灌溉研究进展[J].节水灌溉,2003,(2):9-11.
    [14]王双合,陈颂平,牛最荣,等.甘肃省苦咸水调查评价及开发利用研究[R].兰州:甘肃省水文水资源勘测局,2007.
    [15]林晖,张玉峰,邹叶锋.地下咸水的综合利用[J].能源与环境,2006,(6):70-75.
    [16]李中明,程建强,张春志.豫北平原咸水水文地质特征及开发利用[J].中国地质灾害
    与防治学报,2004,15(3):60-64.
    [17]贺涤新.盐碱土的形成和改良[M].兰州:甘肃人民出版社,1980:72-73。
    [18]刘友兆,付光辉.中国微咸水资源化若干问题研究[J].地理与地理信息科学,2004,20(2):57-60.
    [19]J W Van horn. Quality of irrigation water limits of use and prediction of long-term effects. In:Salinity seminar, Baghdad[J]. Irrigation and Drainage, paper 7. FAO,1971, Rome: 117-135.
    [20]任天志.世界农业思潮与中国农业的现代化和自然化选择,1996,6(2):62-65.
    [21]张建新,王爱云.利用咸水灌溉碱茅草的初步研究[J].干旱区研究,1996,4:30-33.
    [22]王全九,徐益敏.咸水与微咸水在农业灌溉中的应用[J].灌溉排水,2002,21(4):73-77.
    [23]乔玉辉,宇振荣.灌溉对土壤盐分的影响及微咸水利用的模拟研究[J].生态学报,2003,(10):2050-2056.
    [24]王晓静,徐新文,雷加强,等.咸水滴灌下林带的盐结皮时空分布规律[J].干旱区研究,2006,23(3):399-404.
    [25]史晓楠,王全九,苏莹.微咸水水质对上壤水盐运移特征的影响[J].干旱区地理,2005,28(4):516-520.
    [26]C Mahmut, K Cevat. Spatial and temporal changes of soil salinity in a cotton field irrigated with low-quality water[J]. Journal of Hydrology,2003,272:238-249.
    [27]J AlSulaimi, M N Viswanathan, M Naji, A Sumait. Impact of irrigation on brackish groundwater lenses in north Kuwait[D]. Agricultural Water Management,1996,31:75-90.
    [28]张永波,王秀兰.表层盐化土壤区咸水灌溉试验研究[J].土壤学报,1997,34(1):53-59.
    [29]罗廷彬,任崴,李彦,等.咸水灌溉条件下.干旱区盐渍土壤盐分变化研究[J].土壤,2006,38(2):166-170.
    [30]王明治.咸水灌溉芹菜试验研究[J].东北水利水电,2000,18(8):25-26.
    [31]张展羽,郭相平,詹虹丽.微咸水灌溉条件下土壤和地下水含盐量空间变异分析[J].灌溉排水,2001,20(3):5-8.
    [32]董美荣,韩家政,王殿刚.白菜咸水灌溉试验分析[J].东北水利水电,2000,18(6):37-39.
    [33]张余良,邵玉翠.灌溉微咸水土壤的改良技术研究[J].大津农业科学,2004,10(4):47-50.
    [34]王卫光,张仁铎,王修贵.咸水灌溉下土壤水盐变化的试验研究[J].灌溉排水学报,2004,23(3):1-5.
    [35]苏莹.微咸水矿化度对土壤水盐运移的影响研究[J].杨凌职业技术学院学报,2008,7(2): 1-5.
    [36]王丹,康跃虎,万书勤.微咸水滴灌条件下不同盐分离子在土壤中的分布特征[J].农业工程学报,2007,23(2):83-87.
    [37]王长明,方生.城市利用地下水咸水节省淡水资源[J].地下水,2004,26(1):32-33.
    [38]胡荣花,冯听雨.充分利用咸水、微咸水改善沧州水环境[J].地下水,2009,31(5):54-55.
    [39]于保静,石培泽.棉花苦成水利用高效节水技术推广及展望[J].甘肃水利水电技术,2005,41(2):118-120.
    [40]A Mushtaque, W H Shayya, D Hoey, R M Mahendran J. Al Handaly. Use of evaporation ponds for brine disposal in desalination plants, Desalination 130 (2000):155-168.
    [41]钱易,刘昌明,邵益生.中国城市水资源可持续开发利用[M].北京:中国水利水电出版社,2002.
    [42]刘俊龙.咸水淡化是解决沿海农村饮水困难的一条途径[J].地下水,2002,9(3):165-166.
    [43]付兆堂,刘玉录,赵亭月.地下苦咸水淡化技术在海岛的推广应用[J].地下水,2001,23(2):97-98.
    [44]李征,任必穷,刘波.天津市地下咸水资源化初探[J].海河水利,2009,(2):12-13.
    [45]解利听,阮国岭,吕庆春,等.18000m3/d苦咸水淡化设计方案[J].中国给水排水,2000,16(7):33-34.
    [46]宋德政,薛德明,柳晓英,等.长岛县电渗析地下苦咸水淡化试验站[J].膜科学与技术,1989,9(3):37-40.
    [47]刘德祥,徐成刚.反渗透法对陇东地区苦咸水淡化获得成功[J].工业水处理,1995,15(3):28-29.
    [48]王力宁,陈秀娟,张必功.海岛高含铁苦咸水的淡化[J].水处理技术,1999,25(1):19-21.
    [49]高兴木,周如禄.煤矿苦咸水淡化技术的研究[J].水处理技术,1999,25(4):212-219.
    [50]杨兰,马润宇.膜蒸馏法淡化苦咸水中的膜污染初步研究[J],水处理技术,2004,30(3): 128-131.
    [51]杨秀英,石培泽.太阳能温室型蒸凝棚净化苦咸水[J].中国农村水利水电(农田水利与小水电),1999,(2):13-14.
    [52]李涛.新疆塔中四作业区苦咸水淡化处理系统研究[J].油气田地面工程,2004,23(9):56-57.
    [53]陆重业,章发明.用多级闪蒸法处理沙漠油田超高浓度苦咸水[J].石油机械,1991,19(3):34-36.
    [54]王双合,罗从双.苦咸水冷冻淡化试验成果分析及实用方法研究[J].水资源保护,2009,25(1):70-73.
    [55]费学宁,杜国银,王金方,刘晓平,韩文峰.冷冻分凝原理处理溴氨酸水溶液方法初步研究[J].化工进展,2007,26(8):1182-1186.
    [56]王立新,郭颜威,王秀明.苦咸水淡化处理方法探讨[J].安全与环境工程,2006,13(1):66-69.
    [57]J M Ortiz, J A Sotoca, E Exposito,et al. Brackish water desalination by electrodialysis: batch recirculation operation modeling [J]. Journal of Membrane Science,2005,252(2): 65-75.
    [58]G E Ahmad, J Schmid. Feasibility study of brackish water desalination in the Egyptian deserts and rural regions using PV systems [J]. Energy Conversion and Management,2002, 43(18):2641-2649.
    [59]S Mousa, Mohsen, O Jamal, Jaber and Maria Dina Afonso. Desalination of brackish water by nanofiltration and reverse osmosis [J]. Desalination,2003:157-167.
    [60]史为良,杜瑜.地下卤水、盐水和地表咸水在水产养殖中的应用问题[J].淡水渔业,2006,36(3):53-55.
    [61]李少华,黄伟,闰金龙.充分利用咸水微咸水资源发展高效生态模式养殖[J].河北工程技术高等专科学校学报,2001,(1):7-11.
    [62]缴建华,李彤,梁传辉.漠斑牙鲆微咸水养殖试验[J].水产科学,2005,24(6):34-35.
    [63]陈源高,陈亚芬,刘正文.微咸水池塘河蟹仔蟹培育试验[J].海洋湖沼通报,1999,(1):74-76.
    [64]王树海,朱丰锡,宋传民,等.半咸水虾鱼混养试验[J].河北渔业,2006,(3):39-41.
    [65]林斯清.海水和苦咸水淡化[J].水处理技术,2001,27(1):57-62.
    [66]A A Madani. Economics of desalination for three plant sizes [J]. Desalinatinon,1990, 78(2):187-20
    [1]G Nebbin, G N M. Early experiments on water desalination by freezing[J].Desalination, 1968,5:49.
    [2]H M Curran. Ninth International Congress of refrigeration[C], Paris September,1951.
    [3]高从增,陈国华.海水淡化技术与工程手册[M].北京:化学工业出版社,2004:123-130.
    [4]刘凌,宫协长人,薛毅.食品冷冻分离的现状与研究[J]食品与机械,1998,(05):8-10.
    [5]H A C Thijssen. Advance in preconcentration and dehydration of foods[M]. London: Applied SciencePublishers Ltd.,1974:115.
    [6]R A Baker. Trace organic contaminant concentration by freezing-Ⅰ. Low inorganic aqueous solutions[J]. Water Research,1967a,1:61-77.
    [7]R A Baker. Trace organic contaminant concentration by freezing-Ⅱ. Inorganic aqueous solutions[J]. Water Research,1967b, Part 1,1:97-113.
    [8]Franser, James H, D K Emmermann. Office of saline water research and development progress report[R], NO.573,1970.
    [9]Richard, et al. Proceedings of fourth international symposium on fresh water from the sea[C],1973, vol 3:343.
    [10]T G Thompson, K H Nelson. Desalting sea water by freezing [J]. Refrig. Eng.1954, (62): 44-48.
    [11]H M Hendrickson, R W Moulton. Research and development of processes for desalting water by freezing[A]. In:R&D Report No.10, Office of Saline Water[C], US Department of Commerce, Washington, D. C,1956.
    [12]A E Snyder. Desalting water by freezing [J]. Sci. Amer.1962,207 (6):41-47.
    [13]H F Wiegandt, P Harriott, J P Leinroth. Desalting of seawater by freezing[A]. In:R&D Report No.376, Office of Saline Water[C], U.S. Department of the Interior, Washington, D.C,1968.
    [14]Gao W, D Smith, Li Y. Natural freezing as a wastewater treatment method. coli inactivation capacity [J]. Water Res.,2006,40:2321-2326.
    [15]J Shapiro. Freezing out, a safe technique for concentration of dilute solutions[J]. Science N.Y.,1961,133,2063-2064.
    [16]S Kobayashi and G F Lee. Freeze concentration of dilute aqueous solutions[J]. Analytical Chemistry,1964,36:2197-2198.
    [17]R A Baker. Trace organic contaminant concentration by freezing-Ⅲ. Ice washing[J]. Water Research,1969,3(9):717-730.
    [18]R A Baker. Trace organic contaminant concentration by freezing-Ⅳ. Ionic effects[J]. Water Research,1970,4(8):556-573.
    [19]N J J Huige, H A C Thijssen. Production of large crystals by continuous ripening in a stirrer tank[J]. Journal of Crystal Growth.1972,20(13-14):483-487.
    [20]小林登史夫.食品と开发(日).1987,22(12):34-37.
    [21]郎佩珍,叶清林,徐书绅,等.水中痕量的冷冻分离[J].吉林大学报自然科学版,1979,(1):84-88.
    [22]冷冻法在分析上的应用[J].中国环境监测.1988,4(3):7-10.
    [23]白燕,肖锦荣,骆伟鹏.冷冻分离技术的应用[J].理化检验-化学分册,1997,33(8):372-373.
    [24]李凭力,马佳,解利昕,王世昌.冷冻法海水淡化技术新进展[J].化工进展.2005,24(7):749-753.
    [25]邓明富.绿色新能源:自然冷能[J].物理教师,2003,24(4):37-38.
    [26]陈智晖,陈集,周小燕,等.用冷冻法浓缩分离废水中氯离子的试验[J].内蒙古石油化工,2005,(10):1-2.
    [27]乌志明,邓小川.盐水冷冻淡化研究[J].无机盐工业,2001,33(2):6-8.
    [28]郭斌华.对冷冻提硝工艺改进的探讨[J].中国井矿盐,2004,35(1):18-19.
    [29]乜贞,张永生,卜令忠,等.西藏扎布耶盐湖卤水冬季制卤试验研究[J].地质通报,2005,24(4):386-390.
    [30]于涛,马军.冷冻分离-RO工艺处理空间站尿液试验研究[J].哈尔滨工业大学学报,2006,38(4),567-584.
    [31]高峰,孙洁心,张永忠.冷冻分离法处理大豆乳清废水的研究初探[J].食品研究与开发2005,26(4),25-27.
    [32]周都.冷冻法除硫酸根设计[J].化工设计通讯,1994,20(2):59-65.
    [33]刘光良,王静霞,阮永刚.高得率浆废水冷冻结晶处理研究[J].林产化学与工业,1994,14(1):33-39.
    [34]李永峰,刘广民,徐菁利.冰冻条件下水中硝基苯的变化[J].上海工程技术大学学报,2006,20(3):206-209.
    [35]N Beier, D Sego, R Donahue, et al. Laboratory investigation on freeze separation of saline mine waste water [J]. Cold Regions Science and Technology,2007,48(3):239-247.
    [36]Yoshihito Shirai, Minato Wakisakay, Osato Miyawak& Shigeru Sakashita. Conditions of Producing an ice layer with high purity for freeze wastewater treatment[J]. Journal of Food Engineering,1998,38:297-308.
    [37]S S Deshpande, H R Bolin, D K Salunkhe. Food Technology,1982,36(5):68-82.
    [38]Y A Cengel. Heat Transfer:A Practical Approach [J]. Mc-Graw-Hill, New York,1998:904.
    [39]V Partyka. Freezing for wastewater recovery [J]. Metal Finish,1986,84(11):55-57.
    [40]R Ruemekorf. Freeze concentration:its application in hazardous wastewater treatment [J]. Environ. Sci. Pollut. Control Ser.1994,7:513-524.
    [41]冯毅,谭展机.冷冻浓缩的原理、现状及实验研究[J].广州食品工业科技,2002,18(4):63-65.
    [42]F van der Ham, G J Witkamp, J de Graauw, G M van Rosmalen. Eutectic freeze crystallization:Application to process streams and waste water purification [J]. Chemical Engineering and Processing,1998,37:207-213.
    [43]L Vrbka and P Jungwirth. Brine rejection from freezing salt solutions[J].Phys. Rev. Lett, 2005,95:148-501.
    [44]N N Khusnatidinov, V F Petrenko. Fast-growth technique for ice single crystals [J]. Journal of Crystal Growth,1996,163(4):420-425.
    [45]C J Martel. Influence of dissolved solids on the mechanism of freeze-thaw conditioning [J]. Water Research,2000,34(2):657-662.
    [46]M Akyur, G Zaki, B Habeebuliah. Freezing phenomena in ice-water systems [J]. Energy Conversion and Management,2002,43(14):1773-1789.
    [47]Yu T, Ma J Z, Li Q. Factors affecting ice crystal purity during freeze concentration process for urine treatment [J]. Journal of Harbin Institute of Technology,2007,14(5):593-597.
    [48]Osato Miyawaki. Analysis and control of ice crystal structure in frozen food and their
    application to food processing [J]. Food Sci. Technol. Res,2001,7(1):1-7.
    [49]S Bruin, Th R G Jongen. Food process engineering:the last 25 years and challenges ahead [J]. Comprehensive reviews in food science and food safety,2003, (2):42-81.
    [50]M F Butler. Growth of solutal ice dendrites studied by optical interferometry [J]. Crystal Growth Design,2002,2(1):59-61.
    [51]Y Shirai, T Sugimoto, M Hashimoto, et al. Mechanism of ice growth in a batch crystallization with an external cooler for freeze concentration[J], Agric. Biol. Chem. 1987,51:2359-2366.
    [52]Y Shirai, M Wakisaka, O Miyawaki, et al. Effect of seed ice on formation of tube ice with high purity for a freeze wastewater treatment system with a bubble-flow circulator. Water Research,1999,33(5):1325-1329.
    [53]E E Ebert, J A Curry. An intermediate one-dimensional thermodynamic sea-ice model for investigating ice-atmosphere interactions [J]. J Geophys. Res,1993(98):10085-10109.
    [54]D Col, L Shapior. Observation of brine drainage networks and micro structure of first-year sea ice [J]. Geophys. Research,1998,103(10):21739-21750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700