用户名: 密码: 验证码:
丘陵山地土壤水分时空变化及其模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤水分是作物生长、植被恢复以及生态环境建设的主要限制性因素。如何提高降雨的资源化水平,充分利用有限的水资源,降低农业生产的需水量和耗水量已成为一个国际性的课题。近年来,随着地统计学、分形理论、小波分析等新技术的应用,土壤水分的时空变异及农业生态系统水分运移模型等方面均取得了大量的研究成果,为农田水分优化管理与调控技术提供了基础。但是,这些研究成果主要集中在半干旱、半湿润气候带的华北平原和黄土高原,而在南方季节性干旱的丘陵山地研究较少。丘陵山地具有独特的水文过程,不同水文要素间相互影响相互作用导致土壤水分空间变异的复杂性,也影响到普适论的应用,已经成为研究的热点和难点之一。重庆区域面积的90%以上为丘陵山地,耕地面积的的50%左右为15°以上的坡耕地,该区也是我国水土流失和季节性缺水最严重的地区之一。因此,在重庆地区开展丘陵山地土壤水力特性和水分变异的研究,对重庆山区农业水资源调控、降水资源的集约利用、季节性干旱问题的解决具有重要科学和现实意义。
     以为区域水资源优化调控提供科学依据为出发点,围绕重庆地区土壤水力特性与土壤水分的时空变异规律,在重庆不同区县采集30个土壤剖面90个土壤样品,通过室内测定土壤的质地、有机质、土壤水分特征曲线、扩散数据探讨13个传递函数模型在重庆地区的适用情况,筛选出重庆地区的最佳点状模型和参数传递函数模型,然后利用筛选出的传递函数结合现有土壤普查资料、土壤质地数据推求重庆地区土壤水力参数,并分析土壤水力参数的空间变异。为深入分析重庆丘陵山地土壤水分时空变异状况,利用重庆地区169个土壤水分动态监测站点3个土层(0-10cm、10-20cm、20-40cm)的54756个动态监测资料(2006年、2007年3月-10月每隔5日1次)探讨土壤水分的时空演变规律及其内蕴稳定性。主要研究结果如下:
     (1)土壤持水能力差异大:土壤质地粗,土壤释水快,持水性能低;部分土壤质地粘重,有效水范围窄,易干旱。
     土壤水分特征曲线通过常用的幂函数表示土壤水分随压力的变化特征,土壤水分在低压力下下降速度较快,在5×10~5Pa后高压力段下降非常缓慢,接近平缓。当土水势由-0.10~-1×10~5Pa降至-1~-5×10~5Pa段,再降至-5~-10×10~5Pa段,比水容量有10~(-1)个数量级降至10~(-2)个数量级,再至10~(-3)个数量级。在土水势低于-5×10~5Pa时,土壤的释水量低,是土壤容易发生旱灾的重要原因。土壤扩散系数随土壤水分变化表现出在低水分含量时,其值较低,当含量接近饱和时,其值急剧增加,可用指数形式D=aθ~(eb)表达,非饱和导水率的变化也表示出相同的变化规律,壤质土壤较高的持水能力和低土壤基质势较高的非饱和导水率,能提高土壤水分的有效性。设定l=0.5,采用Van Genuchten方程拟合土壤水分特征曲线和土壤扩散率的水力参数,结果发现:土壤质地越粗,θr和θs的值就较低,a、n值反而较大;饱和导水率变异大,难以如实的反映当地的实际情况。土壤颗粒组成、容重、有机质、孔隙率影响土壤持水性能。砂粒与各压力下水分含量显著负相关(P<0.01),粘粒与各压力下土壤水分显著正相关(P<0.01或P<0.05),有机质与<0.33×10~5Pa压力下水分含量显著正相关(P<0.05),容重、孔隙率的相关性不显著,但在低压力段正相关,高压力段负相关。土壤的砂粒、粘粒是影响土壤持水能力的重要因素。
     (2)EPIC和神经网络传递函数模型可用来预测该区水力参数,水力参数空间变异存在尺度效应。
     土壤水力参数空间变异的研究是进行土壤水分时空变异分析的前提条件,利用SOILPAR软件的12个传递函数模型和RETC模型估计了土壤田间持水量和萎蔫含水量,并采用IRENE软件中的SB、RMSE、EF、MBE、FB、MAE和1∶1线性方程的坡度(Slope)、截距(intercept)对模型的性能进行分析,结果发现:相对于其他传递函数,在重庆地区更适合用EPIC和RETC软件中的神经网络模型来估测土壤水力参数和特定压力下的土壤水分。基于传递函数模型进行土壤水力参数空间变异的分析发现:θ_r在0-20cm和20-40cm可分别采用指数模型和直线模型进行拟合,其块金值为分别为0.41和0.87;采用球状+指数套合结构模型对2个层次拟合的参数均为正值,R~2在0.87以上,存在小尺度变异。0-20cmθ_s用直线模型进行拟合,20-40cmθ_s在整个空间存在漂移,局部稳定性用直线模型进行拟合,R~2为0.77;0-20cm和20-40cmθs的块金值分别为0.34和0.71,均不为0,存在小尺度变异。0-20cmα直线模型拟合参数的纯块金值非常接近0;20-40cmα及lnα不具备空间结构特征。0-20cm和20-40cm的n及ln(n)在整个空间发生了漂移,未呈现良好的空间结构,但ln(n)存在局部稳定性,可用球状模型拟合。
     (3)土壤水分的季节分配、剖面分布、空间格局多为中等程度变异,但仍为平稳时间序列。
     土壤水分时间稳定性分析是进行土壤水分空间分析的基础,采用Pachepsky et al提出的稳定性指数方法利用重庆地区2年的监测数据分析了采样点的时间稳定性指数,结果发现不同土壤层次的时间稳定性指数的幅度为0.22-0.34,表层时间稳定性指数最高,稳定性最差;采用柯尔莫哥洛夫-斯米诺夫方法对间隔5d、10d、15d的采样频率下的时间稳定性进行分析,发现高间隔频率仍具有时间稳定性。采用非相关参数的spearman相关参数发现3-5月各采样时间间的相关性高于水分剧烈波动6-9月的相关性。土壤水分时间稳定性的存在有助于区域水分平均值代表站点的选择,发现采样点黑水、木洞的水分最能代表重庆地区水分的平均值,间隔5天、10天、15天的监测频率下,区域水分平均值的代表监测样点发生变化。
     土壤水分动态的研究是定量理解植被对水分胁迫响应、土壤养分循环的水文控制、植物水分竞争等生态系统动态的关键。利用2006年-2007年每隔5天的土壤水分监测数据,研究了重庆代表墒情站点的木洞地区土壤水分的动态。结果表明:在湿润气候条件下,干旱年份(06年),土壤水分的年内变异越大;平水年(07年)土壤水分的年内变异较小。其季节动态可划分3-5月蒸发消耗期,6-9月剧烈波动期。土壤水分的随机动态特征为,06年各层土壤水分概率分布的峰值出现在80%左右,07年出现在90%左右,无论在枯水年、平水年各层土壤水分峰值出现的位置随着土壤深度的增加。
     各层土壤水分垂向变异并非完全随着土壤深度的增加而增加,不同时间尺度下土壤水分的剖面分布分为4种构型即:稳定型、增长型、波动型、降低型。根据各层季节变异的方差和变异系数,0-40cm土壤水分的垂直层次相应可以分为0-10cm活跃层和10-40cm次活跃层。土壤水分的剖面分布具有相似的变点分布及周期性特点,0-10cm的变点分布最多,土壤各层的互谱系数接近1,层次间水分的上、下运行因果关系明确。平面变异上,土壤水分的结构系数C_0/C+C_0在50%左右,中等变异,即空间自相关部分引起的空间变异占整个空间变异的50%以上。土壤水分的空间分布格局采用普通克里格法插值法,可反应土壤水分分布格局季节动态的时间稳定性;以地形为辅助变量的回归克里格方法,其预测的0-10cm、10-20cm、20-40cm土层土壤水分平均误差分别比普通克立格法降低了0.35%、24.29%、17.71%,而均方根误差则分别比普通克立格法降低了0.51%、11.35%、11.40%,显著提高了预测精度,其空间插值更能反映土壤水分随地形的变化规律。
     土壤水分的时空动态与土壤水分库容关系密切,通过对丘陵山地土壤库容各组分的分析发现,丘陵山地土壤的通透库容变异超过了70%,为强变异;总库容、有效贮水库容、无效贮水库容的变异幅度为10%-50%,为中等程度变异。土壤水分的空间变差结构存在方向变异,不同库容的变异方向并不相同,可采用球状模型和指数模型模拟,R~2均在0.6以上;土壤水库的各组分中仅20-40cm无效贮水库容的空间异质的61.88%是空间自相关索引起的,其他库容的空间异质中由空间自相关部分引起的占到75%以上,空间相关性较强。
     (4)多元时空模型可模拟生长季节土壤水分动态,剧烈波动时期模拟效果较差。
     采用多元线性模型的逐步筛选法建立3个土层的3个时空预测模型。模型0-10cm、10-20cm的截距与本层土壤水分平均值基本相等,20-40cm的截距为3.48,低于该层平均水分;各层模型R~2修正值在0.5以上,即模型各要素能解释50%以上土壤水分的变化,预测模型的最优性、稳定性在3月、4月、5月较好,但是在6、8、9均较差,绝对无偏性在8月、9月模型的也较差。因此模型在土壤水分波动剧烈时期的预测性能较差。
     总之,重庆山丘陵山地持水能力变化大,比水容量小,有效水范围较窄,土层浅薄,抗旱能力差,土壤水分垂向运移速度快,是该区土壤易于发生季节性、区域性干旱的根本原因。土壤水分空间变异在大区域范围仍具有时间上的稳定性,3-5月生长季节,均受作物耗水量影响,土壤水分空间分布格局基本相同;6-9月受高温伏旱影响,土壤水分空间分布受地形的影响较大,甚至表现出随海拔的增加而增加的趋势,土地利用方法、降水季节分布不均和山地地形的影响也是诱发该区发生土壤水分季节性、区域性干旱的重要原因。因此,在重庆丘陵山地大力推行工程、农艺、生物、化控等措施相结合的集雨增效旱作农业技术,提高降雨转化效率,增强土壤水库在农田水分的调蓄是提高降水资源化效率的必然要求。
It has become an international topic how to improve the utilization of rainfall and limited water resource,to reduce the water requirement and consumption by agriculture.Soil moisture plays a very important role in crop growth,vegetation recovery and ecological construction.Recently,with the application of new technologies and method,such as geo-statistical technologies and fractal theory,wavelet analysis in China have made great achievements in the fields of modeling water transport in agro-ecosystem,temporal and spatial variation,optimizing and regulating field water in agriculture and so on.However,most of current the researcher focus on north China plain and the loess plateau,the semiarid zone of China.And do apoor job in hills and mountain area,especially the study of the areas of southern China with seasonal drought in Chongqing.Topographic attributes are also useful indicators of hillslope and mountain hydrological dynamics.Hillslope hydrology remains challenging because a number of processes interact at different scales,significantly contributing to the complexity of the systems that hampers the possibility theory.Hills and mountain area was in an absolute dominance with the proportion of 90%of study are in Chongqing.Besides the complicated topography,the slope cultivated land which slope is more than 15°is about 50%proportion of cultivated land area.And in this region soil erosion and water shortage is serious and seriously limits the sustainable development of agriculture.In this research,a typical hill and mountain area of Chongqing in China is selected as an experiment area,where the soil is used to analyze the soil moisture dynamics and their environmental factors.The research provides a scientific basis for demonstrating and spreading of anti-drought technologies and soil moisture utilizes efficiently.
     This study focused on providing scientific basis for solving the season drought problem in hill and mountain area in Chongqing.According to the spatio-temporal variation of soil moisture in research region, 90 soil sample was sampled in different county in Chongqing and soil OM.soil particle distribution、soil water retention curve,soil diffusivity was measured,and utilized these data to select out a best point and parameter PTFs model to predict soil hydraulic parameters in Chongqing,and then collected 160 soil profile data,such as soil bulk density,soil particle distribution and soil OM to estimate soil field water capacity,wilt point and hydraulic parameter in research region,based on these estimation,Spatial variation of soil hydraulic parameters was analyzed.Spatial characteristics of unsaturated soil water movement parameter are the base and precondition of scientific understanding soil moisture dynamistic variation of large-scale.In order to further study on temporal and spatial variation of soil moisture in hilly and mountain in Chongqing,54756 data for soil moisture in 84 times were collected from March to September in 2006 and 2007.The soil moisture in layers of 0-10cm、10-20cm、20-40cm was measured at an interval of 5 days. All the data were analyzed by methods of the traditional statistics,geo-statistics,rank stability and wavelet analysis to investigate the spatial-temporal variation of soil moisture.The water holding capacity of soil, precipitation transport on sloping land,soil moisture dynamics and its affecting factor had been discussed in this paper.The main achievements of this study are as follows:
     (1)There is a big difference for soil water capacity,when the soil texture is coarse,soil reduces water discharge quickly,and soil texture is heavy,a narrow range of the available soil moisture
     The specific water capacity decreases to the scale of 10~(-2)from 10~(-1),and to the scale of 10~(-3)from 10~(-2) when the water potential decreases from-0.l0~1×10~(5)Pat o-l×10~5Pa~-5×l0~5Pa,and then to-5×10~5Pa~-10×10~5Pa The soil water content decreases very slowly and the soil water discharge rapidly with a small amount when the suction exceeds 5.0×10~5kPa..This is the reason that soil is frequently influenced by seasonal droughts.The relationship between soil moisture diffusivity and soil water content in every soil layer were sharp positive exponential function as well as between soil moisture conductivity and soil water content,and these relationship were significant by statistical analysis.
     The van Genuchten(l=0.5,m=1-1/n)hydraulic parameters was fitted to soil water retention and soil diffusivity,the results are as follows,when soil texture is coarser,the value ofθ_r andθ_s is lower,but the value of a、n is higher.So the available soil water which soil is heavy texture is lower than which in median texture,the hydraulic parameters K_s cannot be used as a matching point for the hydraulic parameter in field or laboratory experiments.
     Then,the bulk density,porosity,the type of pore,particle constitute and organic carbon in the soil affected the soil moisture diffusivity.The water-holding capacity of soil is negatively related to contents of sand fractions with the size from 2mm to 0.05mm,there is a significant positive correlation between clay content and soil water under different tension,soil organic matter and soil water under<0.33×10~5Pa,there is no significant positive correlation between bulk density,porosity and soil water under different tension. Sandy particle and clay particle is the important factors influenced soil water capacity.
     (2)Pedotransfer function of EPIC and RETC model is the best model to predict soil hydraulic parameters,based on these research,the spatial variation of soil hydraulic parameters occurs scale effect.
     Temporal and spatial variation of soil moisture is the based on the spatial variation of soil hydraulic parameters.Thirteen pedotransfer functions(PTFs),namely RERC,Brakensiek.Rawls,British Soil Survey Topsoil,British Soil Survey Subsoil,Mayr-Jarvis,Campbell,EPIC,Manrique,Baumer, Rawls-Brakensiek,Vereecken,and Huston were evaluated for accuracy in predicting the soil moisture contents at field capacity(FC) and wilting point(WP) of hills and mountain chongqing in china.PTFs were evaluated on the basis of SB,RMSE,EF,MBE,FB,MAE and 1:1 line in software of Irene.The result shows that in the case of the hills and mountain of Chongqing city.the EPIC and RETC were found to be the best methods more than the others.The hydraulic parameters are evaluated using PTF,based on these study,Spatial variation was analysized using Geo-statistics,the results showed that linear variogram model was fitted toθ_r in 0-20cm when the adjusted coefficient of determination of is 0.7;Accordingly,the nugget is 0.41 and 0.87 in 0-20cm and in 20-40cm respectively;based on these results,spherical and exponential were used to fit toθ_r.the parameters are all positive and the coefficient of determination was more than 0.87, this implies that spatial variance ofθ_r operate at multiple spatial scales.Linear variogram models are fitted to the hydraulic parametersθ_s in 0-20cm,the whole spatial variation ofθ_s in 20-40cmdon not reach stable state,but the local variation is stable,linear model are fitted to the local stability,and the coefficients of determination is 0.77.and it validates the accuracy of the linear model to fit the local stability.The nugget ofθ_s are 0.34 and 0.71 in 0-20cm and 20-40cm respectively,that is all different from 0,spatial variation occurred at smaller scale less than the sample length.The change of semivarigram ofαis as well as a stage change,the linear model is fitted to the change.the nugget of model close to 0.there occurred a slight spatial variation in smaller than the sample scale;αand lnαin 20-40cm varies with lag length change and the curve is significantly concavo,thus there occurs no spatial structure.The hydraulic parameters of n and ln(n) had no evident spatial structure in all layers,but ln(n) in 20-40cm is stable in local range,the spherical variogram models are fitted to the spatial variation.
     (3) There are median variations degrees within seasonal,vertical and spatial distribution of soil moisture,but still contribute to stable temporal series.
     When a field or a small watershed is repeatedly surveyed for soil water content,locations can often be identified where soil water contents are either consistently larger or consistently less than the study area average.This phenomenon has been called temporal stability,time stability,temporal persistence,or rank stability in spatial patterns of soil water contents.Temporal stability is of considerable interest in terms of facilitating upscaling of observed soil water contents to obtain average values across the observation area, improving soil water monitoring strategies,and correcting the monitoring results for missing data.The objective of this work was to contribute to the existing knowledge based on temporal stability in soil water patterns using frequent multi-depth measured with micro-wave oven。Water contents at 0-10cm、10-20cm、20-40cm depths were measured every 5 days for 7 months of observation from March to September in 2006 and 2007.Temporal stability are analyzed using temporal stability index suggested by Pachepsky, The temporal stability index ranges from 0.22-0.34 and decreases with depths,the temporal stability increase with depth.The statistical hypothesis could not be rejected that data collected each five days,each ten days,each fifteen days had the same temporal stability.The spearman correlation parameters aim to describe the temporal variation of temporal persistence.The coefficient of correlation from March to May is higher than the value from June to September.The locations of which were best for estimating the average water contents were different for different depths.The best three locations for the whole observation period were the same as the best locations for a month of observation in about 60%of the case. Temporal stability for a specific location and depth could serve as a good predictor of the utility of this location for estimating the area-average soil water content for that depth.Temporal stability could be efficiently used to correct area-average water contents for missing data.Soil water contents can be upscaled and efficiently monitored using the temporal stability of soil water content patterns.
     The study of the temporal and spatial dynamics of Soil moisture is critical to understanding of several ecological hydrological processes,e.g.,water stress to plant,hydraulic control of soil nutrient cycle,plant water competition,and also is focus of ecological hydrology.Based on the data of every five days for soil moisture from 2006Y to 2007Y at mountain Mudong sites in Chongqing where soil moisture can be serve as a good predictor of the utility of this location for representing the area-average soil water content for the whole Chongqing,the dynamics of soil moisture were analyzed.The results showed soil moisture values observed at all depths are higher in rainy year than in dry year,in contrast to this,the variance is lower in dry year than in rainy year under subtropical climate.The seasonal dynamics of soil moisture can be divided into two stages:less unstable stage(from Mar to May),and unstable stage(from June to Sept).Soil moisture stochastic dynamics at a point is studied in detail utilizing the probability distributions.The peak value of soil moisture lied in about〈s〉=80%in 06 year,while in 07 year,the peak value lies in about〈s〉=90%。Soil water peak increases with soil depth in different years.
     Soil water do not increase with depth is increasing completely and the profile distribution can be devided into four structure(soil is stable with depth,increase with depth,fluctuate with depth,decrease with depth)in different temporal scales.By using standard deviation and variation coefficient,the vertical layers of soil water content can be divided into two layers,active layer(0-l0cm)and sub-active layer(10-40cm).There are similar saltation point distribution and periodic span between the adjacent layers. There are the most salsation points in 0-10cm,the mutual spectral of coefficient in different layer closes to 1,that implies that the mutual relationships are evident in soil vertical transmission.Variation coefficient of soil moisture range from 15.42%to 23.15%,the degree of variation is medium.From the C_0/C+C_0 comparable values of soil three layers,the value is about 50%,spatial autocorrelation account for the 50% of the level of system variation.Spatial distribution is interpolated using ordinary kriging,to some extent; spatial distribution exhibit similar distribution according to seasonal division and agree with temporal stability of soil moisture dynamics.Mean error predicted with regression kriging by using terrain as ancillary variable reduced respectively by 0.34%,24.29%and 17.71%in 0-10cm 10-20cm and 20-40cm compared to spatial distribution with ordinary kriging.Root mean error reduced by 0.51%、11.35%、11.40% respectively,the spatial distribution of soil moisture which predicted with regression kriging varies typically with the terrain characters.
     Temporal and spatial of soil moisture closely related to soil water storage.Spatial correlations are analyzed with geo-statistics.In research site,the variance coefficient of transmission volumetric capacity outperformed 70%,degree of variance is very strong,while variance coefficient of total soil reservoir capacities,available soil reservoir and unavailable soil reservoir range from 10%to 50%,degree of variance is medium.Spatial semivarigram structures of soil water are anisotropy,spherical and exponential variance model are fitted to soil water reservoir.Spatial autocorrelations account for 61.88%of total variance of unavailable soil reservoir,while the residuals spatial autocorrelations accounts for 75%of total spatial variance,there is a very strong spatial autocorrelations.Soil water reservoir exhibited spotted spatial distribution by interpolating with ordinary kriging in Chongqing.
     (4)The performance of soil moisture prediction using multiple-linear model exhibits more suitable in cropping growth than in drought period.
     Three spatial-temporal prediction model was established respectively by using stepwise regression of multi linear model in 0-10cm,10-20cm and 20-40cm,and the model included 6 or 9 index which refer to meteorological factors,terrain factor,soil attributes and land use type.In which the intercept of model in 0-10cm and 10-20cm almost equals to mean soil moisture,while the intercept in 20-40cm is only 3.48 and is far lower than mean soil water accordingly soil layer.Regression coefficient of model combined with specialist's knowledge may analyze the relationship between the independent variable and target variables. The adjusted value of model is more than 0.5 and showed that factors of model can explain less than 50% the change of soil water.F value is significantly(P<0.01)different.And residuals are normal distribution, and the error value ranges from-2 to 2.This showed the model established can be exploited to simulate spatial and temporal of soil moisture.In order to evaluate the performance of model in detail.the performance of model was analyzed in terms of fitness,Optimum,absolute bias and stability based on the 11 performance indices from March to September,while the model are more optimum and stabile from March to May,but the value is higher in June.August,September as well as the MAE in August,September. Therefore,the performance of model prediction is poor in soil moisture actively fluctuant state.
     In summary,it can be seen from all above that the soil in mountain has a bigger variance,which leads to which water-holding capacity is variable,a limited specific water capacity,an extremely narrow range of available soil moisture,a thinner soil depth,a poor capacity of anti-drought and a limitation of available soil water in top soil.It is the basic reason that the soil in hills and mountains area of Chongqing is easily to be attacked by seasonal drought and localized drought.Spatial and temporal variation of soil moisture occurs temporal stability in a larger study region,The temporal span of soil water can be devided into two periods according the variability of soil moisture and effect factors:crop growth from March to May. because soil depletion is affected by crop consumption,spatial distribution is similar.Soil moisture changes,the reason are follows as:it was affected by high temperature,serious drought and terrain attributes,even soil moisture increasing with the hight of elevation is increase,thus land use type, seasonal distribution of precipitation and mountain topography which lead to seasonal and regional drought in research region.Based on these researches,soil moisture dynamics was nominated using muti-regression model,Due to a short monitoring span,there occurs obviously seasonal limitation of soil moisture simulation and the accuracy of simulation is lower in drought season than in cropping season. Therefore,it is necessary to take an action to start the engineering construction for available rainfall collection and extend the drying farming technologies combined with agricultural,biological measure as well as the measure for soil and water conversation as to maximize the utilization of rainfall and optimize the effect of soil reservoir on the field water supply.Besides these,In order to solve seasonal and localized drought,it is important to strengthen the dynamical monitoring in regional scale,and applied scientific management technology to forecasting soil drought.
引文
[1].Deng X P,Shan L,Zhang H P.Improving agricultural water use efficiency in arid and semiarid areas of China[J].Agricultural Water Management,2006,80(1-3):23-40
    [2].韩洪云,Jeff B B.21世纪中国农业水资源利用[J].农业与农村发展,2002,11:4-7
    [3].陈晓霖方天堃.中国农业水资源利用管理现状分析[J].农业与农村发展,2006,4:39-40
    [4].Hu J L,Wang S C,Yeh F.Y.Total-factor water efficiency of regions in China[J].Resource Policy,2007,14:217-230
    [5].Mvungi,Mashauri D,Madulu N F.Management of water for irrigation agriculture in semi-arid areas:Problems and prospects[J].Physics and Chemistry of the Earth,Parts A/B/C,2005,30(11-16):809-817
    [6].李生秀.中国旱地农业[M].北京:中国农业出版社,2004,1-323[7].Bagarello V,Elrick D,Elovino M,et al.A laboratory analysis of falling head infiltration procedures for estimating the hydraulic conductivity of soils[J].Geoderma,2006,135:322-334
    [8].Khare D,Jat M K,Ediwahyunan.Assessment of counjunctive use of planning options:A case study of Sapon irrigation command area of Indonesia[J].Journal of Hydrology,2006,328(3-4):764-777
    [9].Feng S,Li L X,David A G.Assessing the impacts of South to North Water Transfer Project with decision support systems[J].Decision Support systems,2007,42(4):1989-2003
    [10].Brussaard L P C,de Ruiter,Brown G G.Soil biodiversity for agricultural sustainability[J].Agriculture,Ecosystems & Environment.,2007,121(3):233-244.
    [11].李元寿,王根绪,丁永建,等.青藏高原高寒草甸区土壤水分的空间异质性[J].水科学进展,2008,01:61-68.
    [12].张北赢,徐学选,刘文兆,等.黄土丘陵区不同土地利用的土壤水分灰色关联度.2008(1):361-366.
    [13].Das N N,Mohanty B P.Temporal dynamics of PSR-based soil moisture across spatial scales in an agricultural landscape during SMEX02:A wavelet approach[J].Remote Sensing of Environment,2008,112(2):522-534
    [14].Vivoni E R,Gebremichael M,Watts C J,et al.Comparison of ground-based and remotely-sensed surface soil moisture estimates over complex terrain during SMEX04[J].Remote Sensing of Environment,2008,112(2):314-325
    [15].Klute A,Dirksen C.Hydraulic conductivity of saturated soils.In:Klute,A.(Ed.),Methods of Soil Analysis[A].ASA & SSSA,Madison,Wisconsin,USA,1986,694-700
    [16].Hillel D,Krentos V D,Stylianou Y.Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in situ[J].Soil Science,1972,114:395-400
    [17].Reynolds W D,Elrick D E.A reexamination of the constant head well permeameter method for measuring saturated hydraulic conductivity above the water table[J].Soil Science,1983,136:250-268.
    [18].Gardner W R.Calculation of capillary conductivity from pressure plate outflow data[J].Soil Science Society of America Proceedings,1956,20:317-320
    [19].Wind G P.Capillary conductivity data estimated by a simple method.ln:Rijtema P E,Wassink H.(Eds.).Water in Unsaturated Zone[J].IASH Gentbrugge/UNESCO,Paris,1968,181-191
    [20].Bagarello V,Castellini M,Iovino M.Comparison of unconfined and confined unsaturated hydraulic conductivity[J].Geoderma,2007,137(3-4):394-400
    [21].Al-Jabri S A,Lee J,Gaur A,et al.A dripper-TDR method for in situ determination of hydraulic conductivity and chemical transport properties of surface soils[J].Advances in Water Resources,2006,29(2):239-249
    [22].Angulo-Jaramillo R,Vandervaere J-P,Roulier S,et al.Field measurement of soil surface hydraulic properties by disc and ring infiltrometers:A review and recent developments[J].Soil and Tillage Research,2000,55(1-2):1-29
    [23].Blanken P D,Black T A,Neumann H H,et al.The seasonal water and energy exchange above and within a boreal aspen forest[J].Journal of Hydrology,2001,245(1-4):118-136
    [24].Fujimaki H,Inoue M,Konishi K.A multi-step inflow method for estimating hydraulic conductivity at low pressure under the wetting process[J].Geodermna,2004,120(3-4):177-185
    [25].Singh R P N,Philip G.Modified rainfall simulator infiltrometer for infiltration,runoff and erosion studies.[J].Agricultural Water Management,1999 41:167-175
    [26].Harden C P,Scruggs P D.Infiltration on mountain slopes:a comparison of three environments[J].Geomorphology,2003,55:5-24
    [27].Sharpley A,Kleinman P.Effect of rainfall simulator and plot scale on overland flow and phosphorus transport[J].Journal of Environmental Quality,2003,32(6):2172-2179
    [28].Minasny B,McBratney A B.The efficiency of various approaches to obtaining estimates of soil hydraulic properties[J].Geoderma,2002,107(1-2):55-70
    [29].Bodhinayake W,Si B C,Noborio K.Determination of hydraulic properties in sloping landscapes from tension and double-ring infiltrometers[J].Vadose Zone Journal,2005,3(3):964-970
    [30].邵明安,王全九,Horton R.推求土壤水分运动参数的简单入渗法Ⅰ.理论分析[J].土壤学报,2000,37(1):1-8
    [31].Jost G,Heuvelink G B M,Papritz A.Analysing the space-time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging[J].Geoderma,2005,128(3-4):258-273
    [32].Bruce R R K A.The measurement of soil-water diffusivity[J].Soil Sci.Soc,1956,20:458-562
    [33].Zhao Y,Peth S,Krummel,bein J,et al.Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland[J].Ecological Modelling,2007,205(1-2):241-254
    [34].Wosten J H M,Finke P A,Jansen M J W.Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics[J].Geoderma, 1995, 66(3-4): 227-237
    [35].Ungaro F, Calzolari C, Busoni E.Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano-Veneta region of North Italy: water retention properties[J].Geoderma, 2005, 124(3-4): 293-317
    [36].Chirico G B, Medina H, Romano N.Uncertainty in predicting soil hydraulic properties at the hillslope scale with indirect methods[J].Journal of Hydrology, 2007, 334(3-4): 405-422
    [37].Gijsman A J, Thornton P K, Hoogenboom G.Using the WISE database to parameterize soil inputs for crop simulation models[J].Computers and Electronics in Agriculture, 2007, 56(2): 85-100
    [38].Gijsman A J, Jagtap S S, Jones J W.Wading through a swamp of complete confusion: how to choose a method for estimating soil water retention parameters for crop models[J].European Journal of Agronomy, 2002, 18(1-2): 77-106
    [39].Benites V M, Machado P L O A, Fidalgo E C C, et al.Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil[J].Geoderma, 2007.139(1-2): 90-97
    [40].Deurer M, Bottcher J.Evaluation of models to upscale the small scale variability of Cd sorption in a case study[J].Geoderma, 2007, 137(3-4): 269-278
    [41].Bagarello V, Sgroi A.Using the simplified falling head technique to detect temporal changes in field-saturated hydraulic conductivity at the surface of a sandy loam soil[J].Soil and Tillage Research, 2007.94(2): 283-294
    [42].Nemes A, Schaap, M.G., Wosten JHM, Functional evaluation of pedotransfer functions derived from different scales of data collection.[J].Soil Science Society of America Journal, 2003., 67:1093-1102
    [43].Merdun H.Cinar O, Meral R, et al.Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity [J].Soil and Tillage Research, 2006, 90(1-2): 108-116
    [44].McQueen I S, Miller R F.Approximating soil moisture characteristics from limited data: empirical evidence and tentative model[J].Water Resources Research, 1974, 10:521-527
    [45].Gregson K.Hector D J, McGowan M.A one-parameter model for the soil water characteristic[J].Journal of Soil Science, 1987, 38(483-486
    [46].Minasny B, McBratney A B.The neuro-method for fitting neural-network parametric pedotransfer functions[J].Soil Science Society of America Journal.2002b, 66:352- 361
    [47].Mayr T, Jarvis N J.Pedotransfer function to estimate soil water retention parameter for a modified Brooks-Corey type model[J].Geoderma.1999, 91:1-9
    [48].Hutson J L, Cass A.A retentivity function for use in soil water simulation modeI[J].Soil Sci, 1987,38:105-113
    [49].Hastie T J.Generalized additive models.In: Chambers, J.M., Hastie T.J.(Eds.).Statistical Models in S[J]. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992: 249-307
    [50].Pachepsky Y, Rawls W J.Accuracy and reliability of pedotransfer functions as affected by grouping soils[J].Soil Science Society of America Journal, 1999, 63:1748-1756
    [51].Friedman J H.Multivariate Adaptive Regression Splines[J].Annals of Statistics, 1991, 19:1-141
    [52].Breiman L, Friedman J H, Olshen R A, et al.Classification and Regression Trees[A].Wadsworth,Belmont,CA.1984,
    [53].Minasny B, McBratney A B, Bristow K L.Comparison of different approaches to the development of pedotransfer functions for water-retention curves[J].Geoderma, 1999, 93(3-4): 225-253
    [54].Rawls W J, Brakensiek D L, Saxton KE, et al.Estimating soil water retention from soil physical properties and characteristics[J].Advances in Soil Science, 1991, 16:213—235
    [55].Romano N, Palladino M.Prediction of soil water retention using soil physical data and terrain attributes[J].Journal of Hydrology, 2002, 265(1-4): 56-75
    [56].Filgueira R R, Fournier L L, Cerisola C I, et al.Particle-size distribution in soils: A critical study of the fractal model validation[J].Geoderma, 2006, 134(3-4): 327-334
    [57].Herbst M, Diekkruger B,Vereecken H.Geostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes.In Geoderma, 2006(132): 206-221..
    [58].Walczak R T, Moreno F S, lawinski C, et al.Modeling of soil water retention curve using soil solid phase parameters[J].Journal of Hydrology, 2006, 329(3-4): 527-533
    [59].Mayr T, Jarvis N J.Pedotransfer functions to estimate soil water retention parameters for a modified Brooks-Corey type model[J].Geoderma, 1999, 91:1-9
    [60].Nemes A, Schaap M, Wo"sten H.Validation of international scale soil hydraulic pedotransfer functions for national scale application[J].symposium no.04 on 17th WCSS, paper, 2002, 934, poster presentation,August, Thailand: 14-21
    [61].Lark R M, Bishop T F A, Webster R.Using expert knowledge with control of false discovery rate to select regressors for prediction of soil properties[J].Geoderma, 2007, 138(1-2): 65-78
    [62].Schaap M G Y, Pachepskya W J R.Graphic user interfaces for pedotransfer functions.In Developments in Soil Science, vol.2004(30): 349-356
    [63].Al Majou H, Bruand A, Duval, et al.Variation of the water-retention properties of soils: Validity of class-pedotransfer functions[J], Comptes Rendus Geosciences, 2007, 339(9): 632-639
    [64].Schaap M G, Leij F J, van Genuchten M T.a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[J].Journal of Hydrology, 2001,251(3-4): 163-176
    [65].Acutis M, Donatelli M.SOILPAR 2.00: software to estimate soil hydrological parameters and functions[J].European Journal of Agronomy, 2003, 18(3-4): 373-377
    [66].Sivapalan M.IAHS decade on predictions in ungauged basins(PUB) [J].Hydrol.Sci.2003, 48(6): 857-880
    [67].Weerts A H,Martin D R,Lian G,et al.Modelling the hydration of foodstuffs[J].Simulation Modelling Practice and Theory,2005,13(2):119-128
    [68].Whalley W R,To J,Kay B D,et al.Prediction of the penetrometer resistance of soils with models with few parameters[J].Geoderma,2007,137(3-4):370-377
    [69].Burrough P A.Soil variability:a late 20th century view[J],soils and fertilizers,1993,56(5):529-562
    [70].Zhang S,Lovdahl L,Grip H,et al.Soil hydraulic properties of two loess soils in China measured by various field-scale and laboratory methods[J].CATENA,2007,69(3):264-273
    [71].雷志栋,杨诗秀,谢森传.土壤水动力学[M].清华大学出版社,1988
    [72].贾宏伟,康绍忠,张富仓.土壤水力学特征参数空间变异的研究方法评述[J].西北农林科技大学学报(自然科学版),2004.32(4):97-102
    [73].Grenson K H D J,McGowan M.A one-parameter model for the soil water characteristics[J].Journal of Soil Science,1987,38:483-486
    [74].Williams R D.valuation of similar-media scaling and a one parameter model for estimating the soil the water characteristic[[J].Journal of Soil Science,1992,43:237-248
    [75].Ahujia L R,Ahuja,William R D.Scaling Water characteristic and hydraulic conductivity based on Greson-Hector McGown approach[J].Soil Sci.Soc.Am.J,1991,55:308-319
    [76].贾宏伟,康绍忠,张富仓.土壤水力参数的单—参数模型[J].水利学报,2006,37(3):272-278
    [77].贾宏伟,康绍忠,张富仓,等.石羊河流域平原区土壤入渗特性空间变异的研究[J].水科学进展,2006,17(4):471-477
    [78].高瑞忠,朝伦巴根,贾德彬,等.神经网络模型在根系带土壤水力特征参数空间变异性研究中的应用[J].2004(4):13-16
    [79].W(o|¨)sten J H M,van Genuchten M Th.Using texture and other properties to prodict the unsaturated soil hydraulic functions[J].Soil Soc Am J,1988,52:1762-1770
    [80].Elaidi B M,Eissa M A.Soil-structure interaction in fuel handling building[J].Nuclear Engineering and Design,1998,181(1-3):145-156
    [81].Wagner B,Tarnaw S V,Resso 1 W,et al.Suitability ofmodels fo r the est imat ion of so ilhydraulic parameters[J].Geoderma,1998,86:229-239
    [82].Byers E,Stephans D B.Statist ical and stochastic analysis of hydraulic conductivity and particle size in a fluvial sand[J].So il Sci.Soc.Am.J.,1983,47:1027-1081
    [83].Gomez J A,Vanderlinden K,Nearing M A.Spatial variability of surface roughness and hydraulic conductivity after disk tillage:implications for runoff variability[J].Journal of Hydrology,2005,311(1-4):143-156
    [84].黄冠华,谢永华.非饱和水分运动参数空间变异与最优估值研究[J].水科学进展,1999,10(2):101-106
    [85].Russo D M B.Statistical Analysis of spat ial variability in unsaturated flow parameters[J].Water Resour.Res,1992,28(7):1911-1925
    [86].Warrick A W,Mullen G J,Nielsen D R.Scaling field-measured soil hydraulic properties using a similar media concept[J].Water Resour.Res,1977,13:355-362
    [87].Unlu K,Kavvas M L,Nielsen D R.Stochastic analysis of field measured unsaturated hydraulic Conduct ivity[J].W ater Resour.Res,1989,25(12):2511-2519
    [88].Abraham S,Le Vine D M.Use of IRI to model the effect of ionosphere emission on earth remote sensing at L-band[J].Advances in Space Research,2004,34(9):2059-2066
    [89].Esteves M,Descroix L,Mathys N,et al.Soil hydraulic properties in a marly gully catchment(Draix,France)[J].CATENA,2005,63(2-3):282-298
    [90].Gelhar L W,Axness C L.Three-dimensional stochastic analysis of macrodispersions in aquifers[J].Water Resour,Res,1983,19(1):161-180
    [91].Gelhar W L.Stochastic subsurface hyrdology from theory to applications[J].Water Resour.Res,1986,22(9):135-145
    [92].Stewart M L,Ward A L,Rector D R.A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method[J].Advances in Water Resources,2006,29(9):1328-1340
    [93].Florinsky I,VEilers R G,Manning G R,et al.Prediction of soil properties by digital terrain modelling[J].Environmental Modelling & Software,2002,17(3):295-311
    [94].Coquet Y,Vachier P,Labat C.Vertical variation of near-saturated hydraulic conductivity in three soil profiles[J].Geoderma,2005,126(3-4):181-191
    [95].Alakukku L.Properties of compacted fine-textured soils as affected by crop rotation and reduced tillage[J].Soil and Tillage Research,1998,47(1-2):83-89
    [96].Gimenez D,Rawls W J,Lauren J G,et al.Scaling properties of saturated hydraulic conductivity in soil.In Developments in Soil Science,2000(27):115-130
    [97].Bausch W C,Bernard T M.Spatial averaging Bowen ratio system:description and lysimeter colnparison.TransASAE,1992,35:121-129.
    [98].薛绪掌,张仁铎,桂胜祥.测定尺度对所测士壤导水参数及其空间变异性的影响.水土保持通报,2001,21(3):47-51
    [99].Zeleke T B,Si B C.Characterizing scale-dependent spatial relationships between soil properties using multifractal techniques[J].Geoderma,2006,134(3-4):440-452
    [100].Lambot S,Javaux M,Hupet F,et al.Inverse modelling techniques to characterise transport processes in the soil-crop continuum.In:A'lvarez-Benedi,J.,Mun'oz-Carpena,R.(Eds.),Soil-Water Solute Processes in Environmental Systems[A].2005,An Integrated Approach.CRC Press.
    [101].Lambot S,Hupet F,Javaux M,et al.Laboratory evaluation of a hydrodynamic inverse modeling method based on water content data[A].Water Resources Research 40,W03506.doi: 10.1029/2003WR002641, 2004
    [102].Olyphant G A.Temporal and spatial (down profile) variability of unsaturated soil hydraulic properties determined from a combination of repeated field experiments and inverse modeling[J].Journal of Hydrology,2003, 281(1-2): 23-35
    [103].Regalado C M.On the distribution of scaling hydraulic parameters in a spatially anisotropic banana field[J].Journal of Hydrology, 2005, 307(1-4): 112-125
    [104].Ferrer Julia M, Estrela Monreal T, Sanchez del Corral Jimenez A, et al.Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction[J].Geoderma, 2004, 123(3-4):257-277
    [105].Jasinska E, Wetzel H, Baumgartl T, et al.Heterogeneity of Physico-Chemical Properties in Structured Soils and Its Consequences[J].Pedosphere.2006.16(3): 284-296
    [106].Logsdon S D, Javnes D B.Spatial variability of hydraulic conductivity in a cultivated field at different times[J].Soil Sci.SOC.Am.J, 1996.60:703-709
    [107].Tsegaye T, Hill R.Intensive tillage effect on spatial variability of soil physical properties[J].Soil Sci..1998, 163:143-154
    [108].Diivvu J Y, Rrdra R P, Dickinson W T.et al.Effect of tillage on the spatial variability of soil properties[J].Can.Agric.Eng., 1998,40:1-8
    [109].Cressie N A C, Horton R.A robust-resistant spatial analysis of soil water infiltration[J].Water Resour.Res., 1987.23:911-917
    [110].Brakensiek D L, Rawls W J.Agricultural management effects on soil water processes.Part Ⅱ: Green and Ampt parameters for crusting soils[J].Trans.ASAE, 1983, 26:1753-1757
    [111].Huang G-H, Zhang R-D, Huang Q-Z.Modeling Soil Water Retention Curve with a Fractal Method[J].Pedosphere.2006, 16(2): 137-146
    [112].Perkins D B, Haws N W.Jawitz J W, et al.Soil hydraulic properties as ecological indicators in forested watersheds impacted by mechanized military training[J].Ecological Indicators, 2007, 7(3): 589-597
    [113].Goncalves R A B, Folegatti M V.Gloaguen T V.et al.Hydraulic conductivity of a soil irrigated with treated sewage effluent[J].Geoderma, 2007.139(1-2): 241-248
    [114].Miressa Duffera J G W.Randy W.Spatial variability of Southeastern U.S.Coastal Plain soil physical properties:Implications for site-specific management[J].Geoderma, 2007, 137:327-329
    [115].Burrough P A.Multiscal source of spatial variability in soil variation [J].Journal of Soil Science, 1983, 34:577-597
    [116].Brocca L, Morbidelli R, Melone F, et al.Soil moisture spatial variability in experimental areas of central Italy[J].Journal of Hydrology, 2007.333(2-4): 356-373
    [117].Buttafuoco G, Castrignano A.Study of the spatio-temporal variation of soil moisture under forest using intrinsic random functions of order k[J].Geoderma,2005,128(3-4):208-220
    [118].Loague K,Green R E.Statistical and graphical methods for evaluating solute transport models:overview and application[J].Journal of Contaminant Hydrology,1991,7:51-73
    [119].徐英,陈亚新,史海滨,等.土壤水盐空间变异效应的研究[J].农业工程学报,2004,23(3):1-5
    [120].Yoon H,Valocchi A J,Werth C J.Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL)spill zone architecture in heterogeneous porous media[J].Journal of Contaminant Hydrology,2007,90(3-4):159-183
    [121].Blanco-Canqui H,Lal R,Post W M,et al.Soil hydraulic properties influenced by corn stover removal from no-till corn in Ohio[J].Soil and Tillage Research,2007,92(1-2):144-155
    [122].刘晶,刘学录.内陆河灌区土壤水分空间变异的尺度效应[J].甘肃农业大学学报,2006,41(3):86-90
    [123].Peters-Lidard C D,Pan F,Wood E F.A re-examination of modeled and measured soil moisture spatial variability and its implications for land surface modeling.[J].Advances in Water Resources,2001,24(9-10):1069-1083
    [124].Entin J K,Robock A,Vinnikov K Y,et al.Temporal and spatial scales of observed soil moisture variations in the extratropics.[J].Journal of Geophysical Research—Atmospheres 2000,105(D9):11865-11877.
    [125].Zhang Z B,Shao H B,Xu P,et al.On evolution and perspectives of bio-watersaving[J].Colloids and Surfaces B:Biointerfaces,2007,55(1):1-9
    [126].黄德青,张耀生,赵新全,等.祁连山北坡主要草地类型的土壤水分动态研究[J].草业科学,2005,08):
    [127].Heuvelink G B M,Webster R.Modelling soil variation:past,present,and future[J].Geoderma,2001,100:269-301
    [128].蒋太明,刘海隆,刘洪斌,等.黄壤坡地土壤水分入渗垂直变异特征分析[J].农业工程学报,2004,18(3):49-56
    [129].Paul T,Imhoff D R R,Marja Englund.Review of state of the art methods for measuring water in landfills[J].Waste Management,2007,27:729-745
    [130].杨文治.黄土高原土壤水分状况分区与造林问题[J].水土保持通报,1981,2:13-19
    [131].冰沈,王文焰.降雨条件下黄土坡地表层土壤水分运动实验与数值模拟的研究[J].水利学报,1992,6:29-35
    [132].董方红.山西省旱地小麦土壤水分变化规律与封闭性栽培技术的研究[D].山西农业大学2000届硕士学位论文:山西太谷.
    [133].王殿武,周大迈.太行山区旱作农田土壤水分动态及水肥产量效应研究[J].干旱地区农业研究,1998,12(6):32-40
    [134].李鼎新,陈国良.早熟马铃喜农田土壤水分动态和地膜水分效应[J].水土保持通报,1996,16(6):36-42
    [135].Laio F,Porporato A,Ridolfi L,et al.Plants in water-controlled ecosystems:active role in hydrologic processes and response to water stress:Ⅱ.Probabilistic soil moisture dynamics[J].Advances in Water Resources,2001,24(7):707-723
    [136].刘鹄,赵文智,何志斌,等.祁连山浅山区草地生态系统点尺度土壤水分动态随机模拟[J].中国科学D辑:地球科学.2007,37(9):1212-1222
    [137].石辉,刘世荣,孙鹏森,李秧秧.黄土丘陵区人工油松林地土壤水分动态的时间序列分析[J].山地学报,2004,22(4):411-414
    [138].郭晶,景元书,王春林.等.基于土壤水分平衡模型的广东干旱时空分布特征[J].中国农业气象2008,29(3):353-374.
    [139].闫峰,覃志豪,李茂松,等.农业旱灾监测中土壤水分遥感反演研究进展[J].自然灾害学报,2006,15(6):114-121
    [140].刘洪斌,武伟,魏朝富.基于神经网络的土壤水分预测建模研究[J].水土保持学报,2003,5:59-62
    [141].杨绍辉,王一鸣,郭正琴,等.ARIMA模型预测土壤墒情研究[J].干旱地区农业研究,2006,24(2):114-118
    [142].刘洪斌,武伟,魏朝富,等.AR模型在土壤水分动态模拟中的应用[J].山地学报 2004,22(1):121-125.
    [143].王克林,傅伟,谢小立,等.红壤坡地土壤水分时间序列分析[J].应用生态学报,2007,18(2):297-302
    [144].康绍忠.土壤水分动态的随机模拟研究[J].土壤学报,1990.27(1):17-24
    [145].李瑞雪,罗长寿,魏朝富.时序模型在四川盆地土壤水分动态预报中的应用[J].西南农业大学学报(自然科学版),2002,24(5):464-466
    [146].杨贵羽,陈亚新.土壤水分、盐分空间序列初步研究[J].灌溉排水,2002,21(3):32-35
    [147].曹星平,易东云,吴翊.基于神经网络的时间序列预测方法进展[J].电脑与信息技术,1999,6:1-3
    [148].张圣微,雷玉平,郑力,等.基于空间数据库和GIS的SPAC系统水分运动模型[J].农业工程学报,2008,24(4):1-8
    [149].王绍辉 任理,张福墁.日光温室黄瓜栽培条件下土壤水分动态的数值模拟[J].农业工程学报.2000,16(4):110-114
    [150].Vachaud G,Silans A P D,Balabanis P,et al.Temporal stability of spatially measured soil water probability density function.[J].Soil Sci.Soc.Am.J,1985,49:822-828
    [151].Kachanoski R G,Jong E D.Scale dependence and the temporal persistence of spatial patterns of soil water storage.[J].Water Resour.Res,1988,24:85-91
    [152].Zhang T B R.Temporal patterns and spatial scale of soil water variability in a small humid catchment.[J].Hydrology,1988,104:111-128.
    [153].Van Pelt R S,Wierenga P J.Temporal stability of spatially measured soil matric potential probability density function[J].Soil Sci.Soc.Am.J,2001.65:668-677
    [154].周启友,岛田纯.土壤水空间分布结构的时间稳定性[J].土壤学报,2003,40(5):683-690
    [155].zhou Q Y,Sato J,Sato A.Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography[J].Water Resour.Res,2001,37:273-285
    [156].Miller G R,Baldocchi D D,Law B E,et al.An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites[J].Advances in Water Resources,2007,30(5):1065-1081
    [157].Andrew W,Western S-L Z,Rodger B,et al.Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes[J].Journal of hydrology,2004,286:113-134
    [158].Grayson R,Blfschl,G.(Eds.).Spatial Pattern in CatchmentHydrology:Observations and Modeling.Cambridge University[M].Press C,UK.2000.
    [159].Western A W,Grayson R,Blo"schl G,et al.Observed spatial organisation of soil moisture and its relation to terrain indices.[J].Water Resources Research,1999,35(3):797-810
    [160].Yeh J-F,Eltahir E A B.Stochastic analysis of the relationship between topography and the spatial distribution of soil moisture[J].Water Resour.Res,1998,34(1251-1263.
    [161].Lin H S,Kogelmann W,Walker C,et al.Soil moisture patterns in a forested catchment:A hydropedological perspective[J].Geoderma,2006,131(3-4):345-368
    [162].戴洪刚 梁虹,黄法苏.喀斯特枯水、干旱、灾害初探[J].贵州师范大学学报(自然科学版),2005,23(4):28-33.
    [163].孟秦倩,王健,吴发启.黄土高原丘陵沟壑区:土壤水库调蓄能力分析[J].节水灌溉,2008,1:18-24
    [164].王俊,刘文兆,胡梦珺.黄土丘陵区小流域土壤水分时空变异[J].应用生态学报,2008,19(6):1241-1247
    [165].宋孝玉,李亚娟,蒋俊,等.非饱和土壤水分运动参数空间变异性研究进展与展望[J].地球科学进展,2008,23(6):416-816
    [166].Buczko U,Gerke H H.Estimating spatial distributions of hydraulic parameters for a two-scale structured heterogeneous lignitic mine soil[J].Journal of Hydrology,2005,312(1-4):109-124
    [167].Di Domenico A,Laguardia G,Fiorentino M.Capturing critical behaviour in soil moisture spatio-temporal dynamics[J].Advances in Water Resources,2007,30(3):543-554
    [168].Li Y D,White A,Zhu J.Zhang Estimating soil hydraulic properties of Fengqiu County soils in the North China Plain using pedo-transfer functions[J].Geoderma,2007,138:261-271
    [169].Pringle M J,Romano N,Minasny B,et al.Spatial evaluation of pedotransfer functions using wavelet analysis[J].Journal of Hydrology,2007,333(2-4):182-198
    [170].Li Y,Chen D,White R E,et al.Estimating soil hydraulic properties of Fengqiu County soils in the North China Plain using pedo-transfer functions[J].Geoderma,2007,138(3-4):261-271
    [171].Mueller L,Schindler U,Fausey N R,et al.Comparison of methods for estimating maximum soil water content for optimum workability[J].Soil and Tillage Research,2003,72(1):9-20
    [172].Pachepsky Y A,Rawls W J.Lin H S.Hydropedology and pedotransfer functions[J].Geoderma,2006,131(3-4):308-316
    [173].Buttafuoco G,Castrignano A B,Usoni E,et al.Studying the spatial structure evolution of soil water content using multivariate geostatistics[J].Journal of Hydrology,2005,311(1-4):202-218
    [174].Webster R,Olive M A.Statistical Methods in Soil and Land Resource Survey[M].Oxford University Press,Oxford.1990
    [175].Andales A A,Green T RA,huja L R,et al.Temporally stable patterns in grain yield and soil water on a dryland catena[J].Agricultural Systems,2007,94(2):119-127
    [176].Ridolfi L D O P,Porporato A.Stochastic soil moisture dynamics along a hillslope[J],J Hydrol,2003,272:264-275
    [177].张彩霞,杨勤科,李锐.基于DEM的地形湿度指数及其应用研究进展.2005,24(6):116-123
    [178],Yeh J-F,Eltahir E A B.Stochastic analysis of the relationship between topography and the spatial distribution of soil moisture.[J].Water Resour.Res,1998,34:1251-1263
    [179].Guntner A,Seibert J,Uhlenbrook,S.Modeling spatial patterns of saturated areas:An evaluation of different terrain indices.[J].Water Resource Research,2004,40:W05114
    [180].Lin HWheeler DBell Jet al.Assessment of soil spatial variability at multiple scales[J],Ecological Modelling,2005,182(3-4):271-290
    [181].Burrough P A.Soil variability:a late 20th century view[J],Soils Fertil,1993,56(529-562.
    [182].Heuvelink G B M,Webster,R.Modelling soil variation:past,present,and future[J],Geodenna,2001,100(269-301
    [183].中国气象局.土壤湿度的微波炉测定[J],QX/T75-2007,2007,中国标准出版社):
    [184].Campbell G S.Soil Physics with BASIC:Transport Models for Soil-Plant System.[J].Elsevier,Amsterdam,1985,150.
    [185].Campbell G S.A simple method for determining unsaturated conductivity from moisture retention data[J].Soil Sci,1974,117:311-314
    [186].Rawls W J,Brakensiek,D L.Estimation of soil water retention and hydraulic properties.In:Morel,S.(Ed.),Unsatured Flow in Hydrologic Modeling.Theory and Pratice[J].Kluwer Academic Publishers,1989,275-300
    [187].Brooks R H,Corey A Z Hydraulic properties of porous media[J].Colorado State University Hydrol,1964,3:27.
    [188].Vereecken H,Maes J,Darius P,et al.Estimating the soil moisture retention characteristic from texture,bulk density and carbon content[J].Soil Sci,1989,148:389-403
    [189].van Genuchten M T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.[J].Soil Sci.Soc.Am.J.,1980,44(892-898
    [190].Vachaud G,Vauclin M,Colombani J.Bilan hydrique dans le Sud-Tunisien:I.Caracterisation experimentale des transferts dans la zone non saturee[J],Journal of Hydrology,1981,49(1-2):31-43
    [191].Legates D R.M J a G J.Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation[J].Water Resour Res,1999,35:233-241
    [192].Wilcox B P,Brakensiek D L,Wight J R.Predicting runoff from rangeland catchments:A comparison of two models[J].Water Resour Res,1990,26(10):2401-2410
    [193].Laslett G M,Mcbratneyt A B,Pahl P J,et al.Comparison of several spatial prediction methods for soil PH[J].Journal of Soil Science,1987,38:325-341
    [194].Kobayashi K,Salamb M U.Comparing simulated and measured values using mean squared deviation and its components[J].Agron J,2000,92:345-352
    [195].Givi J,Prasher S O,Patel R M.Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point[J].Agricultural Water Management,2004,70(2):83-96
    [196].Seyfried M.Spatial variability constraints to modeling soil water at different scales[J].Geoderma,1998,85(2-3):231-254
    [197].Schachtschabel P,Blume H P,Bru¨mmer G.,et al.Lehrbuch der Bodenkunde[J].Ferdinand Enke Verlag,Stuttgart,Germany,1992,491
    [198].Schlichting E,Blume,H.-P,Stahr K.Bodenkundliches Praktikum,Eine Einfu¨hrung in pedologisches Arbeiten fu¨r O¨kologen.Pareys Studientexte[J].Blackwell Wissenschaftsverlag,Berlin,Germany,1995,81.
    [199].Pachepsky Y A G A K,Jacques D.Temporal persistence in vertical distributions of soil moisture contents[J].Soil Sci.Soc.Am.,2005,61(1576-1585.
    [200].李水根,吴纪桃.分形与小波[M].北京:科学出版社,2002.
    [201].姚贤良,程云生.土壤物理学[M].北京:农业出版社,1986.
    [202].王风,韩晓增,李海波,等.不同黑=土生态系统的土壤水分物理性质研究[J].水土保持学报,2006,20(6):67-70
    [203].张宇;吕世华.陆面过程模式对不同土壤物理性质的敏感性研究[J].冰川冻土,2001,3:269-275.
    [204].袁东海,陈浩.鄂东南红壤水分特性的研究[J].华中农业大学学报,1994,13(3):254-261
    [205].杨金玲,张甘霖,袁大刚.南京市城市土壤水分入渗特征[J].应用生态学报,2008,02:363-368
    [206].Im C J,Judith Y.Soil porosity and associated properties at roadside tree pits in urban Hong Kong//BurghardtW,Dornauf C,eds.First lntemational Con-ference on Soils ofUrban,Industrial,Traffic and Mining Areas[A].Essen,Germany:University of Essen,2000:51-56
    [207].杨金玲,张甘霖,赵玉国,等.城市士壤压实对土壤水分特征的影响——以南京市为例[J].土壤学报,2006,01:33-38
    [208].吴华山,陈效民,叶民标,等.太湖地区主要水稻土水力特征及其影响因素[J].水土保持学报,2005,01:181-187
    [209].周彩景,刘军,王益权,等.有机物质类型与含量对土壤持水性能的影响[J].西北农林科技大学学报(自然科学版),2008,12):115-128
    [210].胡浩云,孙建伟,穆征,等.由土壤水分特征曲线反推土壤孔隙分形维数[J].水利水电技术,2007,04:65-68
    [211].华孟,王坚.土壤物理学[M].北京:中国农业大学出版社,1993
    [212].蒋太明,魏朝富,谢德体,等.贵州中部喀斯特地区黄壤持水性能的研究[J].水土保持学报,2006,06:25-29
    [213].王风,韩晓增,李海波,等.不同黑土生态系统的土壤水分物理性质研究[J].水土保持学报,2006,06:67-70
    [214].孙中峰,周玉喜,朱金兆,等.晋西黄土丘陵区坡面刺槐林地土壤水分研究[J].中国水土保持科学,2007,05:43-49
    [215].Van Genuchten M T,Nielsen,D R.On describing and predicting the hydraulic properties of unsaturated soils[J].Ann.Geophys.,1985,3:615-628.
    [216].魏义长刘,康玲玲,等.土壤持水曲线van Genuchten模型求参的Matlab[J].土壤学报,1980,44:380-386
    [217].李春友,任理,李保国.利用优化方法求算van Genuchten方程参数[J].水科学进展,2001,12(4):473-4781
    [218].于金霞,郭会荣,方琼.非饱和土壤水分运动参数的确定——以河南驻马店亚粘土为例[J].地下水,2006,04:25-27
    [219].来剑斌,王全九.土壤水分特征曲线模型比较分析[J].水土保持学报,2003,01:137-140
    [220].姚贤良.华中丘陵红壤的水分问题Ⅱ.旱地红壤的水分状况[J].土壤学报,1998,35(1):16-24
    [221].陈效民,潘根兴,沈其荣,等.太湖地区主要水稻土的土壤水分参数研究[J].水土保持学报,2001,04:96-98
    [222].魏飒,任树梅.承德围场地区土壤水分扩散率的研究[J].中国农村水利水电,2007,01:55-61
    [223].刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展[J].水利学报,2004,02):68-76
    [224].Marcel G.Schaap F J L,Martinus Th,van Genucheten.ROSETTA:a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[J].Journal of Hydrology,2001,251:163-176
    [225].Stolte J,van Venrooij B,Zhang G,et al.Land-use induced spatial heterogeneity of soil hydraulic properties on the Loess Plateau in China[J],CATENA,2003,54(1-2):59-75
    [226].吴华山,陈效民,叶民标,等.太湖地区主要水稻土水力特征及其影响因素[J].水土保持学报,2005,19(1):181-184
    [227].单秀枝,魏友庆,严慧峻,等.土壤有机质含量对土壤水动力学参数的影响[J].土壤学报,1998,35(1):1-9
    [228].Wosten J H M,Pachepsky Y A,Rawls W J.Pedotransfer functions:bridging the gap between available basic soil data and missing soil hydraulic characteristics[J].Journal of Hydrology, 2001, 251:123-150
    [229].李保国,龚元石,左强,等.农田土壤水的动态模型及应用[M].北京:科学出版社,2000
    [230].Marcel G, Schaap A N, van Genuchten M Th.Comparison of Models for Indirect Estimation of Water Retention and Available Water in Surface Soils[J].Vadose Zone Journal, 2004, 3:1455-1463
    [231].Kvaerno S H, Haugen L E, Borresen T.Variability in topsoil texture and carbon content within soil map units and its implications in predicting soil water content for optimum workability[J].Soil and Tillage Research, 2007, 95(1-2): 332-347
    [232].Loos C, Gayler S, Priesack E.Assessment of water balance simulations for large-scale weighing lysimeters[J].Journal of Hydrology, 2007, 335(3-4): 259-270..
    [233].Nielsen D R.Development of pedotransfer functions in soil hydrology[J].Geoderma, 2006, 136(1-2):470-472
    [234].Millan H, Gonzalez-Posada M.Modelling soil water retention scaling.Comparison of a classical fractal model with a piecewise approach[J].Geoderma, 2005, 125(1-2): 25-38
    [235].Uwe Buczkoa H H G.Estimating spatial distributions of hydraulic parameters for a two-scale structured heterogeneous lignitic mine soil[J].Journal of Hydrology, 2005, 312:109-124
    [236].Loague K M, Freeze R A.A comparison of rainfall-runoff modelling techniques on small upland catchments[J].Water Resources Research, 1985, 21:329-348
    [237].Yang J D J, Greenwood D L, Rowell G A, et al.Statistical methods for evaluating a crop nitrogen simulation model, NABLE.[J].Agric.Syst, 2000, 64:37-53
    [238].Kumar, A.Dispersion and risk modeling.Department of Civil Engineering, University of Toledo, 2000.
    [239].Schaap M G, Leij F J, Genuchten M T V.Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity[J], Soil Science Society of Americal Journal, 1998,62:847-855
    [240].Schaap M G, Bouten W Modeling water retention curves of sandy soils using neural networks[J].Water Resources Research, 1996, 32:3033-3040
    [241].Rawls W J, Pachepsky Y, ARitchie J C, et al.Effect of soil organic carbon on soil water retention[J].Geoderma, 2003, 116(1-2): 61-76
    [242].Rawls W, Brakensiek D L.Estimating soil water retention from soil properties.[J].J.Irrig.Drain.Div.Proc.ASCE, 1982, 166-171
    [243].Rawls W J, Brakensiek D L, Soni B.Agricultural management effects on soil water processes.Part Ⅰ.Soil water retention and Green Camnt parameters.[J].Trans.ASAE, 1983, 26: 1747-1752
    [244].Jong R D.Soil water desorption curves estimated from limited data[J].Can.J.Soil Sci., 1983, 63:697-703
    [245].Jamison V C, Kroth E M.Available moisture storage capacity in relation to texture composition and organic matter content of several Missouri soils[J].Soil Sci.Soc.Am.Proc, 1958,22:189-192
    [246].Calhoun F G,Hammond L C,Caldwell R E.Influence of particle size and organic matter on water retention in selected Florida soils[J].Soil Crop Sci.Fla.Proc,1973,32:111-113
    [247].Lal R.Physical properties and moisture retention characteristics of some Nigerian soils[J].Geoderma,1979,21:209-223
    [248].Danalatos N G,Kosmas C S,Drissen P M,et al.Estimation of the draining soil moisture characteristics from standard data as recorded in soil surveys[J].Geoderma,1994,64:155-165
    [249].Puckett W E,Dane J H,Hajek B F.Physical and mineralogical data to determine soil hydraulic properties[J].Soil Sci.Soc.Am.J.,1985,49:831-836
    [250].王全九,邵明安,郑纪勇.土壤中水分运动与溶质迁移[M].中国水利水电出版社,2007
    [251].Mertens J,Jacques D.Characterisation of the field-saturated hydraulic conductivity on a hillslope:in situ ring pressure infiltrometer measurements[J].Journal of Hydrology,2002,263:217-229
    [252].Rodriguez-Iturbe I P A,eds..Ecohydrology of Water Controlled Ecosystems:Soil Moisture and Plant Dynamics[A].London:Cambridge University Press,2005
    [253].Porporato A D,Odorico P,Laio F,et al.Ecohydrology of water-controlled ecosystems[J].Advances in Water Resources,2002,25(8-12):1335-1348
    [254].Tansey K JMillington A CBattikhi A Met al.Monitoring soil moisture dynamics using satellite imaging radar in northeastern Jordan[J].Applied Geography,1999,19(4):325-344
    [255].信秀丽,张佳宝.朱安宁.土壤水吸力空间分布规律的时间稳定性研究[J].农业工程学报,2008,24(5):15-20
    [256].Guber A KGish T JPachepsky Y Aet al.Temporal stability in soil water content patterns across agricultural fields[J].CATENA,2007,09(010):440
    [257].Starks P J,Heathman G C,Jackson T J,et al.Temporal stability of soil moisture profile[J].Journal of Hydrology,2006,324(1-4):400-411
    [258].Campbell J B.Spatial variation of sandcontentand pH within single contiguous delineation of two soil mapping units[J].Soil Sci Am J,1978,42(460-464
    [259].Bourennane H,D K,Couturier A..Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities[J].Geoderma,2000,97:255-271
    [260].李卫东,李宝国,石元春.农田空间变异性特征与土壤水转化模型的研究[M]//石元春.节水农业应用基础研究进展,北京:中国农业出版社,1995
    [261].陈浮,濮励杰,彭补拙,等.新疆库尔勒市土地利用变化对土壤性状的影响研究[J].生态学报,2001,21(8):1290-1295.
    [262].Kamgar A,Hopmans,J W,Wallender W W,et al.On plot size and sample number for neutron probe measurements in small field trials[J].Soil Sci.,1992,156:213-224
    [263].Korsunskaya L P,Gummatov N G.,Pachepsky Y A.Seasonal changes in root biomass,carbohydrate content,and structural characteristics of Gray Forest soil.[J].Eurasian Soil Sci,1995,27:45-52
    [264].Tallon L K,Si B C.representative soil water benchmarking for environmental monitoring[J].Environ Infor Arch,2003,1:581-590
    [265].Cassel D K,Wendroth O,Nielsen D R.Assessing spatial variability in an agriculture experiment station field:opportunities arising from spatial dependence[J].Agron,2000,92:706-714
    [266].Gomez-Plaza A Alvarez-Rogel J,Albaladejo J,et al Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment[J].Hydrological Processes,2000,14:1261-1277
    [267].Rolston D E,Biggar J W,Nightingale H I.Temporal persistence of spatial soil-water patterns under trickle irragation[J].Irrig.Sci,1991,12:181-186
    [268].Mart(?)nez-Fern(?)ndez J C A.Mean soil moisture estimation using temporal stability analysis[J].Hydrol,2005,312:28-38
    [269].Kachanoski R G,de Jong E.Scale dependence and the temporal persistence of spatial patterns of soil water storage.[J].Water Resour.Res,1988,24:85-91
    [270].Vachaud A,De Silans,Balabanis P,et al.Temporal stability of spatially measured soil water probability density function.[J].Soil Sci.Soc.Am.J,1985,49:822-828
    [271].Jacobs J M,Mohanty B P,Hsu E C,et al.field scale variability,time stability and similarity of soil moisture[J].Remote Sens.Environ.,2004.SMEX02,92:436-446
    [272].Choi M,Jacobs J M.Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints[J].Advances in Water Resources,2007,30(4):883-896
    [273].Robinson M,Dean T J.Measurement of near surface soil water content using a capacitance probe[J].Hydrological Processes,1993,7:77-86
    [274].Hills T C,Reynolds S G.Illustrations of soil moisture variability in selected areas and plots of different size[J].Journal of Hydrology,1969,8:27-47
    [275].左小安,赵学勇,赵哈林,等.科尔沁沙地沙质草场土壤水分对干旱和降雨响应的空间变异性[J].水土保持学报,2005,19(1):140-144
    [276].张伟,陈洪松,王克林,等,喀斯特峰丛洼地土壤养分空间变异特征及影响因子分析[J].中国农业科学,2006,39(9):1828-1835
    [277].薛正平,杨星卫,段项锁,等.土壤养分空间变异及合理取样数研究[J].农业工程学报,2002,18(4):6-9
    [278].Warrick A W,Nielsen D R.Scaling field-measured so il hydraulic p ropert ies using a similar media concept[J].Water Resour.Res,1977,13:355-362
    [279].Issaks E H,Srivastava R M.An introduction to applied geostatistics[M].Oxford University Pree,New York,USA,1989
    [280].Martinez-Fernandez J C A.Temporal stability of soil moisture in a large-field experiment in Spain[J].Soil Sci Soc Am J,2003,67(6):1647-1656
    [281].王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999
    [282].李翔,潘瑜春,赵春江,等.利用不同方法估测土壤有机质及其对采样数的敏感性分析[J].地理科学,2007,27(5):689-694
    [283].Tromp-van Meerveld H J,McDonnell J J.On the interrelations between topography,soil depth,soil moisture,transpiration rates and species distribution at the hillslope scale[J].Advances in Water Resources,2006,29:293-310
    [284].郭庆荣,钟继洪,张秉刚,等.南亚热带丘陵赤红壤水库容状况及水分问题研究[J].农业系统科学与综合研究,2004,04:254-259
    [285].李洪建,王孟本,陈良富,等.不同利用方式下土壤水分循环规律的比较研究[J].1996,16(2):24-28
    [286].Qiu Y,Fu B J,Wang J,et al.Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau.China[J].Journal of Hydrology,2001a,3:243-263
    [287].Qiu Y,Fu B J,Wang J,et al.Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau,China[J].Journal of Arid Environments,200b,49:723-750
    [288].Crave A G-O C.The influence of topography on the time and space distribution of soil surface water content[J].Hydrological Processes,1997,11:203-210
    [289].中慧娟,严昌荣,戴亚平.农田土壤水分预测模型的研究进展及应用[J].生态科学,2003,22(4):366-370
    [290].马柱国.魏和林,符淙斌.中国东部区域土壤湿度的变化及其与气候变率的关系[J].气象学报,2000,58((3)):278-287
    [291].舒素芳,高维英,赵荣.冬小麦分层农田土壤水分平衡模型[J].陕西气象,2002,(2):12-16
    [292].佟长福,郭克贞,余国英,等.饲草料地土壤水分动态变化规律及其预测的人工神经网络模型的研究.2007.38(5):844-847
    [293].Kim S,Kim H.Stochastic analysis of soil moisture to understand spatial and temporal variations of soil wetness at a steep hillside[J].Journal of Hydrology,2007,341(1-2):1-11
    [294].博伯杰陈利顶,邱扬,等.黄土丘陵沟壑区土地利用结构与生态过程[M].商务印书馆出版,2002,
    [295].严昌荣,中慧娟,何文清,等.基于多元回归方法的土壤水分预测模型研究.2008,26(3):241-245
    [296].Mayer D G,Stuart M A,Swain A J.Regression and real-world data on model output:An appropriate overall test of validity[J].Agri.Syst,1994,45:93-104..
    [297].Karie Lyne Ensign E A W.Frederick J,Longstaffe.Microenvironmental and seasonal variations in soil water content of the unsaturated zone of a sand dune system at Pinery Provincial Park,Ontario,Canada[J].2006,136:788-802

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700