用户名: 密码: 验证码:
多壁碳纳米管的掺杂及其气敏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有丰富的孔隙结构、大的比表面积和很高的表面能,是一种具有广阔应用前景的气敏材料。论文对多壁碳纳米管的掺杂处理及其对甲醛和二甲苯这两种有机挥发物的气敏特性进行了初步的研究。
     室温下,碳纳米管被认为是p型掺杂的半导体,基于多壁碳纳米管的传感器气敏膜吸附了还原性的有机气体分子后,碳管表面的空穴载流子会减少,从而导致气敏膜的导电性能减弱。在恒定的电压下,通过检测传感器的电流的变化对其电导的变化量进行衡量。传感器电导的变化与所吸附的待测气体的浓度成一定的比例关系,气体浓度越大,电流降幅也随之增大。
     室温下,多壁碳纳米管对甲醛和二甲苯两种气体显示出良好的灵敏度和选择性,且响应非常稳定。在此基础上,对多壁碳纳米管进行了超声掺杂阳离子,化学还原掺杂Pd,电化学还原掺杂Pd,以及直接用缩合剂在多壁碳纳米管表面修饰十二胺等处理,并测试了掺杂前后多壁碳纳米管对甲醛和二甲苯的气敏响应的变化。不同方法改性后的多壁碳管对于两种待测气体的灵敏度和选择性均有一定变化。掺杂的金属粒子的大小和均匀程度对传感器的响应影响较大。化学还原镀钯处理后传感器的气敏性能提升最为明显,且对两种气体的选择性增强。
     为了进一步提高传感器的选择性,对多壁碳纳米管进行了多重掺杂的处理。对化学还原镀钯后的多壁碳纳米管继续进行电化学镀钯处理,并测试碳管的气敏性能;将十二胺修饰的多壁碳纳米管涂布于定向碳纳米管阵列表面,作为具有立体结构的复合气敏材料。这两种方法制备的碳纳米管复合气敏材料对待测气体均显示出良好的选择性,证明多重掺杂是非常有潜力的一种提升多壁碳纳米管选择性气敏响应的制备方法。
     掺杂不同的纳米颗粒后,多壁碳纳米管表面与吸附的气体分子之间的电荷转移会因为纳米颗粒的催化作用而发生改变。化学还原镀钯后,Pd粒子可以强化二甲苯分子与碳管之间的电荷交换,从而大幅度的提升碳管对其的气敏响应;修饰了十二胺的多壁碳纳米管则由于长烃链的空间阻隔作用,对二甲苯的气敏响应不显著,而对小分子的甲醛显示出较高的灵敏度和选择性。论文对基于多壁碳纳米管的气体传感器掺杂前后灵敏度和选择性的改变进行了初步的理论分析和计算。
Carbon nanotube has porous microstructure with high surface area and energy, which makes it a promising gas sensing material. In this dissertation, the preparation and characteristic of gas sensor based on doping multi-wall carbon nanotubes (MWNTs) for formaldehyde and xylene detection were discussed.
     Carbon nanotube was thought to be p-type semiconductor at room temperature. After adsorption of reducing gas, the density of the hole carrier will decrease, leading to a weakening conductibility of the sensing membrane. With a constant voltage, change of the conductance could be calculated by the change of current. The electrical conductivity of the dried carbon nanotubes film decreased when the electrode was exposed to formaldehyde and xylene. And there was a good linear correlation between the decreasing amplitude and the gas concentration.
     MWNT showed highly sensitivity and selectivity during gas detection at room temperature. Cation-doped MWNTs, Pd modified MWNTs, electric plating MWNTs and lauryl amine modified MWNTs were all prepared and detected. The size and uniformity of the doped metal grain were found important to the doping effects. Notable lifting was found to the sensitivity of Pd loaded MWNTs, which also shows intensifying selectivity to xylene.
     Multiple doping processing to MWNTs was performed to lift the selectivity of the gas sensor. MWCNTs loaded with palladium by reduction method were then electric plated before used as sensing material. And lauryl amine modified MWNTs were used as doping agent to the highly-ordered carbon nanotubes arrays. Sensing membrane was then fabricated by the complexes of MWNTs and highly-ordered carbon nanotubes arrays. Sensors based on Multiple doping MWNTs show better selectivity, which suggests that Multiple doping processing could be a promising treating method to lift the selectivity of gas sensors.
     Doping with different metal particles, charge transmission between the MWNTs and gas could be impacted by their catalysis function. Pd nano-particles loaded by reduction method generated dramatic sensing response to xylene by strengthening the charge delivery between xylene and MWNTs. Lauryl amine modified MWNTs exhibit outstanding sensitivity and selectivity to formaldehyde with long hydrocarbon chain which could obstruct the adsorption of xylene. Preliminary theoretical analysis and calculation were carried out in the dissertation to study the sensing characteristic of the doping MWNTs.
引文
[1]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58.
    [2]Ajayan P M. Nanotubes from carbon. Chemical Reviews.1999,99(7):1787-1799.
    [3]Ebbesen TW,Ajayan PM.Large-scale synthesis of carbon nanotubes. Nature,1992 (358):220-222
    [4]Ebbesen TW, Takada T.Topological and Sp3 defect structures in nanotubes. Carbon,1995, 33(7):973-978
    [5]Thess A, Lee R, Nikolaev P, et al.Crystalline ropes of metallic carbon nanotubes. Science, 1996(12):35-40
    [6]Guo T, Nikolaev P, Rinzler AG,et al.Self-assembly of tubular fullerenes. J.Phys.Chem,1995, 99(27):10694-10697
    [7]Yacaman MJ, Yoshida MM, Rendon L.Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett,1993,62(6):657-659
    [8]Cho WS,Hamada E,Kondo Y,et al.Synthesis of carbon nanotubes from bulk polymer. Appl Phys Lett,1996,69(2):278-279
    [9]Daschowdhury K, Howard JB, Vadersande JB.Fullerenic nanostrctures in flames. Journal of Materials research,1996, 11(2):341-347
    [10]Yamamoto K,Koga Y,Fujiwara S,et al.New method of carbon nanotube growth by ion-beam irradiation. Appl Phys Lett,1996,69(270:4174-4175
    [11]Hsu WK, Terrones M,Hare JP,et al.Electrolytic formation of carbon nanostructures. Chemical Physics Letters,1996,262(1-2):161-166
    [12]Chernozatonskii LA,Valchuk KP,Kiselev NA,et al.Synthesis and structure investigation of alloys with fullerence and nanotube inclusion. Carbon,1997,35(6):749-753
    [13]朱宏伟,吴德海,徐才录等。碳纳米管,机械工业出版社,2003年第一版,122-123,133-136,183,195-198,269-288
    [14]Ebbesen TW,Lezec HJ,Hiura H,et al.Electrical conductivity of individual carbon nanotubes.Nature,1996,382(6586):54-56
    [15]Satio R,Fujita M,Dresselhaus G,et al.Electronic strucure and growth mechanism of carbon tubules.Materials Science and Engineering,1993, B19:185-191
    [16]Dai H, Wong EW, Lieber Cm. Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes. Science (272):523-526
    [17]Charlier JC, Michenaud JP. Phys Rev Lett,1993(70):1858.
    [18]Huang YH,Okada M,Tanaka K,et al.Estimation of superconducting transition temperature in metallic carbon nanotubes. Phys Rev B,1996,53(9):5129-5132
    [19]黄宛真,张孝彬,孔凡志等。钾掺杂多壁碳纳米管储氢性能研究,化学物理学报,2002,15(1):51-55
    [20]Ye Y,Ahn C C, Witham C, Fultz B, et al. Appl. Phys. Lett,1999,74:2307.
    [21]J. Kong, N.R. Franklin, C. Zhou, et al. Nanotube molecular wires as chemical sensors, Science,287 (2000):622-625.
    [22]S.Chopra, A.Pham, J.Gaillard, et al.Appl.Phys.Lett,80(2002):4632
    [23]S.GWang, Qing Zhang, D.J.Yang, etal, Multi-walled carbon nanotube-based gas sensors for NH3 detecion. Diamond and Related Materials.2004(13):1327-1332.
    [24]Jing Li, Yijiang Lu, Qi Ye, et al. Carbon Nanotube Sensors for Gas and Organic Vapor Detection, Nano Letters,2003(7):929-933
    [25]C. Cantalini, L. Valentini, I. Armentano, L. Lozzi, J.M. Kenny, S. Santucci; Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD; Sensors and Actuators B 95 (2003) 195-202.
    [26]Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science.2000,287(5459):1801-1807.
    [27]M. Penza, F. Antolini, M. Vittori Antisari. Carbon nanotubes as SAW chemical sensors materials. Sensors and Actuators B,2004(100):47-59.
    [28]Zhao J, Buldum A, Han J, et al. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology.2002,13(2):195-200.
    [29]Kong J, Chapline M G, Dai H J. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv.Master,2001,13(18):1384-1386.
    [30]O.K.Varghese, P.D.Kichambre, D.Gong, K.G.Ong, E.C.Dicky, C.A.Grimes; Gas sensing characteristics of multi-wall carbon nanotubes; Sensors and Actuators B 81 (2001) 32-41.
    [31]A.Modi, N.Koratkar, E.Lass, et al. Miniaturized Gas Ionization Sensors Using Carbon Nanotubes.Nature 2003,424:171-174.
    [32]Cahill PA, Rohlfing CM. Tetrahedron.1996,52:5247
    [33]Hiura H, Ebbesen TW, Tanigaki K. Adv Mater,1995,7:275
    [34]Tsang SC, Harris PJF, Green MLH, Nature,1993,362:520
    [35]Liu J, Rinzler A G, Dai H, et al. Science.1998,280(5367):1253-1256
    [36]Hamon MA, Chen J, Hu H, et al. Adv Mater.1999,11:834
    [37]Dai HJ. Surf Sci.2002 500:218
    [38]Kruger P,Rakotomahevitra A,Parlevbas,et al. Phys Rev B.1998,57:5276
    [39]Menon M, Andriotis A, Froudakis G Chem Phys Lett.2000,320:425
    [40]Zhang Y, Franklin N, Chen R, Dai HJ. Chem Phys Lett.2000,331:35
    [41]Star A, Stoddart JF, Steuerman D, et al. Angew Chem Int Ed.2001,40:1721
    [42]Fan JH, Wan MX, Zhu DB, et al. Synth Metal.1999,102:1266
    [43]Frachowiak E, Jurewicz K, Delpeux S, et al. J Power Sources.2001,97-98:822
    [44]Sun Y, Wilson SR, Schuster DI. J Am Chem Soc.2001,123:5348
    [45]Sano M, Kamino A, Okamura J, et al. Science.2001,293:1299
    [46]Bahr JL, Yang J, Kosynkin DV,et al. J Am Chem Soc.2001,123:6536
    [48]Peng S, Cho K J, Qi P F, et al. Ab initio study of CNT NO2 gas sensor. Chemical Physics Letters,2004,387(4-6):271-276.
    [49]郭淼,陈金霞,陈文菊,氯化铜掺杂的多壁碳纳米管对甲醛的气敏响应,传感技术学报,(已录用)。
    [50]郭淼,潘敏,陈文菊,化学还原镀钯的多壁碳管室温下对苯的气敏响应研究,分析化学,(已录用)。
    [51]成会明.纳米碳管制备、结构、物性及应用,化学工业出版社,2002:180,418-432
    [52]杨帆,许文。人造板中的甲醛释放及其检测方法,林产工业,1997,24(6):39-42
    [53]Afkhami Abbas, Rezsei Mostafa. Sensitive Spectrophotometric Determination of Formaldehyde by Inhibition of the Malachite Green-sulfite Reaction. Microchem J,1999,63(2): 243-249.
    [54]Nakano Nobuo, Nagashima Kunio. An Automatic Monitor of Formaldehyde in air by a Monitoring Tap Method. J Environ Monit,1999,1(3),255-258
    [55]Paul Thomas C L,Meunier F, Veasey C A. Effect of Relative Humidity on the Determination of HCHO with the NIOSH 3500 method. Anal Common,1998,35(3):103-105.
    [56]Robert R Miksch, Douglas W Anthon, Leah Z Fanning. Modified Pararosaniline Method for the Determination of Formaldehyde. Anal Chem,1981,53 (13):2118-2123.
    [57]Paul Thomas CL, Charlotte D McGill, Rorbert Towill. Determination of Formaldehyde by Conversion to Hexahydrooxazolo[3,4-a]Pyridine in a Denuder Tube with Recovery by Thermal Desorption, and Analysis by Gas Chromatography-Mass Spectrometry. Analyst, 1997,122:1471-1476.
    [58]Ge Jiamning. Determination of Formaldehyde in Air by HPLC. Journal of Hygiene Research, 1994,23 (3):138-139.
    [59]Spahn E, Saar D, Rieekhoff M.Automatical Flowchannel Quartz Cell through Voltammetry in Micro-channel Quartz Cell.Chem Labor Biotech,1998,49(11):434-436
    [60]Feige K,Ried T.Bachmann K.Determination of Formaldehyde by Capillary Electrophoresis in the Presence of a Dihydroxyacetone Matrix. Journal of Chromatography,1996, A730(1-2): 333-336.
    [61]Wing Hong-can, Tian Yao-xie. Adsorption Voltammetric Determination of μg·L-1 Level Formaldehyde Via insitu Derivatization with Girard's Reagent. Anal Chim Acta,1997,339 (1-2): 173-179.
    [62]Allan L Lazrus, Laren L Fong, John A Lind. Automated Fluorometric Determination of Formaldehyde in Air. Anal Chem,1988(60):1074-1078.
    [63]Laura P, Thomas K, Joseph. Develpoment of a Protable Continuous Formaldehyde Monitor for Field and Indoor Use.Adv Air Pollute,1998(5):89-97
    [64]Kiba N,Sun Lm,Yokose S,et al.Determination of Nano-molar Levals of Formaldehyde in Drinking Water Using Flow-injection systerm with Immobilized Formaldehyde Dehydrogenase after off-line Solidphase Extraction.Anal Chim acta,1999,378(l-3):169-175
    [65]Slawinska D.Slawinski J. Chemiluminescent Flow Method for Determination of Formaldehyde.Anal Chem,1975,47(13):2101-2109.
    [66]Lorrain J M, Fortune C R,Dellinger B. Sampling and Ion Chromatographic Determination of HCHO and Acetsldehyde. Anal Chem,1981,53(8):1302-1305
    [67]Tuaton E C, Winer A M. Graham R A. et at. Atmospheric Measurements of Trace Pollutants by Kilometer-Pathlength Fourier-transform-IR Spectroscopy. Adv Environ Sci Technol,1980(10): 259-300.
    [68]曹江荣,张慧林,何祥容.光离子检测器在空气中微量芳烃检测中的应用,聚酯工业,2006,19(1):42-44
    [69]周考文,赵艳霞,徐峥等.纳米复合材料催化发光法测定空气中的苯系物,分析实验室,2006,25(1):13-16
    [70]金岚.毛细管气相色谱法同时测定空气中三苯、萘,中国卫生检验杂志,2005,15(8):944
    [71]J. Gutierrez, J. Getino, M.C. Horrillo, L. Ares, J.I. Robla, C. Garcia, I. Sayago; Electrical characterization of a thin film tin oxide sensor array for VOCs detection. Thin Solid Films,317 1998:429-431.
    [72]P. Ivanov, J. Hubalek, K. Malysz, J. Prasek, X. Vilanova, E. Llobet, X. Correig. A route toward more selective and less humidity sensitive screen-printed SnO2 and WO3 gas sensitive layers; Sensors and Actuators B,2004,221-227.
    [73]季振国,孙兰侠,何振杰等.可鉴别室内有害气体的铟锡氧化物薄膜气敏特性研究,传感技术学报,2004(2):277-279。
    [74]C.W. Lin, Y.L. Liu, R. Thangamuthu. Investigation of the relationship between surface thermodynamics of the chemically synthesized polypyrrole films and their gas-sensing responses to BTEX compounds, Sensors and Actuators B,94 (2003):36-45.
    [75]C.W. Lin, B.J. Hwang, C.R. Lee. polypyrrole-poly(vinyl alcohol) thin film exposed to ammonia gas. Materials Chemistry and Physics 58 (1999) 114-120.
    [76]M.C. Gallazzi, L. Tassoni, C. Bertarelli, et al. Poly(alkoxy-bithiophenes) sensors for organic vapours. Sensors and Actuators B,88(2003):178-189.
    [77]潘小青,刘庆戒。气体传感器及其发展,东华理工学院学报,2004,27(1):89-93
    [78]刘崇进,郑大日,陈明光等。气体传感器的发展概况和发展方向。计算机自动测量与控制,1999,7(2):54-56
    [79]Frank. K.Tlttel. Detection of trace gas contaminants using diode laser based methods. Plen 4(Pleary), CIEO, Pacific Rim,99,7.
    [80]Zeev Rosenzweig, Raoul Kopelman. Analytical properties of miniaturized oxygen and glucose fiber optic sensors, sensors and actuators B,35-36(1996):475-483.
    [81]Ruby N. Ghosh, D.J. Osbom,Gregory L. Baker. Fiber optic oxygen sensor for power plant application.IEEE,2003:807-808.
    [82]李英,杨集,冯十维,光纤气体传感器研究进展,传感器世界,2005年第1期,7-11.
    [83]Limin Tong, Rafael R.Gattass, Jonathan B. Ashcom, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature,2003(426):816-819.
    [84]许宏高,高文秀,纳米镀金反射式甲烷气体光纤传感器的制作,纳米科技,2004(6):27-30.
    [85]Cantalini C, Valentini L, Armentano I, et al. Carbon nanotubes as new materials for gas sensing applications. Journal of the European Ceramic Society.2004,24(6):1405-1408.
    [86]侯振雨,谷永庆,徐甲强,王焕新.纳米CuO材料的甲醛气敏性研究,郑州轻工业学院学报:自然科学版,2005,20(2):42-43
    [87]徐红燕,李梅,刘秀琳等。水处理对Sn02厚膜气敏传感器性能的影响,功能材料,2005,36(9):1415-1417
    [88]夏晓东,刘艳丽,蒋健晖等。由白钨酸制备WO3纳米颗粒薄膜NO2传感器,传感技术学报,2005,18(1):28-31
    [89]Comnini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts.A.P.L,2002,81(10):1869-1871.
    [90]Peng S, Cho K J, Qi P F, et al. Ab initio study of CNT NO:gas sensor. Chemical Physics Letters.2004,387(4-6):271-276.
    [91]徐甲强,陈玉萍,李亚栋等。一维纳米材料在气体传感器中的应用,传感器技术,2005,24(1):4-6
    [92]惠春.SnOx基纳米结构厚膜气敏传感器研究,西安交通大学博十论文,2000:59-62
    [93]Baker S, Roberts G G, Petty M C. Phthakocyanine Langmuir—Blodgett Film Gas Detector. IEEE Proc,1983(130):260-263.
    [94]Baker S, Roberts G G, Perty M C, et al. The preparation and properties of Metal-Free Phthakocyanine Langmuir-Blodgett Films. Thin solid Films,1983(99):53-59
    [95]杨得全 范垂祯.平面电极LB膜气体传感器的响应特性.传感器技术,1997(4):17-20
    [96]Gandnew W, Iskandararu M Z, Bott B.Effect of electrode Geometry on Gas sensitivity of Lead phthalocyanine Thin films. Sensor and Actuaors B,1992(9):133-142
    [97]S Santucci,S Picozzi.F Di Gregorio,et al.NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory.Journal of Chemical Physics,2003(22):20-27
    [98]徐军明,张孝彬,陈飞等.氧化铝模板上定向纳米碳管的快速生长及超声切短.物理化学学报,2004(3):271-274
    [99]Yuan ZH,Huang H,Dang HY,et al.Appl.Phys.Lett,2001,79(20):3127
    [100]陈文菊,郭淼,陈金霞。多壁碳纳米管湿敏传感器的研究,传感技术学报,2005,18(4)
    [101]陈金霞,郭淼,陈文菊。基于多壁纳米碳管的传感器对甲苯的气敏性研究,传感技术学报,2005,18(1)
    [102]H.Chang, J.D.Lee, S.M.Lee, et al. Appl.Phys.lett,79(2001):3863
    [103]Takao Someya, Joshua Small, Philip Kim, et al. Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field effect Transistors, Nano Lett,2003,3(7):877-881
    [104]陈金霞,纳米碳管气体传感器及钯和铜掺杂的研究,浙江大学硕十论文,27-30
    [105]李昱,张孝彬,陶新永等。Ni—Mo双金属氧化物催化剂CVD法大量制备成束多壁碳纳米管,物理化学学报,2004,20(10):1233-]238
    [106]Liu Z, Shen Z, Zhu T, et al. Langmuir.2000,16(8):3569-3573
    [107]万步勇,王万录,廖克俊等。多壁碳纳米管气敏性质的研究。真空科学与技术,2003,23(5):323—327
    [108]Cantalini C, Valentini L, Lozzi L, et al. NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sensors and actuators B,2003(93):333-337
    [109]Yijiang Lu, Jing Li,Jie Han, et al. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chemical Physics Letters,391(2004):344-348
    [110]卫建军,纳米级Pd/Fe双金属对水中氯酚的催化脱氯研究,浙江大学博十论文,2004:29—31
    [111]L.M.Ang, T.S.A.Hor, G.Q.Xu, et al. Decoration of activated carbon nanotubes with copper and nickel.Carbon,38(2000):363-372
    [112]Martins H, Naes T. Multivariate calibration. Wiley & Sons:New York,1998
    [113]Currie L.A. Pure Appl. Chem.1995,67,1699
    [114]Susumu Arai, Morinobu Endo, Norio Kaneko. Ni-deposited multi-walled carbon nanotubes by electrodeposition.Carbon,42(2004):641-644
    [115]Susumu Arai, Morinobu Endo.Carbon nanofiber-copper composite powder prepared by electrodeposition. Electrochemistry Communications,5(2003):797-799
    [116]Yan-hui Li, Shuguang Wang, Anyuan Cao, et al. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes.Chemical Physics Letters,350(2001):412-416
    [117]Yan-hui Li, Shuguang Wang, Jinquan Wei, et al. Lead adsorption on carbon nanotubes. Chemical Physics Letters,357(2002):263-266
    [118]W.Z.Huang, X.B.Zhang, J.P.Tu, et al. The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes. Material chemistry and Physics,78(2002):144-148
    [119]Ralph.T.Yang. Hydrogen storage by alkali-doped carbon nanotubes. Carbon, 38(2000):623-641
    [120]Chen P, Wu X, Lin J, et al. Science,1999(285):91
    [121]Yan-hui Li, Jun Ding, Zhao-kun Luan, etc. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon,41 (2003):2787-2792
    [122]Cheol Jin Lee, Jeunghee Park, Seung Youl Kang, et al. Growth and field electron emission of vertically aligned multiwalled carbon nanotubes. Chemical Physics Letters,2000(326):175-180
    [123]L. Valentini, C. Cantalini, I.armentano, et al. Highly sensitivity and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond and Related Materials.13 (2004):1301-1305
    [124]L. Valentini, C. Cantalini, I.armentano, et al. Investigation of the NO2 sensitivity properties of multiwalled carbon naotubes prepared by plasma enhanced chemical vapor deposition. J. Vac. Sci.Technol.B,2003,21(5):1996-2000
    [125]曹春华,李家麟,贾志杰等.用二胺在碳纳米管上引入胺基团的研究.新型炭材料.2004,19(2):137-140.
    [126]Wildoer J W G, Wenema L C, Rinzler A G, Smalley R E, Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature,1998 (391):59-62.
    [127]Odom T W, Huang J L, Kim P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature,1998(391):62-64.
    [128]Yang QH,Li F,Hou PX,et al.Chinese science bulletin,2001,46:1317
    [129]Yang QH, Hou PX,Bai S,et al.Chem Phys Lett,2001,345:18
    [130]Hou PX,Bai S, Yang QH,et al.Carbon,2002,40:81
    [131]吴子华,王万录,廖克俊等。多壁碳纳米管膜湿敏特性的研究。物理学报,2004年,53(10):3462-3466
    [132]A.B Kaiser, et al.Phys.Rev.B,1994(40):2806
    [133]A.B Kaiser, et al.Phys.Rev.B,1998(57):1418
    [134]A.B Kaiser, GU.Flanagan, D.M.Stewart, et al. Hetergeneous model for conduction in conducting polymers and carbon nanotubes.Synthetic Metals,2001(117):67-73
    [135]G.T Kim, M.Burghard, D.S.Suh, et al. Conductivity and magnetoresistance of polyacetylene fiber network. Synthetic Metals,1999(105):207-210
    [136]J.W Jang, D.K Lee. Solid state communication,1994(50):15473
    [137]A.Bathtold, M. de Jonge, K.Grove-Rasmussen, et al. Suppression of Tunneling into Multiwall Carbon Nanotubes, Phys.Rev.Lett,2001,87(16):166801-1-166801-4
    [138]朱宏伟,李雪松,慈立杰等。浮动催化碳纳米管石墨化后的储氢特性。中国科学(E辑),2002,32(2):152
    [139]李昕,刘君华,朱长纯。基于碳纳米管薄膜的吸附式气体传感器的研究。中国科学(E辑),2005,35(7):689—700
    [140]郑宏,王绍青,成会明。化学势对模拟计算单壁纳米碳管储氢的影响。中国科学(B辑),2003,33(6):467
    [141]周振华,武小满,王毅等。氢气在碳纳米管基材料上的吸附-脱附特性。物理化学学报,2002,18(8):692
    [142]Langer L, Heremans J P, Bayot V, et al. Electrical resistance of a carbon nanotube bundle. J Mater Res:1037-1042
    [143]PJ.F.Harris, Carbon Nanotubes and Related Structures, New Materials for the twenty-first century, Cambridge University Press,1999.
    [144]陈诵英,孙予罕,丁云杰等。吸附与催化,河南科学技术出版社,2001年第1版:8-14
    [145]Ranjit Pati, Yiming Zhang, Saroj K. Appl.Phys.Lett,2002(81):2623
    [146]刘芙,张孝彬,涂江平等。碳纳米管的球磨处理及其对储氢性能的影响,太阳能学报,2003,24(1),116-120
    [147]Yan-hui Li, Shu-guang Wang, Zhao-kun Luan,etc. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes.Carbon,2003,41(5):1057-1062
    [148]Chen P, Wu X, Lin J, Tan K L. Synthesis of Cu Nanoparticles and Microsized Fibers by Using Carbon Nanotubes as a Template, Journal of Physical Chemistry,103(22):4559-4561
    [149]袁海龙,凤仪。碳纳米管的化学镀铜,中国有色金属学报,2004,14(4):665-670
    [150]孔凡志,张孝彬,熊文庆等。用于复合材料增强体的多壁碳纳米管化学镀镍,复合材料学报,2002,19(5):71-74
    [151]Li Q Q, Fan S S, Han W Q, et al. Coating of carbon nanotube with nickel by electroless plating method[J]. Jpn J Appl Phys Part 2,1997,36(4B):501-503.
    [152]Caturla F, Molina F, Molina-sabio M. Electroless plating of graphite with copper and nickel. J Electrochem Soc,1995,142(12):4084-4089.
    [153]Shu Peng, Kyeong Jae Cho.Ab inition study of doped carbon nanotube sensors. Nano Letters,2003,3(4):513-517
    [154]袁悦然,刘之景,李兴旺。用掺杂法改进碳纳米管气敏传感器的机理。仪表技术与传感器,2004,(10):7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700