用户名: 密码: 验证码:
利用生态因子和遥感分区对小麦品质监测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态因子是影响小麦品质形成的重要因素,本论文通过综合利用生态因子和遥感分区进行小麦籽粒蛋白质含量遥感监测,以期提高监测精度。以北京地区冬小麦为研究对象,开展以下研究:
     (1)基于神经网络的冬小麦蛋白质含量关键生态因子的筛选分析,针对影响冬小麦主要品质--蛋白质的百分含量,利用神经网络算法,确定了各个因子对品质影响力的大小并将其定量化表达;(2)利用所筛选的决定小麦品质关键生态因子,基于各个因子分别与其权重叠加的结果与各个因子不考虑权重叠加的结果两种分区模型进行区划研究,选择最优的区划模型实现了北京地区优质冬小麦品质等级分类的区划;(3)针对不同的分区构建综合生态因子和遥感信息的小麦品质监测模型,并与单一遥感监测模型、生态因子模型对比,选择最优的小麦品质监测模型,以期实现北京地区小麦品质的遥感监测。本研究对于增强小麦品质遥感监测机理、提高精度具有重要意义。
     研究取得的主要成果表现在以下几个方面:
     1.基于神经网络的冬小麦蛋白质含量关键生态因子初步分析
     利用北京地区具有代表性的小麦种植点的气象数据和土壤养分数据,通过神经网络方法来评估温度、降雨、光照和土壤养分含量等因子对小麦籽粒蛋白质含量影响的相对重要程度。研究表明,影响北京地区冬小麦籽粒蛋白质含量的主要因素依次有:蜡熟初期(6月6日至6月10日)的光照时间、气温大于32℃的天数、土壤碱解氮含量、整个灌浆期即籽粒形成关键期(5月上旬至6月上旬)的平均气温、灌浆期后期(5月26日至5月30日)的平均气温、灌浆期中后期(5月下旬至6月上旬)≥0℃的积温、乳熟期(6月1日至6月5日)的平均气温、灌浆期中后期(5月下旬至6月上旬)的温差、灌浆期中后期(5月下旬至6月上旬)的降雨量和土壤有机质含量;针对关键因子利用神经网络模型制作了响应曲线以反映蛋白质含量随生态因子的变化趋势。
     2.基于遥感与地理信息系统的北京地区冬小麦品质分区的研究
     在ARCGIS支持下,利用影响冬小麦蛋白质含量的各个关键生态因子进行空间插值,将点状关键因子数据空间化,建立多因子空间数据库,根据神经网络对每一因子计算出的RATIO设定一个权重值多层叠加,在ENVI环境下,用气象因子和土壤因子分层分析、整合各种因素,比较等权重和差异权重两种分区模型的分区结果,最终作出北京地区冬小麦品质分区的各种区域的不同分类;并对分类结果进行了分析。
     3.基于分区的小麦品质形成关键期蛋白质含量遥感监测
     以北京地区的主推冬小麦品种--中优206籽粒蛋白质为研究对象,利用遥感数据提取北京地区冬小麦不同生育时期多种植被指数(VIs)和中优206籽粒蛋白质进行相关性研究,结果表明:5月11日的NDVIgreen值与籽粒蛋白质相关性最好且达极显著水平,因此该时期为建立冬小麦遥感品质监测模型的最佳时相。利用生态环境数据和光谱数据分别构建了冬小麦光谱品质模型、生态环境品质模型以及光谱与生态环境综合品质模型;通过对冬小麦光谱品质模型、生态环境品质模型以及光谱与生态环境综合品质模型预测效果进行F检验,表明各模型均达到极显著水平;但是与其它两种模型相比,光谱与生态环境综合品质模型的决定系数(R2)有明显的提高,并且相对均方根误差(RRMSE)和相对误差(RE)降低,且降幅度较大。说明光谱与生态环境综合品质模型比单纯的生态环境品质模型和光谱品质模型有较好的预测效果。再进一步的五类分区建立模型的研究中,细分的模型各个精度都比整体模型精度有不同程度的提高,其中最优质区域预测精度为91.6%,二类区89.3%,三类区85.6%,四类区83.6%,品质最差区域为92.2%;对比发现,分区域建立模型在预测精度上比整体模型预测分别提高了12%、10.5%、7.3%、11.7%和14.3%。因此,利用遥感和生态环境数据建立模型进行冬小麦品质分区监测是可行的,且精度更高。
     本研究的创新点包括:
     1.引入非线性的神经网络研究冬小麦蛋白质含量与生态因子间的复杂关系,定量分析了影响冬小麦蛋白质含量关键的生态因子。
     2.构建了基于关键生态因子的权重的冬小麦品质分区模型,使品质分区更科学合理。
     3.提出了综合生态因子和遥感数据进行冬小麦品质遥感监测方法,并构建了综合模型,提高了冬小麦籽粒蛋白质含量监测精度。
Ecological factors play an important role in affecting the grain quality of wheat. Ecological factors and remote sensing division are used to monitor the grain protein content of wheat through remote sensing data, in order to improve monitoring accuracy. Winter wheat in Beijing was taken as a case study; the main studies were as follows:
     (1)The preliminary screening analysis for key ecological factors of the grain protein content of winter wheat based on neural networks was carried out. For affecting the percentage of the protein content of winter wheat, the neural network algorithm was adopted to determine the influence of various factors on the grain quality of winter wheat. (2)Various factors and their corresponding weights were utilized to establish one division model, while these factors were only used to build another model. Based on the two division models, key ecological factors of the grain quality of winter wheat were used to select the optimization model to achieve the classification division of the grain quality of the high-quality winter wheat in Beijing. (3) The model of monitoring the grain quality of winter wheat was established by using ecological factors and remote sensing information for different divisions. It was compared with the remote sensing monitoring model and ecological factor model. The optimization model of monitoring the grain quality of winter wheat was adopted to monitor the grain quality of winter wheat in Beijing using remote sensing data. The study has a great significance in enhancing the remote sensing monitoring mechanism of the grain quality of winter wheat and improving monitoring accuracy.
     The main results were as follows:
     1. The preliminary analysis for key ecological factors of the grain protein content of winter wheat based on neural networks.
     The meteorological data and soil nutrient data of the most representative cultivation sites of winter wheat in Beijing were used to evaluate the relative importance of the grain protein content of winter wheat affected by temperature, precipitation, light and soil nutrient content, respectively based on the neural network method. The study showed that the main factors affecting the protein content of winter wheat in Beijing were the light duration in the dough stage (June 6th to June 10th), days of temperature above 32℃, the soil nitrogen content, the average temperature in the whole filling stage (early May to early June), the average temperature in the late filling stage (May 26th to May30th), the accumulated temperature above 0℃in the late filling stage(late May to early June), the average temperature in the milk stage(June 1 st to June 5th), the temperature in the late filling stage(late May to early June), the precipitation and soil organic matter content(late May to early June). Key ecological factors were adopted as the inputs of the neural network model. The model was used to produce a response curve to reflect the trend of the protein content.
     2. Study on the grain quality division of winter wheat in Beijing based on remote sensing and geographic information system.
     Under the support of ArcGIS, various key ecological factors of the protein content of winter wheat were used to make the spatial interpolation, and then the point-like key factors were interpolated to the raster and the multi-factors spatial database were established. Each factor was set a weight for its RATIO calculated by the neural network method. The meteorological factors and soil factors were analyzed in the ENVI environment, and then the division results derived from the equal weight and different weight models were compared. Different classifications of various divisions of the grain quality of winter wheat in Beijing were obtained; these results were analyzed.
     3. Remote sensing monitoring for the protein content in key periods of the grain quality of winter wheat based on divisions.
     The grain protein of winter wheat, Zhongyou 206 in Beijing was chosen as the research objective. Various vegetation indices (VIs) and the grain protein of zhongyou 206 in a variety of different growth stages of winter wheat in Beijing were calculated by using remote sensing data to study their correlation. The results showed that NDVIgreen in May 11th was best correlated with the grain protein, and the highly significance was achieved, thus, this period is the best phase for monitoring the grain quality of winter wheat using remote sensing. The ecological environmental data, spectral data were used to construct the spectral quality model, the ecological environmental quality model and the comprehensive model of spectral and ecological environmental quality. F test was used for these three models, and these models reached the highly significant level; Compared with the spectral quality model and the ecological environmental quality model, the coefficient of determination (R2) of the comprehensive model of spectral and ecological environmental quality had significantly improved, and the relative root mean square error (RRMSE) and relative error (RE) had sharply deceased. It was demonstrated that the comprehensive model of spectral and ecological environmental quality was obviously better than another two models. In the study of constructing model of the five divisions, the accuracy of sub-models had different degrees of increase compared with the whole model. The prediction accuracies in the most high-quality division, the second-class division, the third-class division, the fourth-class division and the worst quality division were 91.6%,89.3%,85.6% 83.6% and 92.2% respectively. In the comparison to the whole model, The predicting accuracies of the models constructed by using divisions had increased by 12%,10.5%,7.3%,11.7% and 14.3% respectively. Therefore, remote sensing and ecological environmental data were used to construct the model to estimate the grain quality of winter wheat under the different divisions. It was feasible and highly accurate.
     The innovations of this study include:1. the nonlinear neural network method is adopted to study the complex relationships between the protein content of winter wheat and ecological factors.2. The division model of the grain quality of winter wheat is constructed through key ecological factors and their weights. The quality division is more scientific and reasonable.3. The remote sensing monitoring method for the grain quality of winter wheat, combined with ecological factors and remote sensing data, is proposed, and an comprehensive model is constructed to improve the monitoring accuracy of the grain protein content of winter wheat.
引文
[1]Abdullah A. J, Jana L. R. Flowering, capsule and seed characteristics in Cuphea[J].. Euphytica,2008,161:447-459.
    [2]Alkier A. C., Racz G. J., Soper R. J.. Effects of foliar-applied and soil-applied nitrogen and soil nitrate-nitrogen level on the protein content of Neepawa wheat[J] Plant Sci.,1972,52: 301-308.
    [3]Andrews S., Mitchell J. P., Mancinelli R.. On-farm assessment of soil quality in California's centralvalley[J].Agron. J.,2002,94:12-23.
    [4]Anten N. P., Schieving F., Werger M. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species[J].. OecologiaOecol., 1995,101,504-513.
    [5]Arnon D. I. Copper enzymes in isolated chloroplasts Polyphenoloxidae in Beta vulgaris[J]. Plant Physiol.,1999,24:1-15.
    [6]Bishop C. Neural networks for pattern recognition [M]. Oxford, UK:University Press. 1995.
    [7]Bishop T.,& McBratney. B. Creating field extent digital elevation models for precision agriculture[J].. Precision Agriculture,2002,3:37-46.
    [8]Chang. K. C. A neural network approach to geographical analysis of population pattern change[D].Ph.D. dissertation. Minneapolis, MN, USA 1993:University of Minnesota.
    [9]Changere A. Lal R. Slope position and erosional effect on soil properties and corn production on a Miamian soil in central Ohio[J]..Journal of Sustainable Agr.,1997,1:15-21.
    [10]Chhikara R. S., Feiveson A. H. Landsat-based large area crop acreage estimation-an experimental study[R]., American Statistical Association. Proceedings of the Section on Survey Research Methods,1978:153-159.
    [11]Curran P. J., Dungan B A, Macler S E, et al. Refectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sens. Environ.Remote Sensing of Environment.1992,39:153-166.
    [12]Curran P. J., Dungan J. L., Gholz H. I. Exploring the relationship between reflectance, red edge and chlorophyll content in slash pine[J]. Tr.eee PhysiolPh.,1990,7:33-48
    [13]Datt B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. Int[J]. Remote Sens.,1999,20(14):2741-2459.
    [14]Daughtry C. S., Walthall C. L., Kim M. S., et al. Estimating corn foliar chlorophyll content from leaf and canopy reflectance[J].Remote Sens. Environ.,2000,74:229-239.
    [15]Del Pozo A., Dennett M. D. Analysis of the distribution of light, leaf nitrogen, and photosynthesis within the canopy of Vicia faba L. At two contrasting plant densities[J].Aust. J. Agric. Res.1999,50:183-189.
    [16]Delgado J. A., Ristau R. J., Dillon M. A., et al. Use of innovative tools to increase nitrogen use efficiency and protect environmental quality in crop rotations[J].. Commun. Soil Sci. Plant Anal.,2001,32:1321-1354.
    [17]Desai R. M., Bhatia C. R. Nitrogen uptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein content[J]. Euphycice,.1978,27:561-566.
    [18]Dhugga K. S., Waines J.G.. Analysis of nitrogen accumulation and use in bread and durum wheat[J].. Crop Sci.1989,29:1132-1239.
    [19]Dreccer M. F., Van Oijen M. Schapendonk, A.H.C.M., Pot, C.S., Rabbinge, R. Dyanmics of vertical leaf nitrogen distribution in a vegetative wheat canopy.:Impact on canopy photosynthesis[J].. Ann. Bot.2000,86:821-831.
    [20]Evans J. R. Photosynthetic acclimation and N partioning within a Lucerna canopy. Canopy characteristics[J].. Anst.J. Plant Physiol.1993,20:55-67.
    [21]Fernandez S., Vidal D., Simon E., et al. Radiometric Characteristics of Triticum aestivum cv. Astral under Water and Nitrogen Stress [J].. International Journal of Remote Sensing, 1994,15(9):1867-1884.
    [22]Francis G., Makkar H. P. S., Becker K.. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture[J]. International Journal of Remote Sensing,,2001,199:197-227.
    [23]Fulu tao, Masayuki Yokozawa, Zhao Zhang. Remote sensing of crop production in China by production efficiency models:models comparisons estimates and uncertainties[J]. Ecology Modeling.2005,183:385-396.
    [24]Gallego F. J. Stratified sampling of satellite images with a systematic grid of points[J]. Journal of Photogrammetry and Remote Sensing,2005,59:369-376.
    [25]Haboudane D., Miller J., Tremblay N., et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture [J]. Remote Sens. Environ.,2002,81:416-426.
    [26]Hansen P. M., J(?)rgensen J.R., Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression[J]. Agri. Sci.,2002,139:307-318.
    [27]Heitholt J. J., Croy L. I., Maness N. O., et al. Nitrogen partitioning in genotypes of winter wheat differing in grain N concentration[J]. Field Crops Res.,1990,23:133-144.
    [28]Henrik B., Lisbeth D S, Preben B H. Engineering crop plants:getting a handle on phosphate[J]. Trends in Plant Science,2002,7:118-124.
    [29]Hikosaka K., Terashima I., Katoh S. Effects of leaf age, nitrogen nutrition and photo flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves[J]. Oecologia.,1994,97:451-457.
    [30]Hinzman L. D., Bauer M. E., Daughtry C. S.T. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat[J]. Remote Sens. Environ.1986,19:47-61.
    [31]Hirose T., Werger M., Pons L., et al. Canopy structure and leaf nitrogen distribution in a stand of Lysimachia vulgaris L, as influenced by stand density. Oecologia.,1988,77:145-150.
    [32]Hirose T., Werger M. J A. Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of a Solidago altissima stand[J]. Oecologia.,1987b,70,215-222.
    [33]Hirose T., Werger M. J. A. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy[J]. Oecologia.,1987a,72:520-526.
    [34]Horler D. N. H., Barber J., Barringer A. R.. Effects of heavy metals on the absorbance and reflectance spectra of plants[J]. Remote Sens..1980,1:121-136.
    [35]Huang W., Wang J., Wang Z.,et al. Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance[J], Int. J. Remote Sens.,2004,25 (12):2409-2419.
    [36]Huete A. R.. A soil-adjusted vegetation index (SAVI) [J]. Remote Sens. Environ.,1988,25: 295-309.
    [37]Jamieson P. D., Semenov M. A.. Modelling nitrogen uptake and redistribution in wheat[J]. Field Crops Res.,2000,68:21-29.
    [38]Jiang, P., Thelen, K. D.. Effect of soil and topographic properties on crop yield in a north-central corn-soybean cropping system [J]. Agron. J.2004,96:252-258.
    [39]Kalubarme, M. H., Potdar, M. B., Manjunath, K. R., Mahey, R. K. and Siddhu, S. S. 2003.Growth profile based crop yield models:A case study of large area wheat yield modelling and its extendibility using atmospheric corrected NOAA AVHRR data[J]. Int. J. Remote Sens.24: 10,2037-2054.
    [40]Khakural B. R., Robert P. C., Huggins, D. R. Variability of corn/soybean yield and soil/landscape properties across a southern Minnesota landscape[C]. Proceedings of the Fourth International Conference 1999:573-579.
    [41]Kitchen N. R., Drummond S. T., Lund E. D., Sudduth, K. A.,& Buchleiter, G. W. Soil electrical conductivity and topography related to yield for three contrasting soil-crop systems [J]. Agron. J.Agronomy Journal,2003,95:483-495.
    [42]Kravchenko A. N., Bullock D. G. Correlation of corn and soybean grain yield with topography and soil properties [J]. Agronomy Agron.2000,92:75-83.
    [43]Liu L Y, Wang J J, Bao Y S, et al. Predicting winter wheat condition, grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images[J]. Int. J. Remote Sens.,2006,27 (4):737-753.
    [44]Liu, J., Goering, C. E.& Tian, L. A neural network for setting target yields[J].Transactions of the ASAE,2001,44(3):705-713.
    [45]Lopez-Bellido L, Fuentes M, Castillo J E. Ef fects of tillage,crop rotation and nitrogen fertilization on wheat-grain quality grown under rainfed Mediterranean condition[J]. Field Crop Research,1998,57:265-276.
    [46]Luthe D.S.,. Storage protein accumulation in developing rice (Oryza sativa L.) seeds[J]. Plant Science Letters 1982.32,147-158.
    [47]Mallarino A. P., Oyarzabal E. S., Hinz P. N. Interpreting within-field relationships between crop yields and soil and plant variables using factor analysis [J]. Precision Agriculture,1999,1: 15-25.
    [48]Manjunath K. R., Potdar M. B. and Purohit, N. L. Large area operational wheat yield model development and validation based on spectral and meteorological data, Int. J. Remote Sens.2002 23:15,3023-3038.
    [49]Miller G. A., Youngs V. L,. Oplinger E. S.. Environment and cultivar effects on oat phytic acid concentration[J]. Cereal Chemistry,1984,57:89-191.
    [50]Milroy S. P., Bange M. P., Sadras V. O.. Profiles of leaf nitrogen and light in resproductive canopies of cotton (Gossypium hirsutum) [J]. Annals of. BotanyBot.,2001,87:325-333.
    [51]Mooney H. A., Field C., Gulmon S. L., et al. Photosynthetic capacity in relation to leaf position in desert versus old-field annuals[J]. Oecologia,1981,50:109-112.
    [52]Moran M. S., Inoue Y., Barnes E.M. Opportunities and limitations for image-based remote sensing in precision crop management[J]. Remote Sens. Environ.,1997,61:319-346.
    [53]Morre D. J.,Boss W., Loewus.F A.Inositol metabolism in plants[C].1990. New York, Willy-Liss press,pp 52-73.
    [54]Norris K. H., Barnes R. F., Moore J. E., et al. Predicting forage quality by infrared spectroscopy[J]. Anim.Sci.,1976,43:889-897.
    [55]Padhye V. W., Salunkhe D. K.. Extraction and characterization of rice proteins[J]. Cereal Chemistry,1979,56:389-393.
    [56]Pearson R. L., Miller D. L.. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie[C]. Proceedings of the Eighth International Symposium on Remote Sensing of Environment.1999,2:1357-1381
    [57]Penuelas J., Filella I., Gamon J. A.. Assessment of photosynthetic radiation-use efficiency with spectral reflectance[J]. New Phytol.,1995,131:291-296.
    [58]Penuelas.J, Fredeen J. A., Merino A. L., et al. Reflectance indices associated with physiological changes in nitrogen- and water- limited sunflower leaves[J]. Remote Sens. Environ., 1994,48:135-146.
    [59]Penuelas J., Inoue Y.. Reflectance assessment of canopy CO2 uptake[J]. Int. J. Remote Sens.,2000,21:3353-3356.
    [60]Peterson D. J., Aber J. D., Matson P. A.,.. Remote Sensing of forest canopy and leaf biochemical contents[J]. Remote Sens. Environ..1988,24:85-108.
    [61]Ping Z., Bruce Anderson, Bin Tan, Dong Huang, Ranga Myneni..Potential monitoring of crop production using a satellite-based Climate-Variability Impact Index[J]. Agricultural and Forest Meteorology 132 (2005) 344-358.
    [62]Quarmby N.A., Milnes M., Hindle T.L., The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction[J]. Int. J. Remote Sens.,1993,14,199-210.
    [63]Raboy V., Noaman M. M., Taylor G. A., Pickett S. G. Grain phytic acid and protein are highly correlated in winter wheat[J]. Crop Science,1991,31:631-635.
    [64]Raboy V. Seeds for a better future:'Low phytate' grains help to overcome malnutrition and reduce pollution[J]. Trends in Plant Science,2001,6:458-462.
    [65]Reujean J., Breon F. Estimating PAR absorbed by vegetation from bi-directional reflectance measurements [J]. Remote Sens. Environ.,1995,51:375-384.
    [66]Richardson L.L., Buisson D., Liu C.J,. et al. The detection of algal photosynthetic accessory pigments using airbone visible-infrared imaging spectrometer (AVIRIS) spectral data[J]. Marine technology society journal,1994,28(3),10-21.
    [67]Rodriguez I. R., Miller G. L.. Using near infrared reflectance spectroscopy to schedule nitrogen applications on dwarf-type bermudagrasses[J]. Agron. J.,2000,92:423-427.
    [68]Rojas, O. Operational maize yield model development and validation based on remote sensing and agro-meteorological data in Kenya, Int. J. Remote Sens..2008:17,3775-3793.
    [69]Roller N., Colwell J.. Coarse-resolution satellite data for ecological surveys[J]. Bioscience, 1986,36 (7):468-75.
    [70]Rondeaux G., Steven M., Baret F.. Optimization of soil-adjusted vegetation indices[J]. Remote Sens. Environ.,1996,55:95-107.
    [71]StatSoft Inc. STATISTICA neural networks version 6.0 training course[P].2002, USA: Tulsa, OK.
    [72]Van Sanford D. A,. MacKown C. T.. Cultivar differences in N remobilization during grain fill in soft red winter wheat[J]. Crop Sci.,1987.27:295-300.
    [73]Verdebout J., Jacquemoud S., Schmuck G. Optical properties of leaves:modeling and experimental studies. In Imaging Spectrometry[J] 1994:169-191.
    [74]Vogelmann T. C.. Plant tissue optics. Annu. Rev. Plant Physio[J]. Plant Mol. Biol.,2010,44: 231-251.
    [75]Vouillot M. O., Devienne-Barret F. Accumulation and remobilization of nitrogen in a vegetative winter wheat crop during or following nitrogen deficiency[J]Ann. Bot.,1999,83: 569-575.
    [76]Walburg G., Bauer M., Daughtry C. S., et al. Effects of N nutrition on the growth, yield, and reflectance characteristics of corn canopie[J]Agron. J.,1982,74:677-683.
    [77]Wang J., Huang W., Zhao C., et al. Red edge variables applicatio in winter wheat nutritio diagnosis and grain quality forecasting by in situ reflected[C]. The 9th International Symposium on Physical Measurements and Signatures in Remote Sensing (1SPMSRS),2005,722-724.
    [78]Wang, Z.J., Wang, J.H., Liu, L.Y., Huang, W.J., Zhao, C.J., Wang, C.Z.,, Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR), [J]Field Crops Research,2010.90 (2-3),:311-321.
    [79]Wessman C. A., Aber J. D., Peterson D. J., et al. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems [J]. Nature,1988,335:154-156.
    [80]Wessman C. A, Aber J. D., Peterson D. L. An evaluation of imaging spectrometry for estimating forest canopy chemistry [J]. Int. J. Remote Sensing.2009,10:1293-1316.
    [81]Wolfe D. W, Henderson D W, Gsiao T C, et al. Interactive water and nitrogen effects on senescence of maize:II. Photosynthetic decline and longevity of individual leaves[J]. Agron. J., 1988,80:865-870.
    [82]Woodard H. J, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota[J]. Plant Nutr.,1998.21:217-233.
    [83]Woodruff D.R. Cultivar variation in nitrogen uptake and distribution in wheat[J]. Austrilian Journal of Experimental Agriculture,1972,12:511-516.
    [84]Xavier Blaes,Laurent Vanhalle, Pierre Defourny. Efficiency of crop identification based on optical and SAR image time series[J]. Remote Sens. Environ.,2005(96):352-365.
    [85]Yuxin M.,David J. Mulla, Pierre C. Robertldentifying important factors influencing corn yield and grain quality variability using artificial neural networks[J]. Precision Agriculture, 2006,7:117-135.
    [86]Zhao C. J., Liu L. Y., Wang J. H., et al. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress[J]. International Journal Of Applied Earth Observation And Geoinformation,2005,7 (1):1-9.
    [87]《气候变化与作物产量》编写组.气候变化与作物产量[M].中国农业科学技术出版社,北京,1992.135.
    [88]曹广才,王绍中主编,小麦品质生态[J],.北京:中国科学技术出版社,北京,1993.
    [89]曹凯,江南,吕恒,等.面向对象的SPOT5影像城区水体信息提取研究[J].国土资源遥感,2007(2):27-30.
    [90]查勇,倪绍祥,杨山.一种利用TM图像自动提取城镇用地信息的有效方法[J].遥感学报,2003,7(1):37-40.
    [91]陈秋晓,骆剑承,周成虎,等.基于多特征的遥感影像分类方法[J].遥感学报,2004,8 (3):239-245.
    [92]陈沈斌,小麦、玉米和水稻遥感估产技术试验研究文集[M].北京:中国科学技术出版社,1993:34-38.
    [93]陈沈斌.种植业可持续发展的支持系统—农作物卫星遥感估产[J].地理科学进展,1998,17(2):71-77.
    [94]崔林丽,唐娉,赵忠明,,等.一种基于对象和多种特征整合的分类识别方法研究[J].遥感学报,2006,10(1):104-110.
    [95]邓劲松,王珂,沈掌泉,等.基于特征波段的SPOT一5卫星影像耕地信息自动提取的方法研究[J].农业工程学报,2004,20(6):145-148.
    [96]都金康,黄永胜,冯学智,等SPOT卫星影像的水体提取方法及分类研究[J].遥感学报,2001,5(3):214-219.
    [97]范云伟译.利用AVHRR资料的多时相NDVI测量结果进行农作物估产[J].遥感技术与应用,1994,14(2):199-210.
    [98]方洪亮,田庆久.高光谱遥感在植被监测中的研究综述[J].遥感技术与应用,1998,13(1):62-69.
    [99]方昭希,王明录,彭代平,等.硝酸还原酶活性与氮素营养的关系[J].植物生理学报,1979,5(2):123-128.
    [100]冯国柱,屈玉国,杨玉强.主要气候因素与小麦品质的关系[J].中国种业,2004,(2):54-55.
    [101]冯美臣,肖璐洁,杨武德,等.基于遥感数据和气象数据的水旱地冬小麦产量估测[J].农业工程学报,2010,26(11):183-188.
    [102]宫鹏,浦瑞良,郁彬.不同季相针叶树种高光谱数据识别分析[J].遥感学报,1998,2(3):211-217.
    [103]国家粮食局标准质量中心.[M],2002,我国优质商品小麦品质概况,2003.28
    [104]国家统计局农调总队.多目标复合抽样方法与实例[M].2003,9.
    [105]韩丛丛,逢杰武,吴泉源,等.TM影像中居民地提取的决策树方法研究—以烟台市为例[J].遥感信息,2007,(6):73-76.
    [106]何承刚,黄高宝,姜华.氮素营养对单作和间套作小麦氮素吸收、同化和籽粒蛋白质含量的影响[J].土壤学报,2003,34(6):529-532.
    [107]何文寿,储燕宁,王彦才,等.不同基因型小麦氮素营养效率的差异[J].宁夏农学院学报,1997,18(4):29-34.
    [108]何中虎,林作楫,王龙俊,等.中国小麦品质区划的研究[J].中国农业科学,2002,35(4):359-364.
    [109]侯有良,钟改荣,L.O'Brien.普通小麦营养器官氮素和果聚糖的运转[J].中国农业科学,2002,35(9):1066-1070.
    [110]黄文江,王纪华,刘良云等.冬小麦品质的影响因素及高光谱遥感监测方法[J].遥感技术与应用,2004(03):143-148.
    [111]黄文江,赵春江,王纪华等.红边参数在作物营养诊断和品质预报上的应用[J].农业工程学报,2004(06):1-5.
    [112]贾振华.施肥对小麦产量与品质形成影响的研究:追施氮肥时期对产量与品质同步形成的影响[J].北京农学院学报,1988,2(3):138-141.
    [113]姜丽娜,李春喜,代西梅,等.超高产小麦氮素吸收、积累及分配规律的研究麦类[J].作物学报,2000,20(2):53-59.
    [114]荆奇,姜东,戴廷波,等.基因型与生态环境对小麦子粒品质与蛋白质组分的影响[J].应用生态学报,2003,14(10):1649-1653.
    [115]竟霞,刘良云,张超,等.利用多时相NDVI监测京郊冬小麦种植信息[J].遥感技术与应用,2005,20(2):238-242.
    [116]雷国平,代路,宋戈.黑龙江省典型黑土区土壤生态环境质量评价[J].农业工程学报,2009,25(7):243-248.
    [117]李存军.区域性冬小麦籽粒蛋白质含量遥感监测技术研究[D].浙江大学博士学位论文,2005.
    [118]李景欣,范伟全,包桂荣,等.气候条件对内蒙古地区小麦品质的影响[J].内蒙古民族大学学报(自然科学版),2002,17(1)):89-91.
    [119]李明霞,千怀遂.中国水稻遥感估产区划研究[J].地域研究与开发,1996,15(4):73-76
    [120]李卫国,王纪华,赵春江等,基于NDVI和氮素积累的冬小麦籽粒蛋白质含量预测模型[J],.遥感学报,待刊。
    [121]罗丽华,李爱华.施氮量对早籼稻后期叶片性状的影响[J].湖南农业大学学报,2000,26(4):250-252.
    [122]马丽,徐新刚,贾建华等.利用多时相TM影像进行作物分类方法[J].农业工程学报,2008,24(增刊2):191-195.
    [123]牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报.2000,4(2):125-129.
    [124]牛铮,王汶,王长耀,等.新型遥感数据在作物生长监测中的应用.[M].北京:测绘出版社,1996,142-146.
    [125]农业部发布《中国小麦品质区划方案》(试行)农农发[2001]12号.
    [126]潘瑜春,王纪华,刘琦等.矢栅一体化的作物品质监测与调优栽培系统集成研究[J],.农业工程学报,2004(05):164-169.
    [127]裴志远,杨邦杰.多时相归一化植被指数NDVI的时空特征提取与作物长势模型设计[J].农业工程学报,2000,16(5):20-22.
    [128]彭永欣,郭文善,居春霞,等.氮肥对小麦籽粒营养品质调节效应的研究[J].江苏农业科学,1987(2):9-11.
    [129]彭永欣,姜雪忠,郭文善,等.氮素营养对小麦籽粒产量和品质调节效应的研究.小麦栽培与生理[M].南京:东南大学出版社,1992:127-158.
    [130]彭望琭《遥感数据的计算机处理预地理信息系统》,北京师范大学出版社,1991p381
    [131]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [132]浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析[J].遥感学报,1997,1(2):115-123.
    [133]千怀遂,李明霞.中国玉米遥感估产区划研究[J].中国农业科学,1998,31(4):32-39
    [134]千怀遂.中国小麦遥感估产区划研究[J].自然资源学报,1997,12(2):97-104
    [136]石惠恩,陈天房,茹德平.使用氮肥对冬小麦产量和品质的影响[J].河南职业技术师范学院学报,1989,17(3-4):89-93.
    [137]宋庆杰,肖志敏,辛文利,等.黑龙江省小麦品质区划及优质高效生产技术[J].黑龙江农业科学,2009,(1):21-24.
    [138]孙华生.利用多时相MODIS数据提取中国水稻种植面积和长势信息[D].浙江大学,2008.
    [139]田纪春,张忠义,梁作勤.高蛋白和低蛋白小麦品种的氮素吸收运转分配差异的研究[J].作物学报,1994,20(1):76-83.
    [140]田奇卓,于振文,潘庆民.超高产麦田植株对11种矿质元素吸收积累与分配的研究.见:小麦节水节肥高产栽培理论与技术[M].北京:中国农业出版社,2001:148-152.
    []41]童庆禧,郑兰芬,王晋年.湿地植被成像光谱遥感研究[J],遥感学报,1997,1(1):50-58
    [142]童庆禧.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990.
    [143]童依平,李继云,李振声.不同小麦品种(系)吸收利用氮素效率的差异及有关机理研究.Ⅱ.影响吸收效率的因素分析[J].西北植物学报,1999,19(3): 393-401.
    [144]万富士,王光瑞,李宗智.我国小麦品质现状及改良目标初探[J].中国农业科学.1998,22(3):14-21.
    [145]王珂,沈掌泉,王人潮.利用冠层及叶片反射光谱分析速测水稻氮素的研究,生命科学研究与应用[M],浙江大学出版社,1996,523-526.
    [146]王红娟,姜加虎,黄群.基于知识的洞庭湖湿地遥感分类方法[J].长江流域资源与环境,2008,17(3):370-373.
    [147]王纪华,黄文江,赵春江等.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报,2003(04):277-284.
    [148]王纪华,王之杰,黄文江等.冬小麦冠层氮素的垂直分布及光谱响应[J].遥感学报,2004(04):309-316.
    [149]王纪华,国家863课题“稻麦品质遥感监测与预报技术研究”结题报告,北京,2005.
    [150]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标的研究[J].遥感学报,2003b,7(4):277-284.
    [151]王纪华,黄文江,赵春江,等.遥感地面农学参数测试规范化初探[J].高技术通讯,2000,10(增):91-95.
    [152]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(1):104-107.
    [153]王纪华,赵春江,黄文江,杨宝祝,王北洪,杨信廷.定量遥感参数与作物肥水模型链接初探[J],华北农学报,2001,16(4):52-58.
    [154]王纪华,赵春江,刘良云,等.作物水分和氮素的遥感监测.第三届全国青年作物栽培作物生理学研讨会论文集[C].北京中国农业大学出版社,2003a:56-62.
    [155]王纪华,赵春江,刘良云等.信息技术在小麦调优栽培及品质测报上的应用[J].中国科技成果,2004(12):47-50.
    [156]王纪华等,利用遥感和地理信息系统技术实现小麦品质监测预报方法[w],专利申报号:2004100426250.
    [157]王让会,樊自立.利用遥感和GIS研究塔里木河下游阿拉干地区土地沙漠化[J].遥感学报,1998,2(2):137-142.
    [158]王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究.Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择[J].浙江农业大学学报,1993,19(增刊):7-14.
    [159]王秀珍,王人潮,李云梅,等.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究[J].浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    [160]王旭清.栽培措施和环境条件对小麦籽粒品质的影响[J].山东农业科学,1999,1:52-55.
    [161]王月福,姜东,于振文,等.氮素水平对小麦籽粒产量和蛋白含量的影响及其生理基础.中国农业科学[J],2003,36(5):513-520.
    [162]王月福,于振文,李尚霞,等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响[J].中国农业科学,2002,35(9):1071-1078.
    [163]王月福,于振文,李尚霞.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743-748.
    [164]王增裕,王健,卢少源,等.不同类型小麦品种的氮素积累与籽粒灌浆研究.Ⅰ氮素积累的动态探究[J].河北农业大学学报,1990,13(2):1-4.
    [165]王增裕,王健,卢少源,等.冬小麦品种氮素及干物质积累分配研究[J].河北农业大学学报,1989,12(2):56-64.
    [166]魏益民.谷物品质与食品加工—小麦籽粒品质与食品加工[M].北京:中国农业科学技术出版社,2005.
    [167]农业部948项目办公室、农业部乡镇企业发展中心.我国主要农产品加工业现状与问题(一)——10个优势农产品加工业的调研报告,[C],2005年9月.
    [168]农业部948项目办公室、农业部乡镇企业发展中心.我国主要农产品加工业现状与问题(二)——15种农产品加工业的调研报告,[C],2006年8月.
    [169]吴东兵,曹广才,王秀芳,等.春播小麦品质与生育进程和气候条件的关系[J].河北农业科学,2003(1):1296-1300.
    [170]吴天琪,郭洪海,张希军,等.山东省优质专用小麦种植区划研究[J].中国农业资源与区划,2002,23(5):1-5.
    [171]吴泽新,刘春红,许士斌.气候变化对黄淮海地区弱冬性小麦的影响评价[J].现代生物医学进展,2008,1(8);933-936.
    [173]徐恒永,赵振东,刘爱峰,等.氮肥对优质小麦产量和品质的影响.Ⅱ氮肥对小麦品质的影响.山东农业科学[J],2001,2:13-17
    [174]阎广建,吴均,王锦地,等.光谱先验知识在植被结构遥感反演中的应用.遥感学报[J],2002,6(1):1-6
    [175]杨浚,余炳杲,王万超,等.高产栽培条件下玉米生殖器官对其相邻叶片衰老的影响[J].南京农业大学学报,1994,17(2):12-16.
    [176]杨存建,周成虎.TM影像的居民地信息提取方法研究[J].遥感学报,2000,4(2):146-150.
    [177]杨根海,张起刚,陈佑良,等.用15N示踪研究小麦品质后期施肥对冬小麦产量和蛋白质含量的影响[J].北京农业大学学报,1986,12(1):39-46.
    [178]杨敏华,赵春江,赵永超,等.用航空成像光谱数据获取田间小麦信息[J].中国农业科学,2002,35(6):626-631.
    [179]尤淑撑,刘顺喜,李小文,等.基于空间约束关系的土地利用/覆被遥感分类方法研究[J].农业工程学报,2005,21(9):51-55.
    [180]于振文,王月福,潘庆民,等.优质专用小麦品种及栽培[M].北京:中国农业出版社,2001.
    [181]俞仲林,黄德明,朱德锋,等.氮肥用量对小麦籽粒产量和品质的影响[J].南京农业大学学报,1987,4:9-17.
    [182]张宝军,蒋纪芸.施氮时期对硬粒小麦和普通小麦籽粒蛋白质含量的影响[J].西北植 物学报,1996,5(2):40-42.
    [183]张超英,杨从容,庞君华.小麦氮素营养及蛋白质积累动态研究[J].作物研究,1994,8(3):39-41.
    [184]张洪程.中国小麦优质生产与加工转化之思路[J].江苏农业科学,2000,(5):2-6.
    [185]张庆江,张立言,毕桓武.春小麦品种氮的吸收积累和运转特征及与籽粒蛋白质的关系[J].作物学报,1997,23(6):712-718.
    [186]张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系[J].华北农学报,1996,11(3):57-62.
    [187]张仁华著.实验遥感模型及地面基础[M].北京:科学出版社,1996:45-47.
    [188]张宪政,陈风玉,王荣富.植物生理学实验技术[M].辽宁科技出版社,1994.
    [189]张艳,何中虎,周桂英,王德森.基因型和环境对我国冬播麦区小麦品质性状的影响[J]。中国粮油学报。1999,5:1-5。
    [190]张翼涛,李硕碧.不同栽培条件与小麦籽粒品质的关系[J].干旱地区农业研究,1991,2:16-21.
    [191]章德宾,徐家鹏,许建军.等.基于监测数据和BP神经网络的食品安全预警模型[J].农业工程学报,2010,26(1):221-226.
    [192]赵春江,黄文江,王纪华,等.不同品种肥水条件下冬小麦红边参数研究[J].中国农业科学,2002,35(8):980-987.
    [193]赵庚星,窦益湘,田文新,等.卫星遥感影像中耕地信息的自动提取方法研究[J].地理科学,2001,21(4):224-229.
    [194]赵广才,何中虎,田奇卓,等.农艺措施对中优9507小麦蛋白组分和加工品质的调节效应[J].作物学报,2003,29(3):408-412.
    [195]赵萍,冯学智,林广发.SPOT卫星影像居民地信息自动提取的决策树方法研究[J].遥感学报,2003,7(4):309-316.
    [196]中村憲知,川岛茂人.衛星画像から得られた茶产地の环境特性と品質の关系.Japanese Journal of Crop Science,1999,68(3):424-432.
    [197]朱金宝,刘广田,张树榛.基因型和环境对小麦烘烤品质的影响[J].作物学报,1995,21(6):679-684

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700