用户名: 密码: 验证码:
设施环境盐分胁迫对番茄生长发育及膜系统影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是影响作物生长的一个重要因素。在人口不断增加,耕地日趋减少和淡水资源不足的严重压力下,如何解决土壤盐渍化问题已成为国际上和生物科学技术迫切需要解决的重大课题。
    设施栽培的特点是采用人工措施改变局部生态环境,充分利用光能和热能,对提高蔬菜的产量和品质起着重要的作用。但由于保护地土壤处于人为特殊小气候环境下,加之栽培、水肥管理的不科学,土壤盐分表积现象明显,发生保护地土壤次生盐渍化,给生产造成了很大的影响。
    本试验在对不同栽培年限设施土壤状况调查的基础上,模拟不同程度盐渍化土壤中盐分胁迫状况,试图弄清盐渍化土壤的盐分胁迫,对番茄生长发育,产量形成,生化物质代谢以及膜系统的影响,为解决设施栽培中土壤盐渍化问题提供理论依据。本试验得出以下结论:
    1 盐分抑制番茄种子的萌发,盐分浓度在100mmol/l以上时明显抑制番茄种子的发芽势、发芽率、发芽时间及发芽整齐度。盐分抑制番茄幼苗的生长,表现为株高减小,茎粗变细及单位时间的增长量明显降低。
    2 盐分胁迫下可使番茄叶片中的叶绿素总量降低,呼吸作用强度上升,干物质积累减少,其中以根干重的减少最为明显,根系活力下降。低浓度盐分胁迫下,各处理与对照差异不明显。
    盐分胁迫可破坏番茄幼苗的膜保护系统,具体作用如下:叶片中的POD,CAT活性随处理时间的延长表现为先上升后下降,随处理浓度的增加先升高后降低。番茄幼苗叶片过氧化物同工酶在不同盐分胁迫浓度下出现了不同数目的谱带,且颜色深浅不同。
    盐分胁迫可使MDA含量持续升高,叶片相对电导率不断升高,膜伤害程度不断加大。盐分胁迫还使叶片中的脯氨酸和可溶性糖含量增加。
    3 盐分胁迫对番茄产量的影响主要表现在随着盐分处理浓度的增加,各处理的单果重逐渐降低,差异很明显。单株产量也随着盐分浓度的增加和处理时间的延长而较对照降低。
    4 本试验主要测定分析了番茄果实中可溶性糖含量、有机酸含量和维生素C含量,结果显示,各处理各指标随盐分处理浓度的增加和生长期的延长而有不同程度的下降。
    5 本试验选用了两种不同类型的品种,从试验结果中可以看出,无限生长类型L-402在对盐分胁迫的反应上表现出比有限生长类型合作903更强的适应性。
Soil salinization is an important factor that can affect crop growth. With increasing of the population, under such serious pressure, which the farmland is decreasing and insufficiency of freshwater resource. How to settle soil salinization has become a significant problem, which is not only international, but also urgency in biological technology.
     The trait of agritechnology is adopting man-made measure to alter part entironment, utilizing light energy and heat energy sufficiently, which will greatly improve the yield and quality of vegetable. But because the sheltered farmland is in the special microclimate, additionally, it’s not very scientific of culture, water and fertilizer, the phenomenon of salinity accumulation is so apparent. Then it causes soil salinization of sheltered farmland, which severely affects the production.
    On the basis of the research on soil that different fixed number of years agritechnology, this experiment simulates different degrees salinity of soil salinization, tries to make clear how salinity of soil salinization affects growth and development, production, metabolism as well as the membranes system of tomato. Then it can offer theory evidence of agritechnology for soil salinization. Now it concludes:
    Firstly,salinity restrains germination of tomato seed. When the salinity consistence is 100mmol/l ,it restrains germinationg force and germination rate, germination time and germination orderliness. The restraint shows shorter plant height, thinner stem and the quantity of increase is much lower in fixed time .
    Second,salinity stress can depress chorophyll content in leaves of tomato seedlings, raise the intension of respiration , reduce dry weight ,especially root, make root activity decline. But it’s not very distinct in low concentration of salinity stress.
    Salinity stress can also destroy membranes system, the main functions : POD,and CAT in leaves rise at the beginning and then decline with the time and the increase of concentration. POD isoenzyme shows various chart strip, and different shade of colour.
    Salinity stress can keep MDA and relative conductance rising, increase the extent of membranes injury. Furthermore, it can increase the soluble sugar content and free-proline content in leaves.
    Third,the effect of salinity stress mostly shows : the weight of each treatment
    
    
    Tomato is depressing gradually with the increase of concentration of salinity. The production of each individual plant is also depressing with it.
    Forth,this experiment mostly determines and analyses the soluble sugar content, the Organic acid content,and VC content. The result shows: every treatment and every target decline with the time and the increase of concentration in different degree.
    At last,choosing two different types of varieties, from the result, infinity growth type L-402 shows stronger adaptability in salinity stress than finity growth type HEZUO903.
    
    
    
    
    
    Postgraduate:Wang Xuezheng
    Specialty:Olericulture
    Supervisor:Prof.Yu Guangjian
引文
[日]屿田永生.蔬菜营养生理与土壤.福州:福建科学技术出版社,1982.101~105.
    常汝镇.盐对大豆农艺性状及籽粒品质的影响.大豆科学.1994,13(2):101~105.
    陈德明,杨劲松.土壤盐渍环境与养分管理.土壤学进展,1995,23(5):7~13
    陈新平,张福锁.京郊蔬菜氮肥施用中的问题与对策初探.中国植物营养与肥料学会.菜园土壤肥力与蔬菜合理施肥.南京:河海大学出版社,1995.122.
    陈一舞.盐胁迫对大豆幼苗子叶各细胞器超氧化物歧化酶(SOD)的影响.作物学报.1997,23(1):1~6.
    陈一舞.盐胁迫下大豆超氧物歧化酶的变化.作物学报.1994,20(3):363~367.
    成升魁,张秀刚.我国保护地农业及其若干问题的研究.自然资源.1994,(2):27~32.
    程季珍等.山西省西部菜田土壤养分积累与合理施肥.北方园艺.1994,(6):18~19.
    程美廷.温室土壤盐分积累盐害及其防治.土壤肥料,1990(1):1~4.
    池书敏。李广敏,史吉平等.玉米抗旱机理研究进展.河北农业大学学报.1997,20(4):11~15
    崔正忠,陈友,单德新.蔬菜保护地土壤养分变化趋势.北方园艺.2001,2:10~12
    戴伟民,蔡润,潘俊松等.盐胁迫对番茄幼苗生长发育的影响.上海农业学报.2002,18(1):58~62
    董云洲.表达肌醇甲基转移酶基因载体的构建及转基因烟草的耐盐性研究.植物学报.1999,41(2):146~149.
    丰泉.大棚土壤盐渍化的原因与防治.农业科技.2001(2):31
    冯永军,陈为峰,张黄娜,等.设施园艺土壤的盐化与治理对策.农业工程学报,2001,17(2):111~114
    葛菁萍.大棚土壤的理化性状[J]土壤通报,1998,29(1):88~90
    葛祥书.对发展设施农业的几点看法(由北京中心示范农场想到的).农村机械化,1998(10):21-22
    郭北海,张艳敏.甜菜碱醛脱氢酶BADH基因转化小麦及其表达.植物学报.2000,42(3):279~283.
    郭蓓,邱丽娟,邵桂花等.大豆耐盐基因的PCR标记.中国农业科学.2000,33(1):10~16
    韩建会,石琳琪,武彦荣.水分胁迫对日光温室黄瓜产量的影响.西南农业大学学报.2000,32(5)
    胡克伟,贾冬艳,王东升.保护地土壤次生盐渍化及其调控措施.北方园艺.2002(1):12~13
    
    
    
    黄宇翔,贾芬.盐胁迫下番茄愈伤组织过氧化物酶同工酶谱的变化.福建农业科技.1999,2:11
    霍治国,白月明,温民.水分胁迫效应对冬小麦生长发育影响的试验研究.生态学报.2001,21(9)
    贾继文,李文庆,陈宝成.山东省蔬菜大棚土壤养分状况与设施现状的调查研究[A].中国植物营养与肥料学会.菜园土壤肥力与蔬菜合理施肥[C]南京:河海大学出版社,1995.73~75.
    李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗保护酶系统活性的影响.河北农业大学学报.1994,17(3):52~55
    李建伟,张真和.我国日光温室蔬菜生产可持续发展问题的探讨.中国蔬菜.2000(增刊):12~16
    李龙昌,鞠巍,崔利杰等.棚室土壤盐渍化原因与防治.吉林蔬菜.2002(1):11~12
    李明霞.保护地土壤营养障碍与治理途径.蔬菜,1999(10):4~5.
    李廷轩,张锡洲,王昌全等.保护地土壤次生盐渍化的研究进展.西南农业学报.2001年14卷增刊:103~107
    李文庆,贾继文,李贻学,等.大棚蔬菜种植对土壤理化及生理性状影响规律研究.见:“菜园土壤肥力与蔬菜合理施肥”论文集.河海大学出版社,1997.
    李文庆,李光德,骆洪义.大棚栽培对土壤盐分状况影响的研究.山东农业大学学报,1995,26(2):165~169.
    李文庆,骆洪义,丁方军,等.大棚栽培后土壤盐分的变化.土壤,1995,(4):203~205.
    李先珍,王耀林,张志斌,等.保护地蔬菜大棚土壤盐离子积累状况研究初报.中国蔬菜,1993(4):15~17.
    李忠.蔬菜大棚栽培土壤盐渍化原因与防治.土壤肥料.25
    梁成华,唐咏,须湘成,等沈阳市郊区蔬菜保护地土壤盐分动态研究[A]见:“菜园土壤肥力与蔬菜合理施肥”论文集.河海大学出版社,1997
    梁成华.保护地蔬菜生理病害诊断及防治.北京:中国农业出版社,1999.1~10.
    林鸿宣.应用分子标记检测水稻耐盐性的QTL.中国水稻科学.1998,12(2):72~78.
    刘凤华,郭岩.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24(、(1):54~58.
    刘强,赵南明,KYamaguch-shinozaki等.DREB转录因子在提高植物抗逆性中的作用.科学通报,2000,45(1):11~16.
    刘旭,史娟,张学勇等.小麦耐盐种质的筛选鉴定和耐盐基因的标记.植物学报.2001,43(9):948~954
    鲁如坤.土壤—植物营养学原理和施肥.北京:化学工业出版社,1998.8.
    马毅杰,马立珊.化肥与生态环境[A].中国植物营养与施肥学会.现代农业中的
    
    
    植物营养与施肥[C].北京:中国农业科技出版社,1998.1~7.
    孟学平,杨恒山,孙立杰等.盐胁迫对冬小麦过氧化物同工酶的影响.吉林农业大学学报.2002,24(1):25~27
    宁运旺,张永春.设施土壤次生盐渍化的发生与防治江苏农业科学2001,4:49~50
    秦巧燕,贾陈忠,曲东等.我国设施农业发展现状及施肥特点.湖北农学院学报.2002(22)4:373~376
    邵桂花.大豆萌发期耐盐生理初步研究.作物杂志.1994,(6):25~27.
    邵宏波,初立业.植物耐盐蛋白的研究.生命的化学.1995,15(5):29~30
    沈法富,尹承佾.盐胁迫对棉花幼苗子叶超氧化物歧化酶SOD活性的影响.棉花学报.1993,5(1):39~44
    施秀珠,奚振邦,朱建萍,等.上海郊区蔬菜塑料大棚的土壤障碍问题.上海农业科技,1991(1):28~30.
    石岩,林琪,潘波等.水分胁迫对冬小麦生长发育和产量形成的影响.莱阳农学院学报.1995,12(4):247~251
    孙松发,陈建中,盛建国,等.温室土壤次生盐渍化的研究.上海农学院学报,1992,10(2):132~140.
    童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159~162.
    童有为.蔬菜大棚土壤盐渍的综合防治.上海农学院学报,1989:14~15.
    王宝山.生物自由基与植物膜伤害.植物生理学通讯.1989(2):12~16
    王春裕.诌议土壤盐渍化的生态防治.生态学杂志.1997,16(6):67~71
    王慧中,黄大年.转mtlD/gutD双价基因水稻的耐盐性.科学通报.2000,457:724~729.
    王晓雪,刘继锋.菜田土壤肥力退化及其防治对策.沈阳农业大学学报.1995,26(1):100~103
    王学军.日光温室土壤次生盐渍化分析.北方园艺.1998,3(4):12~13
    吴风芝,刘德.大棚蔬菜连作年限对土壤主要理化性状的影响.中国蔬菜,1998,(4):5~8.
    吴凤芝,刘德.哈尔滨市郊蔬菜大棚土壤盐分状况及其影响的研究[A]“菜园土壤肥力与蔬菜合理施肥”论文集[C].河海大学出版社,1997.
    吴兴国.蔬菜保护地表土盐分积聚原因及防治措施.上海农业科技.2001,3:5~7
    吴志行,石海仙.大棚蔬菜连作障碍及土壤次生盐渍原因及防止.长江蔬菜,1994,(5):21~23.
    谢承陶.盐渍土改良原理与作物抗性.北京:中国农业科技出版社,1993.
    谢甫缔,董钻,刘宛等.渗透胁迫下大豆抗旱机理的初步研究.沈阳农业大学学报.1995,26(1):8~12
    谢学东,李加友.蔬菜大棚土壤肥力状况研究.南京农专学报.1999,15(1):26~
    
    
    29
    谢玉珍.确保大棚蔬菜持续高产谨防土壤盐渍化.农业科技与信息,1999(8):14.
    许前欣.天津市蔬菜生产与设施现状调查[A].中国植物营养与肥料学会.菜园土壤肥力与蔬菜合理施肥[C]南京:河海大学出版社,1995.153.
    薛继澄,毕德义,李家金,等.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994(1):4~9.
    薛继澄,李家金,毕德义.保护地栽培土壤硝酸盐积累对辣椒生长和锰含量的影响.南京农业大学学报,1995,18(1):53~57.
    燕平梅,章艮山.水分胁迫下脯氨酸的累积及其可能的意义.太原师范专科学校学报.2000(4):27~28
    杨丽娟,张玉龙,李晓安,等.灌水方法对塑料大棚土壤———植株硝酸盐分配影响.土壤通报,2000,31(2):63-~65.
    杨盛昌,谢潮添,张平等.低温胁迫下弓葵幼苗膜质过氧化及保护酶活性的变化.园艺学报.2003,30(1):104~106
    杨秀玲,郁继华,李雅佳等.NaCl胁迫对黄瓜种子萌发及幼苗生长的影响甘肃农业大学学报200439(1):6~9
    于同泉,刘宗萍,路萍等.水分胁迫小麦SOD、MDA动态变化与抗旱性的关系.北京农学院学报.1995,10(1):22~25
    臧壮旺.保护地土壤的综合治理.现代农业.2002(9):16~17
    臧壮旺.蔬菜保护地土壤的变化障碍及综合治理.吉林蔬菜.2002(5):22~23
    张春兰,张耀东,朱建春,等.施用稻草对防治保护地土壤盐渍化的作用.土壤肥料,1994:146~148.
    张春兰,张耀栋,等.不同作物茬口对减轻保护地土壤盐害及连作障害的作用。土壤通报.1995,26(6):257~259.
    张春兰,张耀栋,等.设施栽培条件下蔬菜营养生理和土壤障碍因子诊断研究[A].南京农业大学主编.史瑞和教授八十华诞纪念文集[C].北京:中国农业科技出版社,1996.
    张春兰,张耀栋,周权锁等.不同作物茬口对减轻蔬菜保护地土壤盐害及连作障碍的作用.土壤通报,1995,16(6):257~259
    张春兰.蔬菜保护土壤障碍因子诊断与对策(1).土壤通报.1994,(11)
    张耕耘.九个水稻耐盐突变体的RFLP分析.植物学报.1994,36(5):345~350.
    张美云,钱吉,钟扬等.野生大豆若干耐盐生理指标的研究.复旦学报(自然科学版).2002,41(6):669~673
    张宪政.植物生理学实验指导.1989
    张小平,李梁.吉林省大安市盐渍化土壤特征及现状研究.土壤通报.2001,32:26~30
    张英普,何武权,韩健.水分胁迫对玉米生理生态特性的影响.西北水资源与水工程.1999,10(3):18~21
    
    张玉屏,李金才,黄义德.水分胁迫对水稻根系生长和部分生理特性的影响.安徽农业科学.2001,29(1):58~59
    张真和,李建伟.我国设施蔬菜产业的发展态势及可持续发展对策探讨.沈阳农业大学学报.2000,31(1):4~8
    张真和.我国蔬菜设施园艺的发展态势.北京农业.2000,(4):5.
    赵明范.世界土壤盐渍化现状及研究趋势.世界林业研究.1995:84~86
    甄占萍,杨会芹.水分胁迫对番茄生物学性状的影响.中国农业通报.2001,17(4):98~99
    郑东虎,葛晓光,张宪政等.冷胁迫对番膜质过氧化与抗氧化酶系统的影响.北方园艺.2003,(4):46~47
    朱广廉.植物生理实验.1990
    邹辉.蔬菜棚室土壤盐渍化的原因及对策.设施园艺.2001(5)
    AbdelTFM,etal.Molecular markers for salt tolerance in some inbred sofmaize (ZeamaysL.). Arab Uni-versities Journalof Agricultural Sciences.1997,5(2):389~417.
    AbelGH.Inheritance ofthecapacity for chloride inclusion and chloride exclusion by soybeans.CropScience.1969,9(6):697~698.
    AbelGH.Salt tolerance of soybean varieties during germination and later growth.CropScience.1964,4:157~160.
    Ana Santa-Cruz , Maria M. Martinez-Rodriguez , Francisco Perez-Alfocea.The rootstock effect on the tomato salinity response depends on the shoot genotype.Plant Science .2002 (162): 825~831
    BradfordKJ,YangSF.Stress-induce dethy-leneproduction in the ethylener equiring tomato mutant diageo tropiea.Plantphysiol.1980b,65:327~330
    Colette Desmonda,b, Catherine Stantona, Gerald F. Fitzgerald. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying International Dairy Journal. 2001 (11): 801~808
    Congming Lu a, Nianwei Qiu a, Qingtao Lu.Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Science 163 (2002) 1063~1068
    Deepika Minhas, Anil Grover. Transcript levels of genes encoding various glycolytic andfermentation enzymes change in response to abiotic stresses. Plant Science.1999, 146: 41~51
    Dubcovsky J,Galvez AF,Dvorak J.Comparison of thege neticorganization of the early salt-stress-response gene system in salt-tolerant Lophopyrumelong atumand salt-sensitive wheat.Theor Appl Genet,1994,
    
    
    87:957~964.
    Eelauney A J,Verma D P S. A soybean gene encodingΔ1 -pyrroline-s-carboxylate reductase was iso-lated by functional complementation in E. coli and is found to be osmore gulated[J]. Mol Gen Gendt,1 990 ,2 2 1 :299~305.
    Falkenberg P and Strom A. R. Purification and characterization of osmoregulatory betaine aldehydedehydrogenase of E. coli[J]. Biochim Biophys Acta,1 990 ,1 0 34:2 53~2 59.
    Foolad MR.Genetic potential for salt tolerance during germination in Lycopersion species.Hortscicence.1997,32:296~300
    FooladMR,etal. Mapping QTL sconferring salt tolerance during germination in tomato by selective genotyping .MolecularBreeding.1997,3(4):269~277.
    Forster BP,Gorham J,Miller TE.Salt tolerance of anamphiploid between Triticumaestivumand Agropyronjunceum.Plant Breeding,1987,98:1~8.
    Forster BP,Miller TE,Law CN.Salt tolerance of two wheat-Agropyronjunce umdisomicad ditionlines.Genome,1988,30:559~564
    Forster BP,Russell JR,Ellis RP,Handley LL.Locating gene type sandgenes for abiotic stress tolerance in barley:astrategyusing maps,marker and wild species.New Phytol,1997,137:141~147
    Gonc?alo A. de Souza Filho, Beatriz S. Ferreira, Janice M. Dias.Accumulation of SALT protein in rice plants as a response to environmental stresses .Plant Science. 2003 (164) :623~628
    Gorham J,Bridges J,Dubcovsky J.Genetican alysis and physiology of atrait for enhanced K+/Na+ discrimination in wheat.New phytol,1997,137:109~116
    GorhamJ,etal.Geneticanaly sisandphysiologyo fatrait forenhanced K+/Na+ discrimination in wheat. Pro-ceeding of the Second New Physiologist symposium.1997,137(1):109~116.
    GuoPei,etal.ARAPDmarker link edtothe salt tolerant gene in soybean. Soybean Genetics Newsletter.1998,25:30~31.
    Hans J. Bohnerta,b, Patricia Ayoubid, Chris BorchertaA genomics approach towards salt stress tolerance.Plant Physiol. Biochem. 2001 (39): 295~311
    Jang Hyun Jung,Pih Kyeong Jae,et al. Molecular cloning of a novel Ca2 +-binding protein that is in-duced by Na Cl stress[J]. Plant Molecular Biology,1 998,37 (5):839~847.
    Jian-Kang Zhu. Plant salt tolerance .TRENDS in Plant Science .2001,Vol.6 No.2
    
    Kasuga M,L iu Q,Yamaguchi-Shinozaki K,et al. Improving plant duought,salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature Biotechnol,1 999,1 7:2 87-~2 91
    King IP,Forster BP,Law CL.Introgression of salt-tolerance genes from Thinopy rumbessara bicum into wheat.NewPhytol,1997,137:75~81.
    KingIP,etal.Characterization of Thinopyrum bessara bicumchromo some segments in wheat using random ampli-fied polymorphic DNAs(RAPDs) and genomic insituhy bridization.The oreticaland Applied Genetics.1993,86(8):895~900.
    L iu Q,Kasuga M,Sakuma Y,etal. Two transcription factors,DREB1 and DREB2 ,with an DREBP/AP2 DNA-binding domain separate two cellular signal tansduction pathways in drought-and low-temperature-responsive gene expression in Arabidopsis. Plant Cell,1 998,1 0 :1 391 ~1 40 6 .
    Loubna Kerkeb, Juan Pedro Donaire, Kees Venema and Mar?′a Pilar Rodr?′guez-Rosales.Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase activity of tomato calli.PHYSIOLOGIA PLANTARUM. 2001,113: 217~224.
    M.P. Rodr?′guez-Rosales, L. Kerkeb, P. Bueno.Changes induced by NaCl in lipid content and composition,lipoxygenase, plasma membrane H_-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum. Mill) calli. Plant Science. 1999 (143): 143~150
    ManoY,etal.Mapping quantitative trait locifor salt tolerance atgermination and the seedlings tagein barley (HordeumvulgareL.).Euphytica.1997,94(3):263~272.
    Marinus L. Otte.What is stress to a wetland plant?.Environmental and Experimental Botany 2001 (46): 195~202
    Mc Kersie B D,Bowley SR,Jones K S. Wintersurvival of transgenic Alfalfa overexposing superoxidedismutase[J]. Plant Physiol,1 999,119:839~847.
    MichelmoreRW,etal.Identification of markers linked to disease-resistance genes by bulked segregan tanalysis:Arapid method todetectmarker sinspecific genomicregions by using segregating populations.Proc.Natl.A-cad.Sci.USA.1991,88:9828~9832.
    Mihoko Suzukia, Eri Yasumotoa, Shigeyuki Baba.Effect of salt stress on the metabolism of ethanolamine and choline in leaves of the betaine-producing mangrove species Avicennia marina.Phytochemistry .2003 (64) :941~948
    N. Katerjia, J.W. van Hoornb, A. Hamdy.Salt tolerance classification of crops according to soil salinity and to water stress day index.Agricultural Water Management . 2000 (43) :99~109
    
    N. Katerjia, J.W. van Hoornb,*,1, A. Hamdy Response of tomatoes, a crop of indeterminate growth, to soil salinity Agricultural Water Management 1998 (38): 59~68
    N. Katerjia, J.W. van Hoornb,A. Hamdy .Salinity effect on crop development and yield,analysis of salt tolerance according to several classification methods. Agricultural Water Management . 2003 (62) :37~66
    PallaghyCK,RaschkeK.Nostomatal response toethylene.Plantphysiol.1972,49:275~276
    R. Romero-Aranda , T. Soria, J. Cuartero.Tomato plant-water uptake and plant-water relationships under saline growth conditions.Plant Science .2001 (160): 265~272
    Rama Vaidyanathan, Sam Kuruvilla, George Thomas.Characterization and expression pattern of an abscisic acid and osmotic stress esponsive gene from rice.Plant Science . 1999(140): 21~30
    Rder MS,Plashke J,Knig SU,Brner A,Sorrells ME,Tanksley SD,Ganal MW.Abundance,variability and chromosomal location of micro satellites in wheat.MolGenGenet,1995,246:327~333.
    Strizhov N,Abraham E,et al. Differential expression of two P5CS genes controlling proline accumu-lation during salt-stressrequires ABA and is regulated to ABA1 ,ABI1 and AXR1 in Arabidopsis[J].Plant Journal,1 997,12(3):557~569.
    Tarczynski M C,Jensen R G,Bohnert H J. Stress protection of transgenic tobacco by production ofthe osmolyte mannitol[J]. Science,1 993,2 59:50 9~51 0 .
    Urao T,Katagiri T,et al. Two genes that encode Ca2 +-dependent protein kinases are induced bydroughtand high-salt stresses in A. Thaliana[J]. Molecular General Genetic,1 994,2 44:331 ~340 .
    VaadiaY.Plant hormonesand waterstress.Phi-los.Trans.S.Soc-LondonSer.B.,1976,273:513~522
    Valentina Mittovaa, Moshe Talb, Micha Volokitaa and Micha Guy Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. PHYSIOLOGIA PLANTARUM .2002,115:393~400.
    Van Camp W,Wilekens H,et al. Elebted levdls of superoxide dismutase protect transgenic plants a-gainst ozene damage[J]. Biology Technology,1 994,1 2 :1 6 5~1 6 8.
    Yasue Nemoto, Tetsuo Sasakuma. Differential stress responses of early salt-stress responding genes in common wheat. Phytochemistry,2002,
    
    
    61:129~133
    Yoshiro M,Kazuyoshi T.Mapping quantitative traitloci for salt tolerance atgermination and the seeding stage in barley.Euphytica,1997,94:263~272.
    Zhang X-Y(张学勇), Dong Y-C(董玉琛),You G-X(游光侠).Allelic variation of Glu-A1,Glu-B1 and Glu-D1 in Chinese commercial wheat varieties in the last 50 years.SciAgricSin(中国农业科学),2001,34:(in press).(in Chinese with English abstract)
    Zhang X-Y(张学勇),Yang X-M(杨欣明),Dong Y-C(董玉琛).Geneticanalysis of wheat germ plasmby acid poly acrylamide gelelectro phoresis of gliadins.SciAgricSin(中国农业科学),1995,28(4):25~32.(in Chinese with English abstract)
    Zhong GY,Dvorak J.Chromosomal control of the gradually and suddenly imposed salt stress in the Lophopyrumelonga tumand wheat,Triticumaestivum L.,genomes.Theor Appl Genet,1995,90:229~236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700