用户名: 密码: 验证码:
稀有气体掺杂团簇中弱相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀有气体化合物的合成和研究具有深远的理论意义。它给以往化学键理论出了一道难题,对化学键理论的进一步发展无疑起到了极大的促进作用。本课题是在分子成键理论基础之上的更深层次的研究和深入。通过对此类团簇的几何构形、物理特性和化学性质以及电子相关和相对论效应等深层次理论的深入研究,不仅能够认识这些效应对分子成键作用的规律,而且能发展在这类团簇中弱相互作用的理论及其研究方法。
     本课题采用量子化学从头算方法中的Hartree-Fock方法(HF)、M?ller-Plesset二阶微扰论(MP2)、耦合簇(CCSD(T))等方法以及相对论和非相对论的赝势(Relativistic and Nonrelativistic Pseudo-Potentials)及其相应的基组,应用Gaussian系列程序,对含稀有气体(Rare gas, Rg)和卤族元素掺杂团簇(Mixed Clusters)系列RgnX―(Rg=Ar, Kr, Xe; X=Br, I)的弱相互作用进行系统的理论研究。
     首先,计算出双原子离子体系RgX―(Rg=Kr, Xe; X=Br, I)的基态电子态和离解极限,并利用最小二乘法拟合Murrell-Sorbie势能函数的解析表达式,通过拟合参数计算力常数和光谱数据。对RgX(Rg=Kr, Xe, X=Br, I)准分子的键长、解离能的研究表明:在Hartree-Fock理论水平下RgX之间几乎没有结合能,而考虑电子相关作用的耦合簇CCSD(T)方法能再现他们之间微弱的结合力,电子相关作用在这些分子的形成过程中起了至关重要的作用。本文通过对范德华分子RgX(Rg=Kr, Xe, X=Br, I)的电子相关效应进行系统地研究进一步深入了解此类分子中电子相关效应的作用,由此得到一种获得色散系数C6的新方法。
     对稀有气体掺杂团簇Rg2X~-(Rg=Ar, Kr, Xe, X=Br, I)及其中性体系Rg_2X的几何构形和稳定性进行深层次的理论研究。其基态的电子态分别为~1A_1和~2A_1,均为具有C_(2v)对称性的小角度弯曲结构;同离子体系相比,中性体系Rg_2X具有较长的键长R(Rg-X)、较小的角度θ(Rg-X-Rg)和解离能(Dissociation energy, D_e),离子体系比中性体系更加稳定。在中性体系中Rg和X之间的很弱的色散作用占据主导作用;而在离子体系中,则是离子和诱导偶极矩间的较强的相互作用占据主导地位,故离子体系比中性体系更加稳定。对Rg2X―(Rg=Kr, Xe, X=Br, I)中相对论应效和电子相关应效的倾向性进行深入的研究,结果表明:两者均对本文研究的体系的结构和稳定性有很大的影响。电子相关效应对键长和键角都有很大的影响,相对论效应对键长有很大的影响而对键角几乎没有作用;两种效应都使整个体系的振动频率增大,解离能增大,从而使体系更加紧凑稳定。对高角动量基函数(g-和h-型基函数)对其结构以及稳定性影响的研究表明:对于弱相互作用体系,其相互作用需要用非常高的角动量的基函数来描述,如果没有高角动量的基函数,即如果基组中只包含spdf型基函数,则得到的相互作用能一般比精确的能量低30%左右。
     在二阶微扰论MP2理论水平上对Xe_nI~-(n=1-6)的振动频率、能量进行计算从而确定其基态的稳定构形。它们的稳定的基态的构形分别为C_(2v)(n=2)、C_(3v)(n=3)、C_(2v)(n=4)、C_(4v)(n=5)、C5v(n=6)结构。结果表明:I~-离子处于不同数量的Xe原子所形成球面的中心,这样I~-离子可以和所有的Xe原子形成Xe-I~-“化学键”,而这种基本上呈球面分布的Xe原子可以在保证最大数量的Xe-I~-“化学键”的前提下能形成数量最多的Xe-Xe“化学键”,从而使体系具有最低的能量。计算体系的解离能以及裂解能(Fragmentation energies, Fe)对体系的稳定性进行研究分析。由于随着团簇尺寸的增大,Xe-I~-“化学键”和Xe-Xe“化学键”的数目随之增大,故体系的解离能随团簇的尺寸而单调增大;由于Xe-Xe“化学键”数目增加的无规律性导致了体系裂解能的无规律变化。在MP2理论水平上计算的体系的电子亲合能与实验值非常吻合并且随着团簇尺寸n单调增大。
The syntheses of rare gas contained clusters bring forward a considerable challenge toward the classical chemical bond theory and thus the investigation on it has very important significance. The present work studies the molecular bonding furtherly and can develop the interaction theory greatly. The anslysis of the structures, physical and chemical character, the electron correlation and relativistic effects can shed light on the principle of the bonding; moreover, can develop the technique in the investigation on the weak interaction clusters.
     The electronic states, dissociation energies and potential energies of RgX― (Rg=Kr, Xe; X=Br, I) were investigated at CCSD(T) theoretical level. The potential energies were fit to a four parameters Murrell-Sorbie function by least-squares procedure. The force constants and spectral constants were derived by the fitted Murrell-Sorbie parameters. These correlation-bound complexes RgX(Rg=Kr, Xe, X=Br, I) are not bound at self-consistent field(SCF) level and only weakly bound at the correlated levels. It clearly shows the importance of the electron correlation effects for the present van der Waals complexes. In the present study, we have systematically investigated the heavier RgX(Rg=Kr, Xe, X=Br, I) to have a further insight into the correlation energy of the RgX vdW complex. A new method to derive the dispersion coefficient C6 by fitting the intermonomer electron correlation energies to C6R-6 function is introduced. The present C_6 values are compared with the corresponding theoretical ones.
     The optimized geometries and vibrational frequencies of Rg_2X~-(Rg=Ar, Kr, Xe; X=Br, I) and its neutral were calculated at HF, MP2, and CCSD(T) theoretical levels. At CCSD(T) theoretical level, the anion systems Rg_2X~- have ~1A_1 electronic state and C_(2v) bent structure with small bond anglesθ(Rg-X-Rg) about 55.0°~62.0°, which is in line with experimentally known small angles. The neutral systems Rg_2X have ~2A_1 electronic state and C2v bent structure as its anion. The dissociation energies of the anions exceed those of the neutrals, because in the former ion/induced dipole forces are present while in the neutrals only induced polarizability comes into play. The electron correlation effects and relativistic effects are investigated at CCSD(T) theoretical level. Both effects have strong influence on the geometries and stabilities of the present species; they shorten the bond length, reduce the bond angle, increase the vibrational frequencies and thus enhance the stability. The calculated electron affinities are in good agreement with the experimental values available. High quality gh-functions play a critical role in describing polarizability of the present systems, the gh-function corrections to dissociation energy were investigated at MP2 level to be about 30%, and the best De at CCSD(T) theoretical level were estimated. The orderings of EA and De indicate that the Xe_2X~- is the most stable species of the present systems due to its greater polarizability.
     The MP2 calculations reported in this study find the most stable structures of the Xe_nI~- (n=2-6) to be C_(2v), C_(3v) (tetrahedron), C_(2v) (butterfly), C4v (octahedron) and C_(5v) (decahedron), respectively. The calculated results indicate that Xe-I~-“bond”is about four times stronger than the Xe-Xe“bond”, thus in the global minimum energy structure of XenI~-(n=2-6), all the Xe atoms contact the central I anion, allowing the maximum Xe-I~-“bond”to be formed. Next, the Xe atoms are grouped in a way that the number of Xe-Xe“bonds”is maximized. Theoretical results indicate that the dissociation energies of the present clusters increase monotonically as the size of n increase, which is different from the fragmentation energies. The I~- was found to be located inside the Xe cluster, thus the Xe-I~-“bonds”increase monotonically as the size of n increase while the Xe-Xe“bond”do not have the same behavior, it results in irregular variable trend of the fragmentation energies. By the chosen criterion, Xe_6I~_ has the biggest fragmentation energies and thus it is the most stable specie. The calculated electron affinities increase monotonically as the size of n increase and compare very well with the experimental values.
引文
1 I. G. Kaplan: Theory of Intermolecular Interaction. Elsevier Science Publishers (1986)
    2 D. A. Dougherty. Cation- Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp. Science. 1996, 271: 163~168
    3 I. T. Paulsen, L. Banerjei, G. S. A. Myers. Role of Mobile DNA in the Evolution of Vancomycin-Resistant Enterococcus Faecalis. Science 2003, 299: 2071~2074
    4 J. B. O. Mitchell, C. L. Nandi, A.Shamimara. Amino/aromatic Interactions. Nature. 1993, 366: 413~416
    5 T. M. Fong, M. A. Cascieri, H. Yu, A. Bansal, C. Swain, C. D. Strader. Amino-Aromatic Interaction between Histidine. 197 of the Neurokinin-1 Receptor and CP 96345. Nature. 1993, 362: 350~353
    6 D. Auboeuf, A. H?nig, S. M. Berget, and B W. Malley. Coordinate Regulation of Transcription and Splicing by Steroid Receptor Coregulators. Science. 2002, 298: 416~419
    7 K. S. Kim, I. Park, S. Lee, K. Cho, J. Y. Lee, J. Kim and J. D.Joannopoulos. The Nature of a Wet Electron. Phys. Rev. Lett. 1996, 76: 956~959
    8 K. S. Kim, S. Lee, J. Kim, and J. Y. Lee. Molecular Cluster Bowl to Enclose A Single Electron. J. Am. Chem. Soc. 1997, 119: 9329~9330
    9 S. Lee, J. Kim, S. J. Lee, and K. S. Kim. Novel Structures for the Excess Electron State of the Water Hexamer and the Interaction Forces Governing the Structure. Phys. Rev. Lett. 1997, 79: 2038~2041
    10 J. S. Cho, H. Hwang, J. Park, K. S. Oh, and K. S.Kim. Starands vs Ketonands: Ab Initio Study. J. Am. Chem. Soc. 1996, 118: 485~486
    11 J. M. Lehn. Toward Self-Organization and Complex Matter. Science. 2002, 295: 2400~2403
    12 W. Klemperer. The Complex Story of H2. Science. 2001, 293: 815~816
    13 M. J. Elrod, R. J. Saykally. Many-Body Effects in Intermolecular Forces.Chem.Rev. 1994, 94: 1975~1997
    14 B. Brutschy and P. Hobza. Van der Waals Molecules III: Introduction. Chem. Rev. 2000, 100: 3861~3862
    15 G. D. Stein. Atoms and Molecules in Small Aggregates. The fifth state of matter. Phys. Teach. 1979, 17: 503~512
    16 王广厚. 团簇及其制备检测技术. 现代科学仪器,1998, 1-2: 61~64
    17 N. Bartlett. Xenon Hexafluoroplatinate Xe+[PtF6] –. Proc Chem Soc. 1962, 218: 85~92
    18 R. Hoppe, W. Dhne, H. Mattauch. Synthesis of Xenon Difluoride in a Glow Discharge. Angew Chem 1962, 74: 903~910
    19 H. Howard, H. Selig, G. Malm. Production and Reactions of Methylene in the Triplet State. J. Am. Chem. Soc. 1962, 84: 3593~3594
    20 V. Slivnik. Synthesis of Xenon Difluoride. Croat Chem Acta 1962, 34:
    253~258
    21 L. Khriachtchev, M. Pettersson, N. Runeberg, J. Lundell, M. R?s?nen. A Stable Argon Compound. Nature. 2000, 406, 874~876
    22 S. Seidel and K. Seppelt. Xenon as a Complex Ligand: The Tetra Xenono Gold (II) Cation in AuXe42+(Sb2F11 )2. Science. 2000, 290: 117~118
    23 P. Pyykk?. Predicted Chemical Bonds between Rare Gases and Au+. J. Am. Chem. Soc. 1995, 117: 2067~2070
    24 D. Schr?der, H. Schwarz, J. Hrusak, P. Pyykk?. Cationic Gold (I) Complexes of Xenon and of Ligands Containing the Donor Atoms Oxygen, Nitrogen, Phosphorus, and Sulfur. Inorg. Chem. 1998, 37: 624~632
    25 C. J. Evans, A. Lesarri, M. C. L. Gerry. Noble Gas-Metal Chemical Bonds. Microwave Spectra, Geometries, and Nuclear Quadrupole Coupling Constants of Ar-AuCl and Kr-AuCl. J. Am. Chem. Soc. 2000, 122: 6100 ~6105
    26 C. J. Evans, M. C. L. Gerry. The Microwave Spectra and Structures of Ar-AgX (X=F, Cl, Br). J. Chem. Phys. 2000, 112: 1321~1329
    27 C. J. Evans, M. L. Gerry. Noble Gas-Metal Chemical Bonding? The Microwave Spectra, Structures, and Hyperfine Constants of Ar-CuX(X = F, Cl, Br). J. Chem. Phys. 2000, 112: 9363~9374
    28 王广厚. 团簇物理的新进展(II)—关于原子团簇和原子核的相似点和不同点. 物理学进展 1998, 18: 1~7
    29 王广厚. 遗传算法研究原子团簇. 物理学进展 2000, 20: 251~257
    30 S. Nonose, Y. Sone, K. Onodera, S. Sudo, and K Kaya. Structure and Reactivity of Bimetallic Cobalt-Vanadium (ConVm) Clusters. J. Phys. Chem. 1990, 94: 2744~2746
    31 K. Hoshino, T. Naganuma, A. Nakajimaand K. Kaya. Ionization Potentials of Gold-Sodium (AunNam) Bimetallic Cluster. Chem. Phys. Lett. 1993, 211: 571~574
    32 孙强,龚新高,郑庆棋,孙强,王广厚. 复合银团簇的磁性研究. 科学通报,1996, 8: 68~73
    33 O. Echt, K. Sattler, E. Rechnagel. Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters. Phys. Rev. Lett. 1981, 47: 1121~1124
    34 J. Ferges, M F. Fernudy, B. Raoult and G. Torchet. Noncrystalline Structure of Argon Clusters. I. PolyicosahedR, 20    35 D, J. Wales. Global Optimization of Clusters, Crystals, and Biomolecule. Science. 1999, 285: 1368~1372
    36 P. Pyykk?, Y.-F. Zhao. Ab Initio Calculations on the (Clauph3)2 Dimer with Relativistic Pseudopotential: Is the “Aurophilic Attraction” a Correlation Effects. Angew Chem. 1991, 30(5): 604~605
    37 赵永芳, 井孝功, 张明瑜. 电子相关和相对论对M2Te (M=Cu,Ag,Au) 的几何结构和稳定性的修正. 原子与分子物理学报 2001, 18 (1): 76~79
    38 Y. Zhao. An Ab Initio Stuay of the Structure, Dissociation Energy, and Heat of Formation of Na2S. Int. J. Quant. Chem. 1997, 61: 953~957
    39 Y. Zhao et al. Ab Initio Pseudopotential Study of M2As- and M2Br+ (M=Cu, Ag, Au). Int. J. Quant. Chem. 2000, 80: 38~43
    40 Y. Zhao. Ab Initio Study of M2Te(M=Cu, Ag, Au) Systems. J. Mol. Stru. (Theochem). 2002, 587: 43~48
    41 S. Bjornholm. Mean-Field Quantization of Several Hundred Electrons in Sodium Metal Clusters. Phys. Rev. Lett. 1990, 65(13): 1627~1630
    42 冯端, 金国均. 凝聚态物理学的新进展(II) 物理学进展 1991, 2: 5~91
    43 刘昊阳, 邹宪武, 金准智. 原子团簇结构的研究. 武汉大学学报(自然科学版) 1997, 43: 361~367
    44 王广厚. 物理学的新进展(I). 物理学进展. 1994,14 (2): 121~172
    45 B. K. Becker and W. Z. Henkes, Strahlen aus Kondensierten Atomen Und Molekeln Im Hochvakuum. Z. Physik. 1956, 146: 333~338
    46 H. W. Kroto, J. R. Heath, S. C. Brien. C60: Buckminster Fullrerne. Nature.1985, 318: 162~163
    47 W. Krtschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman. Solid C_(60) : a new form of carbon. Nature. 1990, 347: 354~358
    48 Proc. of 1st Inter. Metting on Inorganic Clusters, J. Phys. 38 Colloque C-2(1997).
    49 Proc. of 2nd Inter. Metting on Inorganic Clusters, Surf. Sci., 106 (1980).
    50 Proc. of 3rd Inter. Metting on Inorganic Clusters, Surf. Sci., 156 (1985)
    51 Proc. of 4th Inter. Metting on Small Particales and Inorganic Clusters (Eds: chapon, C., Gillet, M. F., and Henry, C. R.) Springer-Velag, Berlin (1989).
    52 Proc. of 5th Inter. Metting on Small Particales and Inorganic Clusters (1990), Z.Phys. D., vol. 20, No. 1-4(1991).
    53 Proc. of 6th Inter. Metting on Small Particales and Inorganic Clusters (Eds: chapon, C., Gillet, M. F., and Henry, C. R.) Springer-Velag, Berlin (1992).
    54 Proc. of 7th Inter. Symposium on Small Particales and Inorganic Clusters (Kobe. 1994). Surface Review and Letters.
    55 Microclustures, Proc. of 1st NEC Symposium (eds: Sugano, S., Nishina, Y., and Ohnishi, S.). Springer-Velag, Berlin (1987)
    56 Physics and Chemistry of Small Clusters, Proc. of NATO Advanced Research Worksphp and International Symposium (Eds: Jena, P., Rao, B. K. and Khanna, S. N.), Plenum Press New York (1987).
    57 Elements and Molecular Clusters. Proc. of 13th International School (Eds: Benedek, G., Martin, T. P., and Pacchioni, G.) Springer-Velag, Berlin (1998).
    58 M. Krauss. The Electronic Structure of Rare Gas Halide Excimers. J. Chem. Phys. 1977, 67: 1712~1719
    59 J. Tellinghuisen, P. C. Tellinghuisen. Spectroscopic Studies of Diatomic Noble Gas Halides. III. Analysis of XeF 3500 ? Band System. J. Chem. Phys. 1978, 68: 5177~5186
    60 C. H. Becher, P. Casavechia and Y. T. Lee. Crossed Molecular Beam Studieson the Interaction Potential for F(2P)+Xe(1S). J. Chem. Phys. 1978, 69: 2377 ~2381
    61 M. F. Golde, A. Kvaran. Chemiluminescence of Argon Bromide. I. The Emission Spectrum of ArBr. J. Chem. Phys. 1979, 72: 434~441
    62 D. J. Ehrlich, R. M. Osgood. Formation of the XeBr Excimer by Xe-Br2(D’) Collisions. J. Chem. Phys. 1980, 73: 3038~3045
    63 K. Tamagake, D. W. Setser. Interpretations of XeI and XeBr Bound--Free Emission Spectra And Reactive Quenching of Xe(3P2) Atoms by Bromine And Iodine Containing Molecules. J. Chem. Phys. 1980, 74: 4286~4305
    64 P. Casavechia, R.K Sparks. Interaction Potentials for Br(2P) +Ar, Kr, and Xe (1S) by the Crossed Molecular Beams Method. J. Chem. Phys. 1981, 75: 710~721
    65 P. Casavechia, R.K Sparks. Rare Gas–Halogen Atom Interaction Potentials from Crossed Molecular Beams Experiments: I (2P3/2)+Kr, Xe (1S0). J. Chem. Phys. 1982, 77: 1878~1885
    66 R. T. Pack, J. J. Valentini. Multiproperty Empirical Interatomic Potentials for ArXe and KrXe. J. Chem. Phys. 1982, 77: 5475~5485
    67 M. Boivineau, J. L. Cavle. Formation of the XeBr excimer by Double Optical Excitation of Xe-Br2 van der Waals Complex. J. Chem. Phys. 1986, 84: 4712~4713
    68 R. B. Jones, J. H. Schloss, J. G. Eden. Excitation Spectra for the Photoassociation of Kr-F and Xe-I Collision Pairs in the Ultraviolet (208-258nm). J. Chem. Phys. 1992, 98: 4317~4334
    69 E. J. D. Vredenbregt et al. A Beam Experiment on Excimer Formation in Collisions of Kr (3P0), Kr (3P2), and Xe atoms with Br-Containing Molecules. J. Chem. Phys. 1993, 98: 7903~7925
    70 Y. Zhao, I. Yourshaw, D. M. Neumark. Study of the ArBr–, ArI–, and KrI– Anions and the Corresponding Neutral van der Waals Complexes by Anion Zero Electron Kinetic Energy Spectroscopy. J. Chem. Phys. 1994, 101: 6538~6551
    71 J. O. Clecenger, J. Tellinghuisen. The B(1/2 2P3/2)→X(1/2 2∑+) Transition in XeBr. J. Chem. Phys. 1995, 103: 9611~9620
    72 D. T. Radzykewycz, J. Tellinghuisen. The B(1/2 2P3/2)→X(1/2 2 ∑ +) Transition in XeI. J. Chem. Phys. 1996, 105: 1330~1340
    73 R. Burd. RG + Cl (2P) (RG = He, Ne, Ar) Interactions: Ab Initio Potentials and Collision Properties. J. Chem. Phys. 1998, 109: 2144~2154
    74 M. Tsuji, M. Ide, Y. Nishimura. Formation of XeBr*, Xe*, and Br* by the Xe+(2P1/2)/Br–/He and Xe+(2P1/2)/Br–/He Three-Body Ionic-Recombination Reactions in a Helium Flowing Afterglow. J. Chem. Phys. 1998, 109: 3374~3385
    75 D. Schroder, J. N. Harvey, M. Aschi, H. Schwarz. Experimental and Computational Study of Neutral Xenon Halides (XeX) in the Gas Phase for X=F, Cl, Br, and I. J. Chem. Phys. 1998, 108: 8446~8455
    76 I. Yourshaw, T. Lenzer, G. Reiser, D. M. Neumark. Zero Electron Kinetic Energy Spectroscopy of the KrBr–, XeBr–, and KrCl– Anions. J. Chem. Phys. 1998, 109: 5247~5256
    77 T. Lenzer, M. R. Furlanetto, D. M. Neumark. Zero Electron Kinetic Energy and Photoelectron Spectroscopy of the Xei– Anion. J. Chem. Phys. 1998, 109: 10754~10766
    78 J. Wei, S. Zhuo, G., Ju. Rapid Estimation of the Electronic Correlation Energies for van der Waals Complexes. Chem. Phys. 2001, 270: 31~40
    79 J. Wei, S. Zhuo, G. Ju. Rules of Electron Correlation Energies of Complexes RgX (Rg = Ar, Kr, X = F, Cl, Br). Int. J. Quant.Chem. 2003, 97: 977~982
    80 A. A. Buchachenko, T. V. Tscherbul. Interaction Potentials of the RG-I Anions, Neutrals, and Cations (RG=He, Ne, Ar). J. Chem. Phys. 2005, 122: 194311-1~194311-10
    81 I. Yourshaw, Y. Zhao, D. M. Neumark. Many-body Effects In Weakly Bound Anion And Neutral Clusters Zero Electron Kinetic Energy Spectroscopy and Threshold Photodetachment Spectroscopy of ArnBr–(n=2-9) and ArnI– (n=2-19). J. Chem. Phys. 1996, 105: 351~373
    82 T. Lenzer, I. Yourshaw, M. R. Furlanetto, D. M Neumark. Characterization of ArnCl (–) Clusters (n=2-15) Using Zero Electron Kinetic Energy and Partially Discriminated Threshold Photodetachment Spectroscopy. J. Chem. Phys. 2001, 115: 3578~3589
    83 N. L.Pivonka, T. Lenzer, D. M. Neumark. Photoelectron Spectroscopy of XenI– Clusters (n<13). Chem. Phys. Lett. 2001, 334: 24~30
    84 I. Becker, O. Cheshnovsky. Photodetachment Studies of Extended Excited States in I-Xen Clusters (n =1-54). J. Chem. Phys. 1999, 110: 6288~6297
    85 I. Becker, G. Markovich, O. Cheshnovsky. Bound Delocalized Excited States in I–Xen Clusters. Phys. Rev. Lett. 1997, 79: 3391~3394
    86 M. T. Zanni, C. F. Alison, V. Davis, D. M. Neumark. Dynamics of the Charge-Transfer-to-Solvent States in I-Xen Clusters. J. Phys. Chem. A. 2000, 104: 2527~2530
    87 Y. Zeiri. Structure and Dynamics of Cl and Br Ions and Atoms in Xe Clusters. J. Phys. Chem. A. 1998, 102: 2785~2791
    88 T. Lenzer, M. R. Furlanetto, D. M. Neumark. Zero Electron Kinetic Energy and Threshold Photodetachment Spectroscopy of Xeni– Clusters (N=2-14): Binding, Many-Body Effects, and Structures. J. Chem. Phys. 1999, 110: 6714~6731
    89 G. Chalasiński, M. M. Szcz??nial. Origins of Structure and Energetics of van der Waals Clusters from Ab Initio Calculations. Chem. Rev. 1994, 94: 1723~1765
    90 徐光宪. 量子化学—基本原理和从头计算法(中册). 科学出版社. 1985, 889-890
    91 M. J. Frisch, G. W. Trucks, et.al, Ganssian 98W, Gaussian, Inc., Pittsburgh PA, 1998.
    92 S. F.Boys, F. Bernardi. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Error. Mol. Phys. 1970, 19:553~566
    93 H. J. Silverstone, O. Sinanoglu. Many-Electron Theory of Nonclosed-Shell Atoms and Molecules. I. Orbital Wavefunction and Perturbation Theory. J. Chem. Phys. 1966, 44 (5): 1899~1907
    94 K. Raghavachari, J. A. Pople, E. S. Replogle and M. Head-Gordon. Fifth-Order M?ller-Plesset Perturbation Theory: Comparison of Existing Correlation Methods and Implementation of New Methods Correct to Fifth Order. J. Phys. Chem. 1990, 94: 5579~5586
    95 P. Pyykk?, N. Runeberg, F. Mendizabal. Theory of the d10-d10 Closed-Shell Attraction. I. Dimers near Equilibrium. Chem. Eur. J. 1997, 3: 1451~1457
    96 P. Pyykk?, F. Mendizabal. Theory of d10-d10 Closed-Shell Attraction. III.Rings. Inorg. Chem. 1998, 37: 3018~3025
    97 G. D. Purvis and R. J. Bartlett. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76: 1910~1918
    98 R. K Nesbet. Electronic Correlation in Atoms and Molecules. Adv. Chem. Phys. 1965, 9: 321~360
    99 O. Sinanoglu. Many-Electron Theory of Atoms, Molecules and Their Interactions. Adv. Chem. Phys. 1964, 6: 315-320
    100 F. Coester, H. Kummel. Short-Range Correlations in Nuclear Wave Functions. Nucl. Phys. 1960, 17: 477~483
    101 J. Cizek. Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules. Adv. Chem, Phys 1969, 17: 34~38
    102 C. Moller, M. S. Plesset. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46: 618~622
    103 P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3): B864~B871
    104 A. D. Becke. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38: 3098~3100
    105 S. H. Vosko, L. Wilk and M. Nusair. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: a Critical Analysis. Can. J. Phys. 1980, 58: 1200~1211
    106 W. Yang. Direct Calculation of Electron Density in Density-Functional Theorey. Phys. Rev. Lett. 1991, 66: 1438-1441
    107 W. Yang. Electron Density as The Basis Variable: A Davide-and-conquer Approach to the Ab Initio Computation of Large Molecular. J. Mol. Stru. (THEOCHEM) 1992, 252: 461~479
    108 C. Lee, W. Yang. The Davide-And-Conquer Density-Functional Approach: Molecular Internal Rotation and Density of States. J. Chem. Phys. 1992, 96: 2408~2411
    109 B. S. Jursic. Hybrid Density Functional Theory and Quadratic Complete Basis Set Ab Initio Computational Study of Structural Properties, Vibrational Spectra, and Bond Dissociation Energy for Methyl Aluminum and Methyl Gallium. J. Mol. Stru. (THEOCHEM) 1998, 428: 61~66
    110 P. Pyykk?. Relativistic Sffects in Structural Chemistry. Chem. Rev. 1988. 88: 563~594
    111 Y. K. Kim. Relativestic Self-Consistent-Field Theory for Closed-Shell Atoms. Phys. Rev. 1967, 154: 17~39
    112 K. G. Dyall, P. R.Taylor, K. J. Faegri. All-Electron Molecular Dirac Hartree-Fock Calculations: The Group IV Tetrahydrides CH4, SiH4, GeH4, SnH4 and PbH4. J. Chem. Phys. 1991, 95: 2583~2594
    113 F. A Parpia, A. K. Mohanty, E. Clementi. Relativistic Calculations for Atoms: Self-Consistent Treatment of Breit Interaction and Nuclear Volume Effect. J. Phys. B. 1992, 25: 1~16
    114 A. K. Mohanty. A Dirac-Fock Self-Consistent Field Method for Closed-Shell Molecules Including Breit Interaction. Int. J. Quant. Chem. 1992, 42: 627~662
    115 O. Visser, L. Visscher, P. J. C. Aerts, W. C. Nieuwpoort. Molecular Open Shell Configuration Interaction Calculations Using the Dirac-Coulomb Hamiltonian: The f6-Manifold of an Embedded EuO69- Cluster. J. Chem. Phys. 1992, 96: 2910~2919
    116 K. G. Dyall. All-electron Molecular Direc-Hartree-Fock Calculations: Properties of the Group IV Monoxides GeO, Sn, and PbO. J. Chem. Phys. 1993, 98: 2191~2197
    117 Y. S. Lee, W. C. Ermler, K. S. Pitzer. Ab Initio Effective Core Potentials Including Relativistic Effects. I. Formalism and Applications to the Xe and Au. J. Chem. Phys. 1977, 67: 5861~5876
    118 L. R. Kahn, P. Baybutt, D. G. Truhlar. Ab Initio Effective Core Potentials: Reduction of All-Elecron Molecular Structure Calculations to Calculations Involving Only Valence Electrons. J. chem. Phys. 1976, 65: 3826~3853
    119 W. C. Ermler, Y. S. Lee, K. S. Pitzer, N. W. Winter. Ab Initio Effective Core Potentials Including Relativistic Effects. II Potential Enrgy Curves for Xe2+, and Xe2*. J. Chem. Phys. 1978, 69: 976~983
    120 P. J. Hay, W. R. Wadt. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials For The Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82: 270~283
    121 P. J. Hay, W. R. Wadt. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys.1985, 82: 284~298
    122 P. J. Hay, W. R. Wadt. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au including the Outmost Core Orbitals. J. Chem. Phys. 1985, 82: 299~310
    123 L. A. Lajohn, P. A. Christiansen, R. B. Ros, T. Atashroo, W. C. Ermler. Ab Initio Relativistic Effective Potentials with Spin-Orbit Operation. III. Rb through Xe. J. Chem. Phys. 1987, 87: 2812~2824
    124 A. Nicklass, M. Dolg, H. Stoll, H. Preuss. Ab Initio Energy-adjusted Seudopotentials for Noble Gases Ne through Xe: Calculation of Atomic Dipole and Quadrupole Polarizabilities. J. Chem. Phys. 1995,102: 8942~8953
    125 J. M. L. Martin, A. Sundermann. Correlation Consistent Valence Basis Sets For Use With The Stuttgart-Dresden-Bonn Relativistic Effective Core Potentials: the Atoms Ga-Kr and In-Xe. J. Chem. Phys. 2001, 114: 3408-3420
    126 N. Runerbe, P. Pyykk?. Relativistic Pseudopotential Calculations on Xe2, RnXe, and Rn2: the van der Waals Properties of Rn. Int. J. Quant. Chem. 1997, 66:131~140
    127 J. P. Desclaux, Relativistic Effects in Atoms, Molecules, and Solids. Plennum. New York: 1983, 213~225
    128 V. Selvaraj, M. S. Gopinathan. Relativistic Ξ Method for Atoms. Phys. Rev. A, 984, 29: 3007~3017
    129 E. Ilyabaev, V. Kaldor. Relativistic Coupled-Cluster Calculations for Closed-Shell Atoms. Chem. Phys. Lett. 1992, 194: 95~98
    130 H. J. F. Jansen, A. J. Freeman, R. Monnire. Local-density Theory of Mixed-valence TmSe and the valence Transition in Tm Chalcogenides. Phys. Rev. B. 1985, 31: 4092~4095
    131 J. N. Murrell. The Many-Body Expensions of the Potential Energy Function for Elemental Clusters. Int. J. Quant. Chem. 1990, 37: 95~102
    132 朱正和,俞华根. 分子结构与分子势能函数. 科学出版社. 1997
    133 朱正和. 原子分子反应静力学. 科学出版社. 1996
    134 J. M. L. Martin, A. Sundermann. Correlation Consistent Valence Basis Sets for Use with the Stuttgart-Dresden-Bonn Relativistic Effective Core Potentials: The atoms Ga-Kr and In-Xe. J. Chem. Phys. 2001, 114: 3408~3420
    135 P. O. L?wdin. A Classic Review on Electron Correlation. Adv. Chem. Phys. 1959, 2: 207~213
    136 C. Hollister, O. Sinanoglu. Molecular Binding Energies. J. Am. Chem. Soc. 1966, 88: 13~21
    137 R. K. Nesbet. Atomic Bethe-Goldstone Equations. III. Correlation Energies of Ground States of Be, B, C, N, O, F, and Ne. Phys. Rev. 1968, 175: 2~9
    138 R. K. Nesbet, T. L. Barr, E. R. Davidson. Correlation Energy of the Neon Atom. Chem. Phys. Lett. 1969, 4: 203~210
    139 C. F. Bender, E. R. Davidson. Studies in Configuration Interaction: The First-Row Diatomic Hydrides. Phys. Rev. 1969, 183: 23~30
    140 C. F. Bender, E. R. Davidson. Correlation Energy and Molecular Properties of Hydrogen Fluoride. J. Chem. Phys. 1967, 47: 360~366
    141 A. Bondi. Van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68: 441~450
    142 F. Z. London. Intermolecular Potentials: Past, Present, Future. Phys. Chem. (B) 1930, 11: 222~234
    143 F. Z. London. The General Theory of Molecular Forces. Trans. Faraday soc. 1937, 33: 8~20
    144 G. Chalasinski, M. Gutowski. Weak Interactions between Small Systems. Models for Studying the Nature of Intermolecular Forces and Challenging Problems for Ab Initio Calculations. Chem. Rev. 1988, 88: 943~962
    145 P. J. Hay, T. H. Dunning. The Covalent and Ionic States of the Xenon Halides. J. Chem. Phys. 1978, 69: 2209 ~222
    146 U. Hohm, K. Kerl. Interferometric Measurements of the Dipole Polarizability Alpha of Molecules Between 300K and 1100K. I. Monochromatic measurements at λ=632.99 nm for the Noble Gases and H2, N2, O2, and CH4. Mol. Phys. 1990, 69: 803~810
    147 P. Pyykk?. Strong Closed-Shell Interactions in Inorganic Chemistry. Chem. Rev. 1997, 97: 597~636
    148 D. Hanstorp, M. Gustafsson. Determination of the Electron Affinity of Iodine. J. Phys. B. 1992, 25: 1773~1779
    149 J. A. Barker, R. O. Watts, J. K. Lee. Interatomic Potentials for Krypton and Xenon. J. Chem. Phys. 1974, 61: 3081~3089
    150 D. E. Freeman, K. Yoshino, Y. Tanaka. Vacuum Ultraviolet Absorption Spectrum of the van der Waals Molecule Xe2. I. Ground State Vibrational Structure, Potential Well Depth, and Shape. 1974, 61: 4880~4889
    151 G. J. Martyna, B. J. Berne. Structure and Energetics of Xen―. J. Chem. Phys.1988, 88: 4516~4525
    152 P. Stampfli, K. H. Bennemann. Theory of the Electron Affinity of Clusters of Rare-Gas Atoms. Phys. Rev. A 1988, 38: 4431~4434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700