用户名: 密码: 验证码:
低压ZnO压敏电阻的低温烧结及水基流延制备片式压敏电阻器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于片式压敏电阻向低压化、低温烧结及“绿色”制造等方向发展,本文以低电压梯度ZnO-Bi2O3-TiO2-Co2O3-MnCO3(ZBTCM)压敏陶瓷为研究对象,探讨了该压敏陶瓷材料体系的掺杂改性和低温烧结,并利用水基流延工艺制备出了低温共烧型片式压敏电阻器。
     首先研究了烧结温度和升温速率对ZnO-Bi2O3-TiO2-Co2O3-MnCO3(ZBTCM)压敏陶瓷致密度、物相组成、微观结构和电性能的影响。结果表明:当升温速率为60℃/h,烧结温度为1100℃时,其致密度和综合电性能最佳:密度ρ=5.42g/cm3、电压梯度E1mA=35.6V/mm、非线性系数α=33.3、漏电流密度JL=0.31μA/cm2、8/20μs脉冲电流冲击后压敏电压的变化率ΔV1mA=15.4%。该材料体系虽然具有低电压梯度和高非线性特性,但其耐8/20μs脉冲电流冲击能力较差,而且相对较高的烧结温度使其无法实现与Ag电极的叠层共烧。
     接下来,探讨了过渡金属氧化物W03对ZBTCM压敏陶瓷致密度、物相组成、微观结构和电性能的影响规律。研究表明:当W03含量x≤0.3mol%时,W03与Bi2O3反应生成Bi2WiO3(1+i)(i=1/7,2/7)低熔化合物,促进了ZBTCM压敏陶瓷的烧结,使其致密化温度下降了100℃,并且增加了界面态密度和晶界势垒高度,提高了非线性特性和耐8/20μs脉冲电流冲击能力。但是,当x>0.3mol%时,片状低电阻率Bi2WO6相的生成阻碍了ZBTCM压敏陶瓷的烧结,并且引起晶界势垒高度急剧降低,非线性特性严重恶化。当WO3含量为0.3mol%时,ZBTCM压敏陶瓷在1000℃烧结时其综合电性能最佳:E1mA=54.2V/mm,α=36,JL=0.6μA/cm2,ΔV1mA=8.9%。
     进一步研究了与WO3同族的过渡金属氧化物Cr2O3对ZBTCM压敏陶瓷致密度、物相组成、微观结构和电性能的影响。Cr2O3溶入ZnO晶粒和Bi2O3晶界相中,促进了ZBTCM压敏陶瓷的烧结,使其致密化温度降低至1000℃,同时增加了界面态密度和晶界势垒高度。当Cr2O3添加量y=0.3mol%时,其E1mA和α值取得各自最大值90.8V/mm和46。此外,随着y值的增加,△V1mA值呈现逐渐减小的变化趋势,当y≥0.3mol%时,其ΔV1mA值降低至10%以下。该结果表明Cr2O3能够大幅提高ZBTCM压敏陶瓷的非线性特性和耐8/20μs脉冲电流冲击能力,但美中不足的是其电压梯度也随之迅速增大。
     研究了ZnO-B2O3玻璃对ZBTCM压敏陶瓷致密度、物相组成、微观结构和电性能的影响。结果表明:ZnO-B2O3玻璃可以促进ZBTCM压敏陶瓷的烧结,但降温作用有限,仅使其致密化温度降低了约50℃。当烧结温度T<1050℃时,ZnO-B2O3玻璃掺杂ZBTCM压敏陶瓷的晶粒生长动力学指数nZ≈4.54,激活能Qz≈316.5kJ/mol,此时未全部熔化的ZnO-B2O3玻璃析晶相对ZnO颗粒边界迁移起阻滞作用,阻碍了ZnO晶粒的生长;而当烧结温度T≥1050℃时,其动力学指数nZ≈2.92,激活能Qz≈187kJ/mol,此时完全熔化的ZnO-B2O3玻璃析晶相提高了液相烧结作用,促进了ZBTCM压敏陶瓷的晶粒生长。ZnO-B2O3玻璃析晶相ZnB2O4分布在ZBTCM压敏陶瓷晶界处形成晶界俘获态,提高了界面态密度和晶界势垒高度。当ZnO-B2O3玻璃含量为0.1wt%时,ZBTCM压敏陶瓷在1050℃烧结时其综合电性能最佳:E1mA=36.7V/mm,α=35.4, JL=0.35μA/cm2,ΔV1mA=12.1%,该ΔV1mA值略高于合格标准10%。
     研究了Bi2O3-B2O3玻璃对ZBTCM压敏陶瓷致密度、物相组成、微观结构和电性能的影响。与ZnO-B2O3玻璃相比,Bi2O3-B2O3玻璃对ZBTCM压敏陶瓷促烧作用更明显,使其致密化温度降低至900℃。Bi2O3-B2O3玻璃掺杂ZBTCM压敏陶瓷的晶粒生长动力学指数和激活能为nB≈2.15、QB≈146.2 kJ/mol,该值明显降低。Bi203-B203玻璃析晶相Bi2B4O9分布在ZBTCM压敏陶瓷晶界处形成晶界俘获态,增加了界面态密度,提高了晶界势垒高度。当Bi2O3-B2O3玻璃含量为2wt%时,ZBTCM压敏陶瓷在900℃烧结时其综合电性能最佳:E1mA=124.9V/mm,α=46.2, JL= 0.2μA/cm2,ΔV1mA=8.3%。
     研究了Bi2O3-B2O3玻璃掺杂ZBTCM压敏陶瓷粉体的水基流延工艺,通过对流延浆料固相含量、粘结剂、分散剂、增塑剂、表面活性剂及消泡剂的优化,成功制备出了厚度为40μm左右且性能良好的水基流延膜。水基流延浆料的最佳配方为:固相含量为50wt%,去离子水含量为41.4wt%, PVA为3wt%, PAA-NH4为0.5wt%,丙三醇含量为2.7wt%,Span-20为1.5wt%,正丁醇为0.9wt%。该水基流延膜在900℃烧结时,其电性能为:E1mA=112.4V/mm,α=34.6,JL=0.5μA/cm2。
     最后研究了等静压压力对片式压敏电阻微观结构的影响,以及水基流延膜与Ag电极的低温共烧特性。当等静压压力为60MPa时,水基流延膜间及流延膜与Ag电极的界面结合非常紧密,在900℃共烧时,没有出现明显的开裂和分层现象,而且在共烧界面处并未发现有界面反应和金属离子扩散现象。该水基流延片式压敏电阻在900℃烧结时获得了良好的电性能:V1mA=6.1V,α=28.1,IL=0.15μA。
Based on the development of low-voltage, low-temperature sintering and "green" manufacturing of multilayer varistors, ZnO-Bi2O3-TiO2-Co2O3-MnCO3 (ZBTCM) varistor ceramics are chosen as the research objective. In this dissertation, the nonlinear electrical properties and low-temperature sintering of ZBTCM varistor ceramic, and the multilayer varistors fabricated by aqueous tape casting were investigated.
     The effects of sintering temperature and heating rate on the densification, phase transformation, microstructure and electrical properties of ZBTCM varistor ceramic were investigated. When ZBTCM varistor ceramic is sintered at 1100℃with a heating rate of 60℃/h, the optimal density and electrical properties are determined as follows:densityρ=5.42g/cm3, voltage gradient E1mA=35.6V/mm, nonlinear coefficientα=33.3, leakage current density JL=0.31μA/cm2, the variation of V1mAunder 8/20μs pulseΔV1mA=15.4%. The varistor ceramic has a low E1mA and largeαvalue, but the 8/20μs surge current withstand capacity is poor. And the high sintering temperature could not meet the demand for using Ag as inner electrode for MLV.
     Thereafter, the effects of WO3 additive on the densification, phase transformation, microstructure and electrical properties of ZBTCM varistor ceramic are investigated. Bi2WiO3(1+i) (i=1/7,2/7) are formed when WO3 content x≤0.3mol%, which reduce the sintering temperature to 1000℃, increase the density of interface states and the barrier height, and improve the nonlinearity and 8/20μs surge current withstand capacity of ZBTCM varistor ceramic. However for x≥0.3mol%, the present of plate-like low resistivity Bi2WO6 inhibits the grain growth of ZnO and impairs the nonlinearity of ZBTCM varistor ceramic. The varistor ceramics with 0.3mol% WO3 sintered at 1000℃exhibit the best performance:E1mA=54.2V/mm,α=36, JL=0.6μA/cm2,ΔV1mA=8.9%.
     The influences of Cr2O3 additive on the densification, phase transformation, microstructure and electrical properties of ZBTCM varistor ceramic were studied. The sintering temperature could be reduced to 1000℃and the potential barrier height is increased, which is attributed to the solid solution of Cr2O3 into ZnO and Bi2O3 crystal lattice. When Cr2O3 content y value is equal to 0.3mol%, the E1mA and a reach the maximum of 90.8V/mm and 46. WhileΔV1mA was decreased to 10% for y≥0.3mol%. The results show that the nonlinearity and 8/20μs surge current withstand capacity of ZBTCM varistor ceramic was improved as the increasing Cr2O3 content, but the E1mA value was also obviously increased.
     The effects of ZnO-B2O3 frit on the densification, phase transformation, microstructure and electrical properties of ZBTCM varistor ceramic were investigated. When ZnO-B2O3 frit is added to ZBTCM system, the sintering temperature only lowers 50℃. The grain growth kinetic exponent nZ and apparent activation energy Qz are calculated as 4.54 and 316.5 kJ/mol at the temperature below 1050℃due to the non-melting ZnO-B2O3 frit pining at ZnO grain boundaries, which inhibits the grain growth of ZBTCM varistor ceramic. However, nz and Qz are 2.92 and 187 kJ/mol at the temperature higher than 1050℃due to the melting ZnO-B2O3 frit wetting the ZnO grain boundaries, which accelerates the grain growth of ZBTCM varistor ceramic. The ZnB2O4 phase, crystallized from ZnO-B2O3 frit, plays an important role in increasing the density of interface states and the barrier height. When ZnO-B2O3 frit content is equal to 0.1 wt%, the varistor ceramics sintered at 1050℃exhibit the best performance:E1mA=36.7V/mm, a=35.4, JL=0.35μA/cm2,ΔV1mA=12.1%, Whereas theΔV1mA value is a little larger than 10%.
     The effects of Bi2O3-B2O3 frit on the densification, phase transformation, microstructure and electrical properties of ZBTCM varistor ceramic were investigated. When Bi2O3-B2O3 frit is added, the densification temperature could be reduces to 900℃. The grain growth kinetic exponent nB and apparent activation energy QB are 2.15 and 146.2 kJ/mol, which are much lower than that of ZnO-B2O3 frit doped varistor. It indicates that Bi2O3-B2O3 frit was more effective in improving the sintering properties of ZBTCM varistor ceramic than ZnO-B2O3 frit. The Bi4B2O9 phase, crystallized from Bi2O3-B2O3 frit, plays an important role in increasing the barrier height and nonlinearity of ZBTCM varistor ceramic. When Bi2O3-B2O3 frit content is equal to 2wt%, the varistor ceramics sintered at 900℃exhibit the best performance:E1mA=124.9V/mm,α=46.2, JL=0.2μA/cm2,ΔV1mA=8.3%.
     The aqueous tape casting for ZBTCM varistor with 2wt% Bi2O3-B2O3 frit was researched. By optimizing the slurry composition, including binder, dispersant, plasticizer, surfactant and defoamer, the excellent green tape with a thickness of 40μm are successfully developed. The optimal recipe for the aqueous slurry is 50wt% solid loading,41.4wt% deionized water,3wt% PVA,0.5wt% PAA-NH4,2.7wt% glycerin,1.5wt% Span-20, 0.9wt%。When the green tape is sintered at 900℃, the electrical properties are determined as follows:E1mA=112.4V/mm,α=34.6, JL=0.5μA/cm2.
     Finally, the effects of isostatic pressures on the microstructure of green MLV, and the cofiring properties of the varistor ceramic tape with Ag were also studied. The result shows that the tapes and Ag pastes contact with each other compactly under 60Mpa. There is no chemical reaction and interfacial diffusion happed at the interface of MLV when sintered at 900℃, and the excellent electrical properties are determined as follows:V1mA=6.1V,α=28.1, IL=0.15μA.
引文
[1]雷磊,周永平,张宝华,彭炜,等.ESD对电子设备的危害及防护.装备环境工程,2007,4(2):81-84.
    [2]鲜飞.浅谈电子制造过程中的静电及静电防护.电子与封装,2010,10(2):31-34.
    [3]李彩红,杨志伟.电子设备ESD防护技术的探讨.广东交通职业技术学院学,2007,6(2):62-64.
    [4]王兰义,吕呈祥,唐国翌.多层片式压敏电阻器的最新发展动向.电子元件与材料,2005,25(12):8-11.
    [5]Matsuoka M, Matsuyama T, Lida Y. Nonohmic properties of zinc oxide ceramics doped with alkali-earth metal oxide. Jpn. J. Appl. Phys,1969,8:1275-1276.
    [6]Shohata N., Matsumuka T., Utsumi K., et al. Properties of multilayer ZnO ceramic varistor. Advance in ceramic, vol 1:Grain boundary phenomena in electronic ceramic, ed. Levinson L. M., Hill. D. C. The American ceramic society, Columbus, OH,1981: 349-358.
    [7]王兰义.多层片式ZnO压敏电阻器的现状与发展方向.电子元件与材料,2003,22(7):42-45.
    [8]钟明峰,钱皆,庄严.多层片式压敏电阻器及其应用电子元器件应用,2002,4(7):7-9.
    [9]华伟刚.纳米ZnO压敏材料制备及其水基流延工艺研究:[硕士学位论文]. 化学工艺,广西大学,2008.
    [10]饶宇.平口动压悬浮陶瓷流延成型技术的计算机仿真:[硕士学位论文].机械电子工程,沈阳理工大学,2007.
    [11]吴通涛,钟朝位,张树人.高性能片式多层氧化锌压敏电阻器材料研究.电子元件与材料,2003,22(4):25-27.
    [12]曾祥明,张明,赵根妹,等.片式ZnO压敏电阻器印叠工艺对通流容量的影响.电子元件与材料,2004,23(2):16-17.
    [13]钟明峰,苏达根,庄严.粉体颗粒细度对多层片式压敏电阻器.广州化工,2005,33(1):28-30.
    [14]唐斌,祝忠勇,赖杨.叠层片式ZnO压敏电阻器配方研究.电子元件与材料,2005,24(12):44-45.
    [15]范积伟,王璐璐.叠层片式ZnO压敏电阻的微观结构研究.功能材料,2007,38(A02):546-566.
    [16]Xu D., Shi L. Y., Wu. Z. H., et al. Microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics by different sintering processes. J. Eur. Ceram. Soc.,2009,29(9):1789-1794.
    [17]El-Meliegy E. M., Saleh H. I., Selim M. Sintering and characterization of bismuth-oxide-containing zinc oxide varistors. Mater. Charact.,2004,52(4-5): 371-378.
    [18]Kuo S. T., Tuan W. H., Lao Y. W., et al. Investigation into the interactions between Bi2O3-doped ZnO and AgPd electrode. J. Eur. Ceram. Soc.,28(13):2557-2562
    [19]Kuo S. T., Tuan W. H. Grain growth behaviour of ZnO-based multilayer varistors. J. Eur. Ceram. Soc.,2010,30(2):525-530.
    [20]Peiteado M., de la Rubia M. A., Velasco M. J., et al. Bl2O3 vaporization from ZnO-based varistors. J. Eur. Ceram. Soc.,2005,25(9):1675-1680.
    [21]Xu D., Cheng. X. N., Yan X. H., et al. Sintering process as relevant parameter for Bl2O3 vaporization from ZnO-Bi2O3-based varistor ceramics. Trans. Nonferrous. Met. Soc.China.,2009,19:1526-1532.
    [22]Bernik S., Zupancic P., Kolar D. Influence of Bi2O3/TiO2, Sb2O3 and Cr2O3 doping on low-voltage varistor ceramics. J. Eur. Ceram. Soc.,2009,19(6-7):709-713.
    [23]Zhang C. C., Hu Y. X., Lu W. Z. Influence of TiO2/Sb2O3 ratio on ZnO varistor ceramics. J. Eur. Ceram. Soc.,2002,22(1):61-65.
    [24]林枞,徐政,孙丹峰.TiO2掺杂对ZnO-Bi2O3-TiO2低压压敏电阻电学性能的影响.硅酸盐学报,2007,35(1):21-25.
    [25]Kim E. D., Kim C. H. Role and effect of CO2O3 additive on the upturn characteristics of ZnO varistors. J. Appl. Phys,1985,58(8):3231-3235.
    [26]Levinson L. M., Hill D. C. Advances in ceramics, vol 1:Grain boundary phenomena in electronic ceramics. Columbus, Ohio:The American Ceramic Society,1981.
    [27]Bernik S., Macek S., Ai B. Microstructural and electrical characteristics of Y2O3-doped ZnO-Bi2O3-based varistor ceramics. J. Eur. Ceram. Soc.,2001,21(10-11): 1875-1878.
    [28]Bernik S., Macek S., Ai B. The characteristics of ZnO-Bi2O3-based varistor ceramics doped with Y2O3 and varying amounts of Sb2O3. J. Eur. Ceram. Soc.,2004,24(6): 1195-1198.
    [29]Liu H. Y, Ma X. M., Kong H., et al. Microstructure and electrical properties of Er2O3-doped ZnO-based varistor ceramics prepared by high-energy ball milling. J. Rare. Earth.,2007,25(1):120-123.
    [30]Wang M. H., Tang Q. H., Yao. C. Electrical properties and AC degradation characteristics of low voltage ZnO varistors doped with Nd2O3. Ceram. Inter.,2010, 36(3):1095-1099.
    [31]Iga A. Electric characteristics in low temperature sintered ZnO varistor. Jpn. Soc. Powder. Metall.,1997,44(12):1075-1077.
    [32]Chu S. Y, Yan T. M., Chen S. L. Analysis of ZnO varistors prepared by the sol-gel method. Ceram. Inter.,2000,26(7):733-737
    [33]袁方利.化学共沉淀制备ZnO压敏电阻粉体研究.[博士学位论文].核聚变与等离子体应用,中科院等离子体物理所,1996.
    [34]Brooks M. H., Luna J. R. Microwave sintering of ZnO varistors. Am. Ceram. Soc. Bull.,1981,60(9):931-931.
    [35]Lin I. N. On the microwave sintering technique applied for enhancing the properties of PTC resistors and ZnO varistors. Ferroelectrics,1999,231(1-4):747-756.
    [36]Lee W. C, Liu K. S., Wu M. W., et al. Electrical properties of ZnO varistors prepared by microwave and conventional sintering process. Ferroelectrics,1999,231(1-4): 825-830.
    [37]Lee W. C., Liu K. S., Lin I. N. Nonlinear electrical properties of ZnO varistors fast-fired by using millimeter-wave sintering process. J. Mater. Sci.,2000,35(19): 4841-4847.
    [38]Subasri R., Asha M., Hembram K., et al. Microwave sintering of doped nanocrystalline ZnO and characterization for varistor applications. Mate. Chem. Phys., 2009,115(2-3):667-684.
    [39]林枞,徐政,彭虎,等.微波烧结氧化锌压敏电阻的致密化和晶粒生长.无机材料学报,2007,22(5):917-921.
    [40]Lee Y. S., Tseng T. Y. Phase identification and electrical properties in ZnO-glass varistors. J. Am. Ceram. Soc.,1992,75(6):1636-1640.
    [41]Lin J. N., Lin C. M., Kao C. C., et al. Electrical properties and degradation phenomena of glass-doped ZnO chip varistors. Mater. Sci. Eng. B-Solid.,1993,20(3): 261-265.
    [42]Wu. J., Xie. C. S., Bai Z. K., et al. Preparation of ZnO-glass varistor from tetrapod ZnO nanopowders. Mater. Sci. Eng. B-Solid.,2002,95(2):157-161.
    [43]Doreau F., Tari G., Pagnoux C., et al. Processing of aqueous tape-casting of alumina with acrylic emulsion binders. J. Eur. Ceram. Soc.,1998,18(4):311-321.
    [44]Doreau F., Tari G, Guedes M., et al. Mechanical and lamination properties of alumina green tapes obtained by aqueous tape-casting. J. Eur. Ceram. Soc.,1999, 19(16):2867-2873.
    [45]Yoon. D. H., Lee B. I. Processing of barium titanate tapes with different binders for MLCC applications-Part Ⅰ:Optimization using design of experiments. J. Euro. Ceram. Soc.,2004,24(5):739-752.
    [46]Yoon. D. H., Lee B. I. Processing of barium titanate tapes with different binders for MLCC applications-Part Ⅱ:Comparison of the properties. J. Euro. Ceram. Soc.,2004, 24(5):753-761.
    [47]闫绍盟.通过流延成型法制备平板式Zr02汽车氧传感器.[硕士学位论文].材料学,武汉科技大学,2007.
    [48]Chen. T. Y., Sheu C. I., Lin S. C., et al. Effects of microwave heating on dielectric and piezoelectric properties of PZT ceramic tapes. Ceram. Inter.,2008,34(3):621-624.
    [49]Wang L. Y, Tang G Y, Xu Z. K. Comparison of water-based and solvent-based tape casting for preparing multilayer ZnO varistors. J. Am. Ceram. Soc.,2008,91(11): 3742-3745.
    [50]汤传义.水的表面张力与温度的关系.安庆师范学院学报(自然科学版),2000,6(1):73-74.
    [51]朱灵玲.聚乙烯醇消泡剂的应用研究.天然气化工(C1化学与化工),2002,27(3):29-33.
    [52]胡纪华,杨兆禧,郑忠.胶体与界面化学.(第一版).广州:华南理大学出版社,1997.
    [53]Sun J. K., Velamakanni B. V., Gerberich W. W., ea al. Aqueous latex/ceramic nanoparticle dispersions:eolloidal stability and coating properties. J. Colloid. Interf. Sci.,2004,280(2):387-399.
    [54]Chartier T., Bruneau A. Aqueous tape casting of alumina substrates. J. Eur. Ceram. Soc.,1993,12(4):243-247.
    [55]李绍纯.水基流延成型制备Li2O-Nb2O5-TiO2微波介质陶瓷膜及应用特性研究.[博士学位论文].材料与化工学院,浙江大学,2008.
    [56]张启龙.低温烧结微波介质陶瓷及多层片式带通滤波器研究.[博士学位论文].材料学,浙江大学,2004.
    [57]崔学民.乳胶体系水基流延工艺及其叠层制备陶瓷材料的研究.[博士学位论文].材料学,中国建筑材料科学研究院,2003.
    [58]Albano M. P., Garrido L. B. Influence of the slip composition on the properties of tape-cast alumina substrates. Ceram. Inter.,2005,31(1):57-66.
    [59]Ryu B. W., Takahashi M., Suzuki S. Rheological charaeteristies of aqueous alumina slurry for tape casting. J. Ceram. Soc. Jpn.,1993,101:626-631
    [60]Luo X. J., Zhang B. L., Li W. L., et al. Preparation of aluminum nitride green sheets by aqueous tape casting. Ceram. Inter.,2004,30(8):2099-2103.
    [61]Olhero S. M., Ferreira J. M. F. Rheological characterisation of water-based AlN slurries for the tape casting process. J. Mater. Process. Tech.,2005,169(2):206-213.
    [62]Lv Z. H., Zhang T., Jiang Z. L., et al. Aqueous tape casting process for SiC. Ceram. Inter.,2009,35(5):1889-1895.
    [63]Prabhakaran K., Jayasingh E. M., Raghunath S., et al. Aqueous tape casting of PMN-PT powder prepared by the partial oxalate route. J. Mater. Process. Tech.,2009, 209(8):4217-4221.
    [64]Wang L. Y., Tang G. Y., Xu Z. K. Preparation and electrical properties of multilayer ZnO varistors with water-based tape casting. Ceram. Inter.,2009,35(1):487-492.
    [65]Wang S. F., Huebner W. Interaction of silver/palladium electrodes with lead-and bismuth-based electroceramics. J. Am. Ceram. Soc.,1993,76(2):474-480.
    [66]Kuo S. T., Tuan W. H. Inner electrodes for multilayer varistors. Int. J. Appl. Ceram. Technol.,2009,6(2):223-230.
    [67]Miao C. L., Wang M., Yue Z. X., et al. Co-firing behavior of ZnTiO3 dielectric ceramics/Ag composites for MLCCs. Ceram. Inter.,2006,32(4):471-474.
    [68]Zuo R. Z., Li L. T., Gui Z. L. Interfacial development and micro structural imperfection of multilayer ceramic chips with Ag/Pd electrodes. Ceram. Inter.,2001, 27(8):889-893.
    [69]Zuo R. Z., Li L. T., Gui Z. L., et al. TEM and EDS investigation of heterogeneous interfaces in cofired multilayer ceramic capacitors. Mater. Sci. Eng. B-solid.,2002, 95(1):1-5
    [70]Kuo S. T., Tuan W. H., Lao Y. W., et al. Investigation into the interactions between Bi2O3-doped ZnO and AgPd electrode. J. Euro. Ceram. Soc.,2008,28(13): 2557-2562.
    [71]Kuo S. T., Tuan W. H. Grain growth behaviour of ZnO-based multilayer varistors. J. Euro. Ceram. Soc.,2010,30(2):525-530.
    [72]李标荣,王筱珍,张绪礼.无机电介质.(第一版).武汉:华中理工大学出版社,1995.
    [73]雷文.ZnAl2O4基低介电常数微波介质陶瓷的结构与性能.[博士学位论文].材料物理与化学,华中科技大学,2008.
    [74]周东祥,张绪礼,李标荣.半导体陶瓷及应用.(第一版).武汉:华中理工大学出版社,1991.
    [75]Mendelson M. I. Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc., 1969,52(8):443-446.
    [76]刘建国.用电子秤测液体的表面张力系数.大学物理,2003,22(7):24-26.
    [77]张广平,李高清.用电子天平测定水的表面张力.实验技术与管理,2005,22(10):59-60.
    [78]Mukae K., Tsuda K., Nagasawa I. Capacitance-vs-voltage characteristics of ZnO varistors. J. Appl. Phys.,1979,50:4475-4476.
    [79]Hozer L. Semiconductor ceramics:grain boundary effects. (First edition). New York: Ellis Horwood Press,1994.
    [80]Levinson L. M., Philipp H. R. Zinc oxide varistors-a review. Am. Ceram. Soc. Bull., 1986,65(4):639-646.
    [81]Cupta. T. K. Application of zinc oxide varistors. J. Am. Ceram. Soc.,1990,73(7): 1817-1840.
    [82]Shirakawa S., Ejiri I., Watahiki S., et al. Application of high voltage gradient zinc oxide element to SF6 gas insulated surge arrests for 22-765kV power systems. Ieee. T. Power. Deliver.,1999,14(2):419-424.
    [83]Leach C., Ling Z., Freer R. The effect of sintering temperature variations on the development of electrically active interfaces in zinc oxide based varistors. J. Euro. Ceram. Soc.,2000,20(16):2759-2765.
    [84]Lee W. S., Chen W. T., Lee Y. C., et al. Influence of sintering on microstructure and electrical properties of ZnO-based multilayer varistor (MLV). Ceram. Inter.,2007, 33(6):1001-1005.
    [85]Nahm C. W. The effect of sintering temperature on electrical properties and accelerated aging behavior of PCCL-doped ZnO varistors. Mater. Sci. Eng. B-solid.,2007, 136(2-3):134-139.
    [86]林枞,徐政,孙丹峰.TiO2掺杂对ZnO-Bi2O3-TiO2低压压敏电阻电学性能的影响.硅酸盐学报.2007,35(1):21-25.
    [87]张丛春,周东祥,龚树萍.TiO2掺杂对低压ZnO压敏电阻性能的影响.压电与声光.2001,23(3):195-197.
    [88]吕文中,周东祥,龚树萍.氧化物半导瓷中晶界势垒的起源.华中理工大学学报.1994,22(3):95-98.
    [89]付明.低温烧结ZnO-玻璃系压敏电阻材料.[博士学位论文].微电子学与固体电子学,华中科技大学,2001.
    [90]洪俊伟,章来平,邴绍同,等.Cu元素对氧化锌压敏电阻性能的影响.电瓷避雷器,2008,5:30-37.
    [91]周正有,罗广圣,江风益.掺Fe2O3的ZnO压敏性能.南昌大学学报(理科版),2008,32(1):51-54.
    [92]李慧峰,许毓春,王礼琼,等.Nb2O5掺杂对压敏电阻器电性能的影响.压电与声光,1994,16(6):27-30.
    [93]臧国忠,王矜奉,陈洪存,等.Nb掺杂对ZnO压敏陶瓷电学性能的影响.压电与声光,2004,26(6):457-459.
    [94]Sawada S., Danielson G. C. Electrical conduction in crystals and ceramics of WO3. Phys. Rev.,1959,113:803-805.
    [95]Makarov V., Trontelj M. Novel varistor material based on tungsten oxide. J. Mater. Sci. Lett.,1994,13:937-939.
    [96]Salje E. K. H., Rehmann S., Pobell F. Crystal structure and Paramagnetic behaviour of WO3. J. Phys:Condens. Mater.,1997,9:6563-6577.
    [97]Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A.,1976,32:750-752.
    [98]申洋文,车云霞.无机化学丛书(第八卷).(第一版).北京:科学出版社,1998.
    [99]Hoda, S. N. and Chang, L. L., Phase relations in the system Bi2O3-WO3. J. Am. Ceram. Soc.,1974,57(7):323-326.
    [100]Aurivillius B. Mixed bismuth oxides with layer lattices Ⅰ. Ark. Kemi.,1949,1: 463-480.
    [101]Aurivillius B. Mixed bismuth oxides with layer lattices Ⅱ. Ark. Kemi.,1949, 1: 499-512.
    [102]Aurivillius B. Mixed bismuth oxides with layer lattices Ⅲ. Ark. Kemi.,1950,2: 519-527.
    [103]Shi Y. H., Feng S. H., Cao C. H. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Mater. Lett.,2000,44(3-4),215-218.
    [104]Hsieh C. Y., Fung K. Z. Effect of divalent dopants on defect structure and electrical properties of Bi2WO6. J. Phys. Chem. Solids.,2008,69(2-3),302-306.
    [105]Hng H. H., Chan P. L. Effects of MnO2 doping in V2O5-doped ZnO varistor system. Mater. Chem. Phys.,2002,75(1-3):61-66.
    [106]Hng H. H., Chan P. L. Microstructure and current-voltage characteristics of ZnO-V2O5-MnO2 varistor system. Ceram. Inter.,2004,30(7):1647-1653.
    [107]Hng H. H., Chan P. L. Cr2O3 doping in ZnO-0.5 mol% V2O5 varistor ceramics. Ceram. Inter.,2009,35(1):409-413.
    [108]Nahm C. W. Effect of sintering temperature on microstructure and electrical properties of Zn·Pr·Co·Cr·La oxide-based varistors. Mater. Lett.,2006,60(28): 3394-3397.
    [109]Nahm C. W. The effect of sintering temperature on varistor properties of (Pr, Co, Cr, Y, Al)-doped ZnO ceramics. Mater. Lett.,2008,62(29):4440-4442.
    [110]Liang J, Lu W. Z. Microwave Dielectric properties of Li2Ti03 ceramics doped with ZnO-B2O3 Frit. J. Am. Ceram. Soc.,2009,92(7):952-954.
    [111]段雷,许高杰,王永晔,等.SiO2掺杂量对氧化锌压敏电阻性能的影响.人工晶体学报.2009,38(Special Edition):215-218.
    [112]王承遇,陈敏,陈建华.玻璃制造工艺(第一版).北京:化学工业出版社,2006.
    [113]Wan S., Lu W. Z. Electrical properties and kinetic of crystalline grain growth of low-voltage ZnO varistor doped with Zn-B glass. J. Inorg. Mater.,2010,15(2): 151-156.
    [114]Levin E. M., Robbins C. R., Mcmurdie H. F. Phase diagrams for ceramists. Ohio:Am. Ceram. Soc.,1964.
    [115]Han J., Martas P. Q., Senos A. M. R. Grain growth in Mn-doped ZnO. J. Eur. Ceram. Soc.,2000,20(16):2753-2758.
    [116]肖明.TiO2掺杂ZnO压敏陶瓷的晶粒生长研究.湖北大学学报(自然科学版),2001,23(2):134-137.
    [117]Lee C. S., Yoo J. R., Jung K. W. Fabrication of Pb free solder glass for electronic packaging application. J. Korean. Ceram. Soc.,2001,38:628-633.
    [118]Cheng Y., Xiao H. N., Guo W. M. Structure and crystallization kinetics of Bi2O3-B2O3 glasses. Thermochim. Acta,444 (2):173-178.
    [119]Huang Y. Q., Liu M. D., Jiang S. L., et al. Preparation and electrical properties of ZnO-glass ceramic films. Microelectron. Eng.,2003,66(1-4):760-766.
    [120]Shen Z. G., Chen J. F., Zou H. K., et al. Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrylate. J. Colloid. Interf. Sci.,2004,275(1): 158-164.
    [121]Suntako R., Laoratanakul P., Traiphol N. Effects of dispersant concentration and pH on properties of lead zirconate titanate aqueous suspension. Ceram. Inter.,2009,35(3): 1227-1233.
    [122]Zhang J. X., Jiang D. L., Lars W., et al. Deflocculants for tape casting of TiO2 slurries. J. Euro. Ceram. Soc.,2004,24(8):2259-2265.
    [123]Guo L. C., Zhang Y., Uchida N., et al. Influence of temperature on stability of aqueous alumina slurry containing polyelectrolyte dispersant. J. Euro. Ceram. Soc., 1997,17(2-3):345-350.
    [124]Mei S., Yang J., Ferreira J. M. F. The fabrication and characterisation of low-k cordierite-based glass-ceramics by aqueous tape casting. J. Euro. Ceram. Soc.,2004, 24(2):295-300.
    [125]Mukherjee A., Maiti B., Sharma A. D., et al. Correlation between slurry rheology, green density and sintered density of tape cast yttria stabilised zirconia. Ceram. Inter., 2001,27(7):731-739.
    [126]王兰义.高性能多层氧化锌压敏电阻器及其水基流延工艺的研究.[博士学位论文].材料科学与工程,清华大学,2008.
    [127]李葵英.界面与胶体的物理化学.(第一版).哈尔滨:哈尔滨工业大学出版社,1998.
    [128]陈宗淇,王光信,徐桂英.胶体与界面化学.(第一版).北京:高等教育出版社,2001.
    [129]Vrentas J. S., Duda J. L. Molecular diffusion in polymer solutions. Aiche. J,1979,25: 1-24.
    [130]Vrentas J. S., Duda J. L. Diffusion in polymer-solvent systems. Ⅰ. Reexamination of the free-volume theory. J. Polym. Sci:Polym. Phys. Ed.,1977,15:403-416.
    [131]Vrentas J. S., Duda J. L. Diffusion in polymer-solvent systems.Ⅱ. Apredictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight. J. Polym. Sci:Polym. Phys. Ed.,1977,15:417-439.
    [132]高峰.高介弛豫铁电陶瓷/NiZn铁氧体叠层低温共烧行为的研究.[博士学位论文].材料学.西北工业大学,2002.
    [133]刘向春.ZnO-TiO2系介电陶瓷NiZnCu铁氧体叠层低温共烧兼容特性研究.[博士学位论文].材料学.西北工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700