用户名: 密码: 验证码:
某型机起落架舱抗疲劳分析及细节优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳寿命是飞机结构优化的一个重要目标,飞机质量又直接影响着飞机的各种性能。如何扩展抗疲劳优化的应用范围,提高优化的工作效率和优化质量,使优化设计尽可能不受变量及目标数量的限制,是亟待解决的一个重大问题。因此本文开展了基于DFR法的疲劳可靠性分析和结构细节抗疲劳优化两部分工作。
     首先,借鉴了前人的研究基础,对有限元分析中名义应力的求解提出了自己的观点:用有限元法进行名义应力求解时将周围节点的载荷转化到以钉传载荷方向为X向的局部坐标系上,以得到真实的名义应力。并且用VC++与Matlab进行混合编程,建立了与Nastran求解器关联的接口,编写了基于DFR法的疲劳可靠性寿命分析软件FEM-DFR。
     其次,对某型机前起落架舱进行了疲劳寿命分析,选定了载荷谱,建立前机身有限元模型进行总体应力分析,进而选定危险关键细节,进行细节有限元分析,利用FEM-DFR软件进行了疲劳可靠性分析,结果表明某型机前起落架舱满足疲劳设计要求,但是设计偏于保守。第三,建立了抗疲劳优化平台AFOP,对Patran/Nastran、FEM-DFR和iSIGHT三个软件进行了集成,编写了9个数据接口以实现软件之间的数据传递,提高了优化效率,减少不必要的重复操作,达到高效、便捷的目的。
     最后,对作动筒支座细节进行了结构质量、最大Von Mises应力和疲劳寿命的多目标优化,并做了敏感度分析。优化结果表明:在Von Mises应力基本保持不变的情况下,含加强板的最优解减重20.17%,不含加强板的最优解减重22.2%。
The performances of an aircraft are directly involved by its weight, at the same time the fatigue life has also become a significant objective in structural optimization. These are important problems needed to be settled, such as extending its application range, enhancing its efficiency and quality, and making the optimization depending on the variable and target numbers as little as possible. Fatigue reliability analyses based on DFR method and anti-fatigue optimization of detail structures are presented in this paper.
     Firstly, based on original research a new method to calculate the nominal stress is raised. In order to get the true nominal stress, the loads of the nodes around the pin node are transformed into the local coordinate whose X-direction is the direction of pin-load. Then coupling VC++ with MATLAB, setting an interface with NASTRAN, a fatigue reliability calculating software, which termed FEM-DFR by author, is given. It can automatically search the load distribution around the pin, calculate the nominal stress, and analyze the fatigue reliability.
     Secondly, the nose undercarriage bay is analyzed, including selecting analysis load spectrum, establishing an FEM model to analyze general stress, though the result selecting critical dangerous detail and analyzing it, at last, solving fatigue reliability at FEM-DFR. According to the result, the anti-fatigue design of undercarriage bay of an aircraft is appropriate, but tending to conservative. Thirdly, a platform named AFOP is settled, integrating PATRAN/NASTRAN, FEM-DFR and iSIGHT. There are 9 data interfaces to transform the data among the software, which improve the optimization efficient, cut down the repeated work, to make the software efficient and convenient.
     At last, a multi-objective optimization including structural mass, maximum Von Mises stress and fatigue life is presented for the detail bracket of actuator cylinder, including its sensitivity. The optimization result indicates that in the situation that Von Mises stress keeps a constant, the optimum of the bracket reinforced by a plate makes the mass reduce 20.17%, while the one without the plate can reduce the mass 22.2%.
引文
[1]郑晓玲,李令芳等.民机结构耐久性与损伤容限设计手册[M].北京:航空工业出版社,2003,6.
    [2] GJB67-85,军用飞机强度和刚度规范[S].
    [3] GJB775.1-89,军用飞机结构完整性大纲—飞机要求[S].
    [4]孙侠生,董登科.军用飞机结构耐久性/损伤容限分析与设计指南[M].西安:中国飞机强度研究所,2005.
    [5] Latos W,Zyczkowski M.The optimum of rotating shaft for combined fatigue strength[J]. Academie Polonaise des Sciences,Bulletin,Serie des Sciences Techniques.1973,21(8):523-533.
    [6] M.E.M. El-Sayeda , E.H. Lunda. Structural optimization with fatigue life constraints[J]. Engineering Fracture Mechanics. 1990,37(6):1149-1156.
    [7] Gerhard Venter,Raphael T,Haftka. Response Surface Approximations for Fatigue Life Prediction[J].AIAA-97-1331:1383-1396.
    [8] M. Haiba,D. C. Barton,P. C. Brooks,M. C. Levesley.The development of an optimization algorithm based on fatigue life[J].International Journal of Fatigue,2003,25(4):299-310.
    [9] P. Hauber,A. Albers.Shape optimization of structural parts in dynamic mechanical systems based on fatigue calculations[J],Struct Multidisc Optim,2005,(29):361-373.
    [10] R. Jones,D. Peng,P. Chaperon,etal.Structural optimization with damage tolerance constraints[J].Theoretical and Applied Fracture Mechanics,2005,(43):133-155.
    [11] M. Haiba,D.C. Barton,P.C. Brooks,M.C. Levesley.Evolutionary structural optimisation of dynamically loaded components in consideration of fatigue life[J].Advances in Engineering Software,2005,(36):49–57.
    [12] A.J.Arrieta , A.G.Striz . Optimal design of aircraft structures with damage tolerance requirements[J].Struct Multidisc Optim,2005,(30):155-163.
    [13] Roberto Brighenti.Patch repair design optimisation for fracture and fatigue improvements of cracked plates[J].International Journal of Solids and Structures,2007,(44):1115-1131.
    [14] M. Mrzyglod,A.P. Zielinski.Parametric structural optimization with respect to the multiaxial high-cycle fatigue criterion[J].Struct Multidisc Optim,2007,(33):161-171.
    [15] Hee-Jin Shim,Jung-Kyu Kim.Consideration of fatigue life optimization of pulley inpower-steering system[J].Materials Science and Engineering,2007:1-4.
    [16] Yu-Cheng Tang,Xiong-Hui Zhou,Jun Chen.Preform tool shape optimization and redesign based on neural network response surface methodology [J].Finite Elements in Analysis and Design,2008:1-10.
    [17] D. Penga,R. Jonesa,S. Pittb. Three-dimensional structure optimal design for extending fatigue life by using biological algorithm[J]. Theoretical and Applied Fracture Mechanics. 2008,49(1):26-37.
    [18]刘克格,阎楚良,张书明.考虑疲劳寿命制约的结构优化[J].吉林大学学报(工学版),2005,(06):98-102.
    [19]张书明.飞机结构疲劳寿命可靠性研究[D].南京:南京航空航天大学,2001.
    [20]徐立.疲劳寿命的灰色逐步优化直接建模方法研究[J]. NEW TECHNOLOGY & NEW PROCESS. 2003,(6).
    [21]叶少波,熊峻江,刘洪天等.结构多目标模糊优化设计[J].强度与环境, 2005,(01):21-26.
    [22]何卫锋,吴显吉,何宇廷等.某机翼结构细节抗疲劳优化设计[J].机械强度,2003,25(3):343-346.
    [23]何卫锋,丁键,程礼等. BF网络在结构抗疲劳优化中的应用[J].航空制造技术,2005,7:77-79.
    [24] H.Bubenhangen,L.Harzheim,译:刘耀乙,校:毛谦得.用形状优化法延长零件寿命[J].工程设计,2000,(2):19-23.
    [25]杨新乐,李惟慷,刘清富.梯齿形扁平连接环优化设计与疲劳寿命的研究[J].煤矿机械,2006,9(9):22-24.
    [26]潘孝勇,柴国钟,刘飞等.悬置支架的优化设计与疲劳寿命分析[J].汽车工程,2007,(4):341-345.
    [27]司明理,杨宛章,韩长杰.基于MSC.Fatigue的捡膜弹齿疲劳寿命分析与优化[J].长沙航空职业技术学院学报,2007,6(2):43-47.
    [28]张成成.基于响应面的结构抗疲劳优化设计方法[D].南京:南京航空航天大学,2007.
    [29]张成成,姚卫星.基于响应面的结构抗疲劳优化设计方法[J].南京航空航天大学学报,2007,39(1):37-40.
    [30]丁彦闯,兆文忠.基于Kriging模型的焊接构架抗疲劳优化设计[J].大连交通大学学报,2008,29(2):7-11.
    [31]贾瑞.基于蚁群算法的结构疲劳可靠性优化方法研究[D].南京:南京航空航天大学,2008.
    [32]马建、薛彩军.基于疲劳寿命的飞机起落架结构优化技术研究[D].南京:南京航空航天大学,2009.
    [33]陈锦东.飞机起落架关键部位疲劳寿命仿真及其预测系统开发[D].南京:南京航空航天大学,2009.
    [34]李锋等.结构疲劳寿命稳健性优化设计[J].机械工程学报,2010,2.
    [35]王志瑾,姚卫星.飞机结构设计[M].北京:国防工业出版社,2007,6.
    [36]李戈岚,薛俊川. DFR法在军机结构寿命分析中的重要作用[J].飞机设计,2008,28(6):35-37.
    [37]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [38]陈一坚.飞机结构耐久性及损伤容限设计手册第二册:飞机结构的疲劳分析[M].西安:航空航天工业部科学设计研究院,1989.
    [39]薛景川,杨玉恭.拉压载荷作用下结构连接件的DFR疲劳分析方法[J].第17届全国结构工程学术会议论文集(第I册),2005.
    [40]常文魁,杨玉恭.双向受载铆接连接件板孔细节周向应力分析及其DFR确定原则.结构强度研究[J],2008.
    [41]袁华生,徐仲年.使用PATRAN/NASTRAN软件进行连接件内力分析.民用飞机设计与研究[J],2003,2.
    [42]张成成,姚卫星,叶彬.连接件疲劳寿命分析的等效SSF法.航空学报[J]. 2009,30(2):271-275.
    [43]张晓萍.联接翼飞机气动/结构一体化设计研究[D].南京:南京航空航天大学,2006.
    [44]王振国,陈小前,罗文彩等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社, 2006.
    [45]王世伟等.军用飞机疲劳·损伤容限·耐久性设计手册[M].北京:中国航空研究院,1994.
    [46]薛景川等.航空结构连接件疲劳分析手册[M].西安:飞机结构强度研究所,1985.
    [47]袁伟,孙秦. DFR法结构细节疲劳强度分析[J].陕西理工学院学报,2007,23 (1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700