用户名: 密码: 验证码:
矿用圆环链传动接触动力学及损伤机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆环链传动机构在矿山、冶金、起重、吊装、船舶、航空航天、食品加工等行业具有广泛应用,特别是应用于矿山机械的圆环链传动机构,处于恶劣复杂的工况条件下极易发生事故,不但影响到生产效率造成经济损失,而且可能会危害到生命安全。目前国内外学者对圆环链传动机构的各元件结构进行了较为深入的研究,但是对于圆环链传动过程的接触动力学的研究未见报道。本文基于接触非线性动力学、碰撞理论、振动冲击理论和疲劳损伤理论,通过实验室实验,采用数值模拟的方法,对圆环链间、圆环链与链轮的啮合过程的动力学建模、链环与链轮由于啮合产生的碰撞和损伤等问题进行了深入系统的研究。
     主要研究成果如下:
     1)通过建立圆环链的结构方程,并结合对链环的力学分析,利用Hertz接触理论,推导出两个链环弯臂处的接触为面接触的椭圆形方程,并可求出接触区域的面积和压应力;建立了链轮链窝的空间曲面结构数学方程,结合链轮结构数学方程,推导出链环与链轮空间接触的数学模型,并建立了链环链轮的接触结构的能量方程;根据对链环与链轮的啮合过程受力分析,构造了具有摩擦因素的复杂链环缠绕链轮的动力学有限元模型,并建立了链环与链轮在啮合包角范围内具有偏转角度的动力学方程。
     2)采用有限元方法,求解三维非线性接触碰撞问题,运用大型有限元动力学分析软件ANSYS/LS-DYNA对圆环链间的碰撞、圆环链和链轮之间的啮合过程进行仿真,结果显示:链环处于瞬间起动或者卡链的状态,应力主要集中在链环间的接触部位(基本呈圆形),以及链环直臂与弯臂的过渡部位产生的应力也很大。反复的碰撞必然产生疲劳进而发生断裂。圆环链和链轮的啮合过程中,建立了链轮齿距大于链环节距的模型,在啮合的链环上表现出各齿对链环都有驱动的应力分布,但链环上的应力远大于链轮齿部应力,链环上的应力波动也表现出了阶段性特征。
     3)通过对链传动机构所处环境的分析,产生损伤的因素有:磨损和腐蚀、疲劳和断裂、振动和冲击。通常产生断链事故的原因是这些因素的共同作用的结果。链环与链轮传动过程,主要表现为冲击和疲劳,通过ANSYS软件,对圆环链和链轮进行了瞬间冲击的仿真分析,结果表明:冲击造成了瞬间的应力集中。这是导致链环瞬间断裂的原因之一。链环和接链环的寿命可采用疲劳累积损伤理论进行预测。最后针对圆环链工作过程产生损伤提出了经验性的防护措施和手段。
     4)利用实验室的大型综合设备,采用应变传感器和电子数据采集器,建立了圆环链传动的动态试验测试系统,通过对圆环链与链轮啮合传动过程的监测和应变数据采集结果的分析可以得出:在整个传动系统的驱动端,链环缠绕链轮的过程受到链轮多边形效应的影响,应力曲线表现出明显的阶段性增长,啮合结束后,应力基本保持不变;链轮在与链环啮合过程中,啮合包角内的链轮齿部也表现出阶段性的应力增长,与链环脱离后,应力值基本保持不变,一旦接触又会产生阶段性的应力,如此周而复始。与理论分析和模拟结果相吻合,证明了链环与链轮啮入瞬间也是对链环产生损伤的一个重要原因。
     5)试验结果揭示了:链环啮入链轮的瞬间,会产生很大的应力,主要是受到瞬间冲击的影响,而使链环受到应力磨损;链环与链轮在啮合包角范围内的多边形效应,会产生的疲劳磨损,通常链环和链轮齿部受到的应力不是特别大,但是在长期的工作条件下,必然演变成疲劳磨损,最终导致链环断裂。
     本文对圆环链传动情况进行了系统的分析,为圆环链传动机构在各种设备和工况条件的应用提供了可靠的理论分析、数值模拟和实验方法的手段,对于减少链传动过程的损伤具有实际的意义。
Round link chain transmission mechanism have extensive application in mine, metallurgy,lifting, hoisting, shipping, aerospace, food processing and other industries, especially applied inmine machinery, which are easily taken place accidents in the harsh conditions, not only affectsthe production efficiency of the resulting economic losses, and may endanger life safety. Atpresent, domestic and foreign scholars on the round link chains transmission mechanism of thestructure were made relatively thorough research, but for round link chain transmissing contactdynamics research further. Based on contact nonlinear dynamics, collision theory, vibrationtheory and fatigue damage theory, through laboratory experiments, numerical simulation methodis adopted, the round link chains, round link chain and sprocket meshing dynamics in the processof the chain and the sprocket meshing, due to the collision and damage problem is studied.
     The main research results are as follows:
     1) Through the establishment of round link chain structural equations, and based on themechanical analysis of chains, using the Hertz contact theory, deduced from the two link chainsarm of the contact to the surface contact, the contact surface is elliptical, and can be calculatedthe contact area and pressure stress, establish chain nest space structure mathematical equations,combined sprocket structure equation, deduced from the chain and the sprocket space contactmodel, and the establishment of a chain sprocket contact structure equation; according to thechain and the sprocket meshing force analysis, and considering the friction factors to constructcomplex chains winding sprocket dynamics finite element model, and the establishment of thechain and the sprocket wheel in meshing angle range with deflection angle dynamics equation.
     2) Through the use of finite element method, to solve the nonlinear contact problem, the useof finite element dynamic analysis software ANSYS/LS-DYNA, simulation is carried in theprocess of round link chains collision, round link chain and sprocket meshing, the results showthat the link in the state of instantaneous starting or chain getting stuck, stress mainly focus onthe chains between contact positions (circular) and the transitional position between the straightarm and curved arm, instantaneous stress concentration is also great,repeated collision mustproduce fatigue and fracture. In the process of round link chain and sprocket meshing, the modelthat a sprocket pitch larger than the pitch of the chain is established, stress distribution on thechains driven by the teeth are shown, but on a chain stress is much greater than the sprockettooth stress, link chain stress fluctuations also displays stage characteristics.
     3) Through analyzing the chain transmission mechanism environment, the damage factorsare: wear and corrosion, fatigue and fracture, vibration and shock. Usually the broken chainaccident reason is the result of the action of these factors simutaneously. Chain and sprockettransmissing process, mainly for the impact and fatigue, by means of ANSYS software, theround link chain and sprocket for instant impact simulation analysis, the results show that, in amoment of impact caused by stress concentration, the life of round link chain and link chain ofconnector can be used to predict by the fatigue cumulative damage theory. According to theworking process of round link chain injury presents empirical protective measures and means.
     4) The use of laboratory large style integrated equipment, using strain sensor and dataacquisition electronics, established a chain transmission dynamic test system, through the roundlink chain and sprocket meshing transmission process monitoring and strain data acquisitionresults of the analysis can be drawn: in the transmission system of the chain sprockettransmissing end, winding process by sprocket polygon effect, stress curve demonstratedsignificant growth phases, when engagement ended, stress remain unchanged; the sprocket andchain in the process of engagement, within the wrap angle of meshing sprocket teeth of differentstress increase, and chain detachment, stress values remain unchanged, and phasic stress canproduce once contacting, so go round and begin again. Which is matched with the simulatedresults, the instant meshing of the chain and the sprocket is an important reason to chains toproduce injury.
     5) Test result reveals that the link chain meshes into the sprocket moment, will producegreat stress, mainly due to the instantaneous impact, and the chains are subjected to stress andwear; chains and the polygon effect of the sprocket within the meshing angles, will producefatigue wear, chains and sprocket teeth part are usually the stress that is not particularly large,but in the long-term working conditions, will evolve into fatigue wear, eventually lead to chainsbroken.
     In this paper, the system of round link chain transmission is analyzed, for the chaintransmission mechanism in a variety of equipment and the working conditions of the applicationto provide a reliable theoretical analysis, numerical simulation and experimental methods, toreduce the damage of chain transmissing has the actual significance.
引文
[1] Jürgen Ricekhof. Spannungsverteilung in Rundstahlkttengliedern bei Zugblastung[D]. DeutschMunich:Gluckauf Forschungshefte,1978.
    [2] R.W Jeppson. Analysis of chains in mineral mechains [D]. UK Butterworth:Califonia University,1976.
    [3] M.F.Randolph. Design of the round-link chain foundations [D]. Research report. SolisTR143.Cambridge University Eng.Dept,1983.
    [4] Angelo Morro, Mauro Benati. A model for the dynamics of flexible chain systems[J].Mathematical and Computer Modeling,1988:1093-1096.
    [5] BRITHSH COAL CORPORATION. MONITORING AND PRDICTION OF THE LIFE OFMINING CHAIN ASSEMBLIES[M]. England: BRITHSH COAL CORPORATION,1985(4)~1988(3).
    [6] Dolipski M.刮板输送机双链上的载荷分布(煤矿采掘机械化内部资料)[J].译自Mech.Autom.Gorn.1992(12):17-24.
    [7] Катрцч А Н.工作面刮板输送机链条负载的计算(煤矿采掘机械化内部资料)[J].译自Вестник Машиностроения.94(2):12-22.
    [8] Ridha Hambli,Ali Mkaddem,Alain Potiron. Damage prediction in round-link chain processes usingFEM [J]. Int J Adv Manuf Technol.2003(22):12-19.
    [9] G.Pantazopoulos,A.Vazdirvanidis. Metallurgical investigation on fatigue failure of stainless steelchain in a continuous casting machine [J]. Engineering Failure Analysis.2009,16(5):1623~1630.
    [10] G.Pantazopoulos,A.Vazdirvanidis,A.Toulfatzis,A.Rikos.Fatigue failure of steel links operatingas chain components in a heavy duty draw bench.Engineering Failure Analysis[D].India. in press,2009.
    [11]康杰勋.西德对输送机圆环链、链轮的检测方法[J].煤矿机电,1983(4):51-54.
    [12]李源吉. Φ18×64矿用圆环链链环的有限元计算[J].煤矿机械,1986,7(2):4-9.
    [13]李明,薛河,杨君锐.矿用圆环链的初步应力分析[J].西安矿业学院学报,1996,16(2):165-167..
    [14]刁叔钧.圆环链力学特性研究[J].五邑大学学报,1997(3):39-42.
    [15]罗庆吉.矿用高强度圆环链疲劳失效分析[J].煤炭学报,1997,22(4):429-433.
    [16]苏猛,李智超.用线性回归法预测圆环链机械性能[J].煤矿机械,1997,18(3):29-31.
    [17]李慧琪,徐庆莘.矿用圆环链的受力分析与断裂韧性[J].山东矿业学院学报,1998,8(1):9-13.
    [18]朱道升.圆环链链条加载长度测量技术研究[J].技术测量,1999(7):12-14.
    [19]聂文杰,薛河.矿用圆环链有限元力学分析[J].煤矿机械,2000,21(12):21-22.
    [20]程安宁.圆环链的接触应力分析[J].煤矿机械.2002,23(8):26-27.
    [21]方英,李元生.矿用圆环链弯曲点的角度分布[J].煤炭学报,2002,27(4):422-424.
    [22]李元生,朱险峰,方英等.矿用圆环链编链工艺的角度过程能力指数[J].煤炭学报,2003,28(6):659-661.
    [23]戴建华.矿用圆环链专业委员会成立[J].中国煤炭,2004(4):35.
    [24]李美霞,朱华双,刘金依.矿用圆环链间接触应力场的三维有限元分析[J].煤矿机械,2005,26(5):48-49.
    [25]朱华双,刘金依.矿用圆环链间接触应力场的三维弹塑性有限元分析[J].煤矿机械,2005,26(12):55-56.
    [26]石岚,高宇.矿用高强度圆环链强度特性分析[J].太原理工大学报,2005,36(3):270-273.
    [27]龚晓燕,施晓俊,薛河.刮板输送机卡链状态下圆环链动力学分析[J].起重运输机械,2006(8):60-63.
    [28]王巧梅.提高刮板输送机圆环链与中部槽耐磨性的研究[J].山西焦煤科技,2007(9):34-37.
    [29]吴爱民,秦建. Unigraphics NX用于刮板输送机圆环链受力分析[J].现代零部件,2008(6):94-96.
    [30]王维喜,马瑞勇,武兴旺等.矿用高强度圆环链的标准比较[J].煤矿机械,2008,29(12):73-75.
    [31]武兴旺,王维喜,马瑞勇等.矿用高强度圆环链用钢的研究进展[J].金属热处理,2008,33(2):34-35.
    [32]王维喜,马瑞勇,武兴旺等.矿用高强度圆环链链环几何形状与力学性能之间的关系探讨[J].金属热处理,2008,33(10):77-79.
    [33]高峰.圆环链牵引采煤机链条受力及断链原因分析[J].兰州工业高等专科学校学报.2008,15(2):20-22.
    [34]庄严,钱红.刮板输送机牵引链的震动特性分析[J].煤矿机械,2009(3):73-74.
    [35]刘刚.圆环链的三维建模与虚拟装配[J].金属加工,2009(17):74.
    [36]茆亮亮.刮板输送机刮板链的强度计算[J].煤炭技术,2009,28(5):11-12.
    [37]林玲.低速重载输送链的动力学分析与仿真[D].南昌:江西理工大学,2009.5
    [38]晏飞.矿用刮板输送机链条张力自动监控模拟系统研究[D].贵阳:贵州大学,2009.
    [39]苗培实.在役矿用重型圆环链超声波探伤工艺及系统的研究[D].太原:太原理工大学,2009
    [40]杨芝苗.矿用高强度圆环链冲击性能分析[D].西安:西安科技大学,2009.
    [41]刘莲.卡链状态下矿用圆环链抗冲击影响因素分析[D].西安:西安科技大学,2011.
    [42]王宝奇,冯文超,管琴等.一种新型矿用高强度圆环链用钢的开发[J].钢铁,2010(5):76-80.
    [43]马树焕.刮板输送机圆环链有限元分析[J].水力采煤与管道运输,2010(04):75-77.
    [44]徐衍振,杨兆建,王淑平等.刮板输送机圆环链的包络曲面方程[J].机械工程与自动化,2010(5):68-73.
    [45]何柏岩,孙阳辉,李国平等.矿用高强度圆环链弯曲试验的有限元仿真[J].煤矿机械,2010,31(11):41-43.
    [46]郭坤,孙远涛,段诚等.基于有限元法的刮板输送机圆环链接触强度分析[J].矿山机械,2011(01):22-27.
    [47]闵希春,杨广衍,周丽等.刮板输送机链轮有限元分析及优化[J].机械设计与制造,2011(03):21-22.
    [48]闵希春,杨广衍,吴宏涛等.基于ANSYS的刮板输送机圆环链的有限元分析[J].机械设计与制造,2011(06):106-107.
    [49]张炜,任中全.基于PRO/E的刮板输送机链轮的参数化设计[J].煤矿机械,2011,32(7):220-221
    [50]李其钒,潘燕,韩正铜.煤矿刮板输送机断链受力分析及强度条件[J].煤矿机械,2011,32(04):105-107.
    [51]严俊均.提高接链环的疲劳寿命[J].煤矿机电,1987(5):21-22.
    [52]华元钦.接链环的结构特点和失效分析[J].煤矿机电,1989(1):17-20.
    [53]华元钦.接链环结构设计分析[J].煤炭科学技术,1995,23(4):47-50.
    [54]张际平.一种新型快速接链环[J].煤矿机械,1991,12(3):15-16.
    [55]刘绍华.新型扁平接链环[J].煤矿机械,1995,16(3):20.
    [56]宋恩泽.34×126弧齿扁平接链环的工艺及质量[J].煤,2002,11(2):30-34.
    [57]王继强.高强度接链环强度的理论分析及优化设计[D].阜新:辽宁工程技术大学,2002.
    [58]马力.矿用高强度扁平接链环强度的理论分析与实验研究[D].阜新:辽宁工程技术大学,2002.
    [59]马力,赵丽娟,聂忠义.结构状态非线性下对扁平接链环的有限元分析[J].辽宁工程技术大学学报自然科学版,2002,21(5):652-654.
    [60]申伯宏,许让斌.矿用高强度圆环链扁平接链环生产工艺探讨[J].山东煤炭科技,2003(1):27-28.
    [61]李惟慷.矿用高强度接链环的疲劳计算和提高疲劳寿命的工艺研究[D].阜新:辽宁工程技术大学,2004.
    [62]张发琼.矿用高强度扁平接链环有限元优化设计与实验应力分析[D].阜新:辽宁工程技术大学,2004.
    [63]李惟慷,杨新乐,马力等.矿用扁平接链环静态电测实验及有限元分析[J].机械工程与自动化,2004(1):64-66.
    [64]李成全,董玉芬.矿用扁平接链环静动态疲劳实验应力分析[J].矿山机械,2004(11):23-25.
    [65]丁财进.矿用扁平接链环的优化设计及疲劳寿命研究[D].阜新:辽宁工程技术大学,2005.
    [66]毛君,曹艳丽,姜国强.接链环受力分析与结构优化[J].机械设计与研究,2005,21(6):65-68.
    [67]杨新乐,李惟慷,刘清富.梯齿形扁平接链环优化设计与疲劳寿命的研究[J].煤矿机械,2006,27(7):22-24.
    [68]曲娟,李永忠,李淮.34×126矩齿型矿用圆环链用扁平接链环的研制[J].煤矿机械,2003,24(2):56.
    [69]曲娟,李淮.新型弧形齿接链环的研制[J].矿山机械,2004(12):58-60.
    [70]曲娟,李淮.新型弧形齿扁平接链环与国内外同类产品的比较[J].矿山机械,2007,2(35):81-83.
    [71]王红阁,卢春焕.矿用牵引链扁平接链环的结构改进[J].煤炭工程,2008(5):10-11.
    [72]李剑峰.弧形齿扁平接链环材料与工艺研究[J].煤矿机械,2009,30(9):104.
    [73]焦作矿业学院等.煤矿机械传动设计(上)[M].北京:煤炭工业出版社,1979.
    [74]辛一行.现代机械设备设计手册:第1卷.设计基础[K].北京:机械工业出版社,1996.
    [75]郑见粹,梁一如.圆环链轮的齿形设计[J].起重运输机械,1988(8):10-11.
    [76]虞官土.在普通车床上巧法加工圆环链链轮链齿[J].煤矿机械,1990,11(6):26-27.
    [77]石占祥.矿用高强度圆环链链轮实际齿形的计算[J].煤矿机械,1991,12(5):40-48.
    [78]傅晨.矿用圆环链轮齿形曲线问题[J].煤矿机械,1992,13(2):26-30.
    [79]刘艳云,高放.链轮的设计与制造[J].机械制造,1994(6):6-7.
    [80]李国锋.链轮链窝加工方法的分析[J].煤矿机械,1996,17(6):30-32.
    [81]王春洁,宋刚.圆环链中驱动链轮新齿形研究[J].煤矿机械,1999,20(3):7-8.
    [82]王君玲,杨玉芬,程玉来.链轮齿数对链传动动载荷的影响[J].沈阳工业大学学报,2004,26(1):17-22.
    [83]刘庆华.刮板输送机驱动链轮齿形参数的仿真研究[D].阜新:辽宁工程技术大学,2006(3).
    [84]乔金虎.提高矿用刮板输送机链轮耐磨损性能的试验研究[J].山西煤炭管理干部学院学报,2008(4):108-109.
    [85]解金榜,刘红,利用3D模型与数控加工技术改进圆环链链轮加工工艺[J].煤矿机械,2007,28(5):86-88.
    [86]霍苏萍,解金榜.基于CAD/CAM技术的圆环链轮数控加工[J].煤矿机械,2010,31(2):105-107.
    [87]宫传普.圆环链轮齿形加工方法[J].煤矿机械,2008,29(6):115-116.
    [88]李世班,吴修彬.基于Pro/E3.0的链轮参数化设计[J].起重运输机械,2008(12):72-75.
    [89]郄鹏举.圆环链轮铣齿的工装设计[J].煤矿机械,2008,29(5):106-104.
    [90]韩俊玲.采用展成法加工圆环链链轮圆弧线齿廓和链窝[J].煤矿机械,2009,30(4):91-92.
    [91]聂晶晶.基于PLC的圆环链链轮链窝加工专用数控系统研究[D].太原:太原理工大学,2009.4.
    [92]张靳,董长双.基于UG的圆环链轮参数化设计[J].机械工程与自动化,2009(03):66-68.
    [93]李晓奇,毛君,赵勇等.刮板输送机驱动链轮的参数化及其优化[J].煤矿机械,2009,30(12):3-5.
    [94]刘磊,温建刚,丁守坤等.刮板输送机链轮组件新型结构研究[J].煤炭工程,2009(8):112-113.
    [95]杨正中,张玉芳.埋刮板输送机刮板链条和链轮的设计与制造[J].粮食加工,2009,34(4):60-63.
    [96]周仲波.圆环链链轮火焰淬火设备的设计[J].煤炭科学技术,2010,38(3):90-92.
    [97]姜红民.刮板输送机链轮轴组失效分析及改进[J].矿山机械,2010,38(9):120-121.
    [98]林·玛里安·多雷普斯基,王志国译.链条断裂对刮板输送机的影响[J].煤炭科学技术,1992(3):47-51.
    [99]徐庆莘,孔凡昕,姚贵合.矿用元环链喷丸强化——提高元环链疲劳寿命的研究[J].山东科技大学学报自然科学版,1982(01):11-15.
    [100]李慧琪,徐庆莘.矿用圆环链的受力分析与断裂韧性[J].山东矿业学院学报,1989,8(1):9-13.
    [101]王兆炘,徐庆莘.矿用圆环断裂口分析[J].山东矿业学院学报,1994,13(4):379-383.
    [102]张振洪,张良运,金毓洲等.提高矿用圆环链疲劳寿命的新方法[J].新技术新工艺,1986(3):78-79.
    [103]胡志忠,张良运,张振洪等.煤矿井下圆环链断裂分析[J].西安交通大学学报,1988,22(5):115-120.
    [104]叶平,魏任之.刮板输送机圆环链断链检测方法的研究[J].中国矿业大学学报,1997(4):14-16.
    [105]封士彩,肖兴明.刮板输送机焊接圆环链断裂分析及预防[J].煤矿机械,1999(10):33-34.
    [106]王智海.圆环链的宏观断面分析[J].煤矿机械,2002,23(6):45-46.
    [107]顾德英,常晓恒.采用双传感器的矿用圆环链差温回火温度检测[J].仪器仪表学报,2003,24(4):73-75.
    [108]刘凤霞.圆环链母材断裂原因分析[J].物理测试,2005,23(3):59-60.
    [109]秦峰,王方志.谈如何提高圆环链的综合机械性能[J].矿山机械,2006,34(11):90-91.
    [110]秦峰,秦浩.圆环链热处理工艺的改进[J].起重运输机械,2007(8):92-93.
    [111]段守新,沈国才,王霄梅.刮板输送机断链原因分析及预防断链的措施[J].煤炭科技,2001(3):35-36.
    [112]连为民.刮板输送机断链事故的原因及预防[J].煤矿开采,2002,7(4):75-77.
    [113]陈之帅.煤矿刮板输送机断链事故分析及预防[J].矿山机械,2003(8):64.
    [114]孙福群.刮板输送机断链故障分析[J].陕西煤炭,2004(4):23-24.
    [115]许广芳.刮板输送机接链及断链监测系统研究[D].太原:太原理工大学,2006.5.
    [116]管凤花.矿用圆环链在井下腐蚀机理及防护的研究[D].阜新:辽宁工程技术大学,2006.
    [117]王正刚.刮板输送机断链保护[J].煤,2007(90):59.
    [118]程开,杜秀峰.刮板输送机断链保护装置的研究与应用[J].选煤技术.2008(6):63-64.
    [119]卢远平,商文华.矿用刮板输送机断链原因及预防措施[J].矿业工程,2008,6(5):44-46.
    [120]赵炳章,张乾辉.矿用圆环链焊接区裂纹的防治[J].矿山机械,2009,37(16):53-54.
    [121]赵贤平,曹树卫,万国喜等.20Mn2钢圆环链脆性断裂原因分析[J].失效分析与预防,2009,4(2):97-100.
    [122]王运玲,程丽杰.23MnNiMoCr54圆环链断裂原因分析[J].金属铸锻焊技术,2010,39(3):167-169.
    [123]武兴旺,任中全,王维喜.矿用高强度圆环链的正确使用和维护[J].煤矿机械,2011,32(1):210-211.
    [124]王东风,王维喜,马瑞勇,武兴旺,高爱民.矿用高强度圆环链的防腐方法[J].矿山机械.,2011,39(6):135-137.
    [125]李辉.刮板输送机刮板链故障分析[J].科技信息,2011(17):122.
    [126]陈鹏.刮板输送机链条的检测与故障诊断技术[J].中国新技术新产品,2011(16):159.
    [127]杜力.刮板输送机刮板链工况分析[J].河北能源职业技术学院学报,2011(02):73-74.
    [128] Bergbau.链轮和圆环链运行磨损情况的改进[J]. DEZ,1985:57-44.
    [129]李风言.矿用圆环链-链轮传动特性试验研究[J].煤矿机械,1998,19(5):11-14.
    [130]苏阜明.圆环链—链轮啮合特性的分析研究[J].山西煤炭,1998,18(2):19-25.
    [131]王春洁.圆环链传动系统中运动特性研究[J].煤矿机械,1998,19(10):16-17.
    [132]王跃清,田莹.圆环链链轮传动力学模型的建立与计算方法[J].矿山机械.2004(5):6-8.
    [133]庄严,钱红.刮板输送机牵引链的震动特性分析[J].煤矿机械,2009(3):73-74.
    [134]张春芝,孟国营,冯海明.刮板输送机链传动系统动力学建模与仿真分析[J].煤矿机械.2011,32(09):71-74.
    [135]王淑平,杨兆建,王义亮.重型刮板输送机圆环链与链轮啮合理论分析[J].煤矿机械,2012,33(2):42-45.
    [136]康晓敏.刨煤机动力学分析及对刨链可靠性影响的研究[D].阜新:辽宁工程技术大学,2009.6.
    [137]李润方,龚剑霞.接触问题数值方法及其在机械设计中的应用[M].重庆:重庆大学出版社,1991:20-35.
    [138]彼得·艾伯哈特,胡斌.现代接触动力学[M].南京:东南大学出版社,2003:10-22.
    [139](美) Steven C. Chapra, Raymond P. Canale著唐玲艳,田尊华,刘齐军译.工程数值方法(Numerical methods for engineers)[M].北京:清华大学出版社,2007(据The McGraw-HillCompanies, Inc.2006年英文版第5版译出,由美国麦格劳-希尔教育出版(亚洲)公司授权清华大学出版社出版):18-68.
    [140]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社,1992:77-98.
    [141]陈滨.动力学、振动与控制的研究:第五届全国一般力学学术会议论文集[Z].北京:北京大学出版社,1994.9.
    [142]张景绘.动力学系统建模[M].北京:国防工业出版社,2000:28-44.
    [143]覃正.多体系统动力学压缩建模[M].北京:科学出版社,2000.:90-95.
    [144]吴爱祥.孙业志,刘湘平.散体动力学理论及其应用[M].北京:冶金工业出版社,2002:102-119.
    [145]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003:11-37.
    [146]范天佑.断裂动力学:原理与应用[M].北京:北京理工大学出版社,2006:19-77.
    [147]杨桂通.弹塑性动力学基础[M].北京:科学出版社,2008:66-98.
    [148]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002:54-67.
    [149](美)B.布尚,葛世荣译.摩擦学导论(Introduction to tribology)[M].北京:机械工业出版社,2007(John Wiley&Sons2002年英文版译出,由Wiley Publishing, Inc.授权机械工业出版社出版发行):111-134.
    [150]王福军.冲击接触问题有限元法并行计算及其工程应用[D].北京:清华大学工学博士学位论文,2000.11.
    [151]薛云娜.双面啮合齿形链传动的啮合理论与应用研究[D].济南:山东大学,2006.10.
    [152]任雅丽.某正交直齿面齿轮传动系接触分析[D].秦皇岛:燕山大学,2009.10.
    [153]鲁永建.航空发动机高速齿轮接触有限元分析[D].沈阳:沈阳航空工业学院,2010.1.
    [154] Tirupathi R. Chandrupatla, Ashok D. Belegundu, Introduction to finite elements inengineering[M],北京:清华大学出版社,2006(据2002年英文版第3版译出,由培生教育出版集团授权清华大学出版社出版)49-58.
    [155]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004:129-134.
    [156]马雪洁,谢刚,王小林.基于ANSYS_LS_DYNA的准双曲面齿轮动力学接触仿真分析[J].机械传动,2005,29(6):51-53.
    [157]唐进元,刘欢,戴进.基于ANSYS_LS_DYNA的齿轮传动线外啮合冲击研究[J].震动与冲击,2007,26(9):40-44.
    [158]陈一栋,唐国金.渐开线圆柱齿轮在ANSYS/LS-DYNA中的动态接触分析[J].长沙铁道学院学报社会科学版,2007,8(2):218-219.
    [159]戴进.基于ANSYS_LS_DYNA齿轮结构的优化设计[J].现代制造技术与设备,2008(3):66-68.
    [160]高翔,程建平.基于ANSYS_LS_DYNA的直齿锥齿轮动力学接触仿真分析[J].拖拉机与农用运输车,2008,35(2):50-51.
    [161]张德新.基于LS_DYNA的汽车正面碰撞仿真分析[J].林业机械与木工设备,2008,36(11):36-37.
    [162]范凤明,李振平,凌云.基于LS_DYNA的行星齿轮非线性动力学特性研究[J].煤矿机械,2008,29(1):17-21.
    [164]苗培实,李文斌,梁义维.基于ANSYS_LS_DYNA矿用圆环链超声波探伤的仿真研究[J].煤矿机械,2009,30(1):39-40.
    [165]吴乐平,杨兆建,王学文.基于ANSYS的刮板输送机中部槽参数化设计研究[J].煤矿机电,2010,31(3):54-56.
    [166]王超,邵朋礼.基于LS_DYNA的齿轮传动有限元动力学分析仿真[J].计算机辅助工程,2010,19(2):41-45.
    [167]张如一.应变电测与传感器[M].北京:清华大学出版社,1999:111-139.
    [168]刘宝琛.实验断裂、损伤力学测试技术[M].北京:机械工业出版社,1994:13-19.
    [169]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002:54-59.
    [170]李学平.裂缝损伤结构动力分析及其识别方法研究[D].长沙:中南大学,2009.
    [171]王丽娜.渐开线齿轮传动疲劳寿命分析[D].太原:太原理工大学,2009.
    [172]吴建国.裂纹扩展与损伤演化理论与应用研究[D].北京:北京航空航天大学,2009.
    [173] K. H. Low. COMPUTER-AIDED SELECTION OF ROLLER CHAIN DRIVES[J]. Computers&Structure.1995,55(5):925-936.
    [174] JAMES C. CONWELL. EXPERIMENTAL INVESTIGATION OF LINK TENSION ANDROLLER-SPROCKET IMPACT IN ROLLER CHAIN DRIVES [J]. Mech. Mach. Theory.1995,31(4):533-544.
    [175] Grzegorz Zboifiski, Wies~aw Ostachowicz. A general FE computer program for3D incrementalanalysis of frictional contact problems of elastoplasticity [J]. Finite Elements in Analysis and Design,1997(27):307-322.
    [176] M.-K. Yeh, L.-B. Fang. Contact analysis and experiment of delaminated cantilever compositebeam [J]. Composites: Part B,1999(30):407–414.
    [177] D. Segonda, A. Tafreshi. Stress analysis of three-dimensional contact problems using theboundary element method [J]. Engineering Analysis with Boundary Elements,1998(22):199–214.
    [178] C.T. Tsai, Shankar Mall. Elasto-plastic finite element analysis of fretting stresses inpre-stressed strip in contact with cylindrical pad [J].Finite Elements in Analysis and Design,2000(36):171-187.
    [179] Shuangbiao Liu, Qian Wang, Geng Liu. A versatile method of discrete convolution andFFT(DC-FFT) for contact analyses [J]. Wear,2000(243):101–111.
    [180] Ka′roly Va′radi, Zolta′n Ne′der, Klaus Friedrich, Joachim Flock. Contact and thermalanalysis of transfer film covered real composite-steel surfaces in sliding contact [J]. TribologyInternational,2000(33):789–802.
    [181] Han Zhu, Julie E. Nodes. Contact based analysis of asphalt pavement with the effect ofaggregate angularity [J]. Mechanics of Materials,2000(32):193-202.
    [182] V. Padmanabhan1, T.A. Laursen. A framework for development of surface smoothingprocedures in large deformation frictional contact analysis [J]. Finite Elements in Analysis andDesign,2001(37):173-198.
    [183] Xiaoyan Lei. Contact friction analysis with a simple interface elemen [J].Computer. MethodsAppl. Mech. Engrg,2001(190):1955-1965.
    [184] Li Xin Cao,Jian Liu. Research on the mapping models and designing methods of variable-ratiochain/belt drives[J]. Mechanism and Machine Theory,2002(37):955–970.
    [185] Nam Ho Kim1, Kiyoung Yi, Kyung Kook Choi. A material derivative approach in designsensitivity analysis of three-dimensional contact problems [J]. International Journal of Solids andStructures,2002(39)2087–2108.
    [186] Y.M. Zhang, Qiaoling Liu, Bangchun Wen. Practical reliability-based design of gear pairs [J].Mechanism and Machine Theory,2003(38):1363–1370.
    [187] F.Tin-Loi, S.H. Xia.An iterative complementarity approach for elastoplastic analysis involvingfrictional contact [J]. International Journal of Mechanical Sciences,2003(45):197–216.
    [188] Kang Yong Lee, Jin Woo Kang. Boundary element analysis for thermomechanical interfacestress in the thin-layered media under sliding contact [J].Engineering Analysis with BoundaryElements,2003(27):583–587.
    [189] H. Gun. Elasto-plastic static stress analysis of3D contact problems with friction by using theboundary element method [J]. Engineering Analysis with Boundary Elements.,2004(28):779–790
    [190] G.I. Giannopoulos, N.K. Anifantis, D.E. Katsareas. Boundary-only element analysis of crackcontact under thermal shock [J]. Engineering Fracture Mechanics,2005(72):33–48.
    [191] Faydor L. Litvin a, Galina I. Sheveleva b, Daniele Vecchiato. Modified approach for toothcontact analysis of gear drives and automatic determination of guess valuesComput [J]. Methods Appl.Mech. Engrg,2005(194):2927–2946.
    [192] Massimiliano Pau, Bruno Leban, Antonio Baldi. Experimental analysis of contact for theindentation of a flat rounded punch [J]. International Journal of Solids and Structures,2006(43):7959–7965.
    [193] P. Velex, M. Ajmi. Dynamic tooth loads and quasi-static transmission errors in helical gearsApproximate dynamic factor formulae [J]. Mechanism and Machine Theory,2007(42):1512–1526.
    [194] Shuting Li. Finite element analyses for contact strength and bendingstrength of a pair of spurgears with machining errors assembly errors and tooth modifications[J]. Mechanism and MachineTheory,2007(42):88–114.
    [195] Je`ro me Bruye`re, Jean-Yves Dantan, Re′gis Bigot, Patrick Martin. Statistical toleranceanalysis of bevel gear by tooth contact analysis and Monte Carlo simulation[J]. Mechanism andMachine Theory,2007,(42):1326–1351.
    [196] K. Mao. Gear tooth contact analysis and its application in the reduction of fatigue wear [J].Wear,2007(262)1281–1288.
    [197] Giorgio Bonori, Marco Barbieri, Francesco Pellicano. Optimum profile modifications of spurgears by means of genetic algorithms [J]. Journal of Sound and Vibration,2008(313):603–616
    [198] Qiang Gao, MakotoTanabe, KazueNishihara. Contact-impact analysis of geared rotor systems[J]. Journal of Sound and Vibration,2009(319):463–475.
    [199] Szu-Han Wu, Shyi-Jeng Tsai. Contact stress analysis of skew conical involute gear drives inapproximate line contact[J]. Mechanism and Machine Theory,2009(44):1658–1676.
    [200] Xiong Juna, He Junjiab, Zang Chunyanb. Dynamic Analysis of Contact Bounce of AerospaceRelay Based on Finite Difference Method [J]. Chinese Journal of Aeronautics,2009(22):262-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700