用户名: 密码: 验证码:
中国薄荷属(Mentha L.)植物种质资源多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄荷属(Mentha L.)植物全世界共有30个种,广泛分布在北半球的温带地区,在我国共有12个种。薄荷属植物中的薄荷、椒样薄荷和留兰香是重要的经济植物,被广泛应用于医药、食品、化妆品、香料等工业。
     本文从外部形态、花粉形态、分子标记和精油成分四个方面对我国薄荷属植物的多样性进行了研究,将为我国薄荷属植物种质资源的开发利用提供重要的科学依据。
     主要结论如下:
     1薄荷属植物种质资源形态学多样性研究
     对薄荷属植物7个种34份材料的9个形态指标(株高、叶长、叶宽、叶柄长、叶对数、茎厚、分枝数、枝长、节数)进行了方差分析、相关性分析、主成分分析和聚类分析。结果表明,薄荷属形态学性状变异很大,变异系数在13.31%-76.29%之间。各形态指标间也存在一定的相关性。主成分分析把9种形态指标归结为4个主成分,3个主成分的累积贡献率达83.32%。通过聚类分析,将7个薄荷属植物分为3个类型。
     2薄荷属植物花粉多样性研究
     利用扫描电镜对薄荷属的薄荷(M. haplocalyx Briq.)、兴安薄荷(M.dahurica Fisch.)、留兰香(M. spicata Linn.)、皱叶留兰香(M. crispata Schrad.)、假薄荷(M. asiatica Briss.)、灰薄荷(M. vagans Briss.)、欧薄荷(M. longifolia Huds.)、圆叶薄荷(M. rotundifolia Huds.)和唇萼薄荷(M. pulegium Linn.)共9个种的花粉形态进行了观察。结果表明薄荷属植物花粉形态之间存在一定的差异。花粉粒为扁球形或近球形,大小11.25-27.11μm×16.84-27.67μm,外壁具网状纹饰,萌发孔为多沟型,6-8沟,沟长度不等。薄荷属花粉属于单一型花粉,它在唇形科中是比较进化的类群。
     3薄荷属种质资源分子多样性研究
     3.1薄荷属种质资源的ISSR分析
     采用ISSR标记技术对我国薄荷属植物7个种34个居群进行了遗传多样性分析。10个ISSR引物共扩增出68条带,其中59条多态性条带,多态位点百分率为86.7%。Nei's基因多样性指数为0.3457,Shannon's信息指数为0.5166,居群间的遗传分化指数0.7564。在总的遗传变异中,75.64%的遗传变异存在于薄荷居群间,24.36%的变异存在于居群内。通过UPGMA聚类,将34个薄荷居群分为三类。研究表明薄荷属种质资源存在丰富的遗传多样性。
     3.2薄荷种质资源的SRAP分析
     采用SRAP标记技术对我国15个薄荷居群进行了遗传多样性分析。11对SRAP引物共扩增出124条带,其中115条多态性条带,多态位点百分率为92.7%。Nei's基因多样性指数为0.2948,Shannon's信息指数为0.4512,居群间的遗传分化指数0.6598。在总的遗传变异中,65.98%的遗传变异存在于薄荷居群间,34.02%的变异存在于居群内。不同居群之间的遗传距离介于0.0287-0.5577之间,其中浙江杭州和安徽太和居群之间的遗传距离最小,西藏芒康和云南西双版纳居群之间的遗传距离最大。通过UPGMA聚类,将15个薄荷居群分为三类,其中西藏芒康居群单独聚为一类。研究表明薄荷种质资源存在丰富的遗传变异。
     4薄荷属植物精油多样性研究
     对15个薄荷居群及薄荷属植物薄荷、椒样薄荷、留兰香、皱叶留兰香、灰薄荷、兴安薄荷、圆叶薄荷和假薄荷8个种的精油进行提取分离和分析。研究发现,15个薄荷居群精油的出油率和薄荷醇含量差异较大。其中出油率的变化范围0.31%-1.43%,薄荷醇含量的变化范围为31.25%~83.61%。通过GC-MS分析,从8个薄荷属植物中鉴定出51种化学成分,分别占各自精油的98.8%、99.3%、94.9%、97.1%、94.2%、98.4%、95.6%和95.4%。单萜氧化物在薄荷属植物精油中含量最高。通过主成分析提取了5个主成分,其累积贡献率为86%。主成分分析散点图和聚类分析都将薄荷属8个植物分为三类,分别为薄荷醇化学型、香芹酮化学型和辣薄荷烯酮氧化物化学型。
The genus Mentha (Labiatae) comprises approximately30species distributed in the temperate zone of northern hemisphere. In China,12species have already been recorded. M haplocalyx Briq., M. spicata L. and M piperita L. are important economic plants, and they are widely used in the Pharmaceuticals, food, cosmetics and perfume industries. The morphological characters, pollen morphology, molecular markers and essential oil of Mentha L. were reported in this study. It will provide an important scientific basis for development and utilization of Mentha germplasm resource in China.
     There main results are as follows:
     1. Morphological diversity of Mentha L.
     The9morphological characters(plant height, leaf length, leaf width, petiole length, leaf pairs, stem thickness, branch number, branch length, node number) of34population of Mentha L. including7species were studied by variance analysis, correlation analysis, principal component analysis and clustering analysis. The results showed that the morphological characters vary greatly among the populations of Mentha L., and the coefficient of variation (CV) was from13.31%to76.29%. There are some correlations between morphological characters. According to PCA, the9morphological characters were summed up to4main characters. The7species were divided into3groups by clustering analysis.
     2. Pollen diversity of Mentha L.
     The pollen morphology of9species of Mentha genus, including M. haplocalyx Briq., M. dahurica Fisch., M. spicata Linn., M. crispata Schrad., M. asiatica Briss., M. vagans Briss., M. longifolia Huds., M. rotundifolia Huds. and M. pulegium Linn., were studied through the scanning electron microscope (SEM). The results showed that pollen grains are oblate or subspheroidal in shape and12.73-26.14μm×19.18-26.53μm in size. They have6-8colpi with different length, and exine ornamentation is reticulate. The pollen morphology of Mentha is stenopalynous, and it is evolutional type in Lamiaceae.
     3. Molecular marker of Mentha L.
     3.1ISSR analysis of Mentha L.
     The genetic diversity of34population of Mentha L. including7species were analyzed using Inter Simple Sequence Repeat(ISSR) markers. A total of68bands were amplified by10ISSR primers, in which59bands were polymorphic(86.7%). Nei's genetic diversity index, Shannon's information index and gene flow were0.3457,0.5166and0.7564, respectively.75.64%of genetic variation existed among populations, and24.36%of genetic variation existed within populations. The34populations were divided into3groups by clustering analysis. The study reveals that there is a high level of genetic diversity in Mentha L.
     3.2SRAP analysis of M. haplocalyx Briq.
     The genetic diversity of15populations of M. haplocalyx Briq. in China were analyzed using Sequence-related Amplified Polymorphism(SRAP) markers. A total of124bands were amplified by11pairs of SRAP primers, in which115bands were polymorphic(92.7%). Nei's genetic diversity index, Shannon's information index and gene flow were0.2948,0.4512and0.6598, respectively.65.98%of genetic variation existed among populations, and34.02%of genetic variation existed within populations. Nei's genetic distance between populations ranged from0.0287to0.5577. The least genetic distance was observed between Hangzhou and Taihe population, and the highest genetic distance was observed between Mangkuang and Xishangbanna population. The15populations were divided into3groups by clustering analysis. The study reveals that there is a high level of genetic diversity among the populations of M. haplocalyx Briq.,
     4. Chemical components of essential oil in Mentha L.
     The essential oils obtained from15population of M. haplocalyx Briq. and8species of Mentha L., including M. haplocalyx Briq., M. piperita L., M. spicata L., M. vagans Boriss., M. dahurica Fisch., M. crispata Schrad., M. rotundifolia Huds. and M. asiatica Briss. by hydrodistillation were analyzed. The results showed that the oil yields and content of menthol vary greatly among15population of M. haplocalyx Briq.. The oil yields ranged from0.31%to1.43%, and the content of menthol ranged from31.25%to83.61%. Fifty-one compounds were identified which represented98.8%,99.3%,94.9%,97.1%,94.2%,98.4%,95.4%and95.4%of the total oil, respectively.4principal components which accumulation contribution rate amount to86.0%were extracted to reflect most of the information by principal components analysis. The eight Mentha species were divided into 3types by clustering analysis, and they belong to menthol chemotype, carvone chemotype and piperitenone oxide chemotype, respectively.
引文
埃尔德曼.孢粉学手册[M].中国科学院植物研究所古植物室孢粉组,译.北京:科学出版社,1978
    陈大霞,李隆云,瞿显友,等.青蒿种质资源遗传多样性的SRAP分析[J].分子植物育种,2007,5(6):52-56
    陈连官.几种薄荷留兰香品种耐盐特性的研究[J].香料香精化妆品,1996,(1):22-24
    陈灵芝,马克平.生物多样性科学:原理与实践[M].上海:上海科学技术出版社,2001
    陈秋林,姚成.中药薄荷草中氨基酸的测定[J].南京体育学院学报(自然科学版),2003,2(4):60-62
    陈文强,邓百万,丁锐,等.天麻3种变型过氧化物酶的同工酶研究[J].西北植物学报,2005,25(8):1665-1668
    陈祖基.中草药抗单纯疱疹病毒的实验研究[J].中医杂志,1980,21(2):73
    成玉,陈成彬,薛梅,等.应用AFLP技术探讨半夏属五个种的亲缘关系[J].云南植物研究,2006,28(16):559-564
    俞桂新.薄荷属植物化学分类学研究及其意义[J].中草药,1991,22(11):519-525
    俞桂新,周荣汉.薄荷属7种植物花粉形态学研究[J].中国药科大学学报,1993,24(3):150-156
    俞桂新,周荣汉.东北薄荷的化学型[J].植物资源与环境,1995,4(4):60-62
    俞桂新,周荣汉.国产野生薄荷挥发油化学组分变异及其化学型[J].植物资源与环境,1998,7(3):13-18
    俞桂新,周荣汉.兴安薄荷挥发油的成分[J].植物资源与环境,1993,2(3):55-57
    俞桂新,周荣汉.亚洲薄荷的两个化学型[J].植物资源与环境,1994,3(3):58-59
    戴克敏.国产薄荷属的栽培种类初步研究[J].药学学报,1981,16(11):849-859
    邓瑞宁,王沫,李再云,等.荆半夏遗传多样性的SRAP分析[J].农业生物技术学报,2008,16(6):1070-1071
    邓素芳,杨肠,赖钟雄.朱砂根品种资源的RAPD分析[J].中国农学通报,2009,25(10):63-67
    杜勤,魏智强,田军.青天葵形态遗传多样性研究[J].时珍国医国药,2009,20(4):836-837
    杜玉娟,程志号,王沫,等.半枝莲花粉母细胞减数分裂观察及核型分析[J].华中农业大学学报,2009,28(1):93-96
    国家医药管理局中草药情报中心站.植物药有效成分手册[M].北京:人民卫生出版社,1986:714
    国家中医药管理局《中华本草》编委会.中华本草[M].上海:科学技术出版社,1999:6097
    横田正实.从中药学的角度来研究中药[J].国外医药(中医中药分册),1990,12(2):83-88
    胡秋辉.不同油菜品种硼素营养的遗传性差异机理研究[J].南京农业大学学报,1990,13(1):80-86
    黄泰康.常用中药成分与药理手册[M].北京:中国医药科技出版社,1994:1828-1830
    黄士诚.薄荷属植物的染色体数目及其栽培种的起源[J].香料香精化妆品,1997(3):23-24
    侯杰,程广有.3种药用枸杞过氧化物同工酶遗传多样性研究[J].北华大学学报(自然科学版),2006,7(6):556-559
    吉林省中医中药研究所主编.长白山植物药志[M].长春:吉林人民出版社,1982:976
    赖焕林,陈天华,徐进,等.马尾松种子园无性系花粉生活力研究[J].林业科学研究,1994,7(5):555-560
    赖家业,杨振德.野薄荷的茎段培养[J].广西热作科技,2000(3):9-11
    蓝云龙,吴令上,裘波音,等.鱼腥草RAPD分子标记的多态性[J].浙江林学院学报,2008,25(3):309-313
    雷武逵.植物遗传多样性的利用及其检测方法[J].广西农学报,2008,23(4):64-67
    李国军,荆瑞勇,王丽艳.沙苑子的染色体数目观察及核型分析[J].安徽农业科学,2009,37(9):3944-3971
    李锡文.我国一些唇形科植物学名的更动[J].植物分类学报,1974,12(2):213-234
    李秀华,肖娅萍,谢娇.三叶木通种质资源形态多样性研究[J].陕西师范大学学报 (自然科学版),2007,35(4):88-93
    李延华.薄荷属植物的引种和品种选育[M].植物引种驯化集刊,1983:105-114
    李廷春,樊洪泓,高正良,等.丹参遗传多样性的SRAP标记分析[J].核农学报,2008,22(5):576-58
    李祖强.滇产薄荷的化学研究[J].云南植物研究,1996,18(1):115-122
    李宗友.圆叶薄荷和欧薄荷精油对小鼠和大鼠中枢神经系统的作用[J].国外医学中医中药分册,1992,14(1):5432
    刘国声.芳香植物药在国内研究概况[J].药学通报,1983,18(10):620-622
    刘建林.四川薄荷属(唇形科)一新变种[J].云南植物研究,1996,18(4):410
    刘绍华.“801”留兰香精油化学成分的研究[J].广西植物,1997,17(3):286-288
    刘慎谔文集编辑组.刘慎谔文集[M].北京:科学出版社,1986:67
    刘颖,张援虎,任兵.薄荷化学成分的研究[J].中国中药杂志,2005,30(14):1086-1088
    刘志华,马立群,于卓,等.罗布麻遗传多样性的AFLP分析[J].华北农学报,2009,24(2):84-89
    罗光明,邓子超,杨世林,等.药用植物优良品种选育研究现状[J].中药研究与信息,2003,5(9):15-18
    钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:科学出版社,1994
    乔传卓.药用植物人工诱变育种的研究概况[J].国外医学-药学分册,1981,8(3):139
    乔有明,李宏华,朱松涛.黄芪和甘草染色体数目及核型分析[J].青海畜牧兽医杂志,2001,31(3):14-15
    秦雯.薄荷的研究概况与进展[J].海淀走读大学学报,2002,58(2):81-85
    庄文庆主编.药用植物育种学[M].北京:农业出版社,1990
    屈直,陶刚,朱国胜,等.茯苓种质资源的RAPD分析[J].菌物研究,2008,6(3):170-174
    全国中草药汇编编写组.全国中草药汇编(上册)[M].北京:人民卫生出版社,1976:923
    任羽,尹俊梅,杨光穗.海南石斛属植物亲缘关系的SRAP分析[J].热带作物学报,2008,29(6):767-770
    沙红,廖康.药用植物留兰香的组织培养研究[J].新疆农业大学学报,2003,26(1):10-12
    山原条二.关于薄荷利胆作用的生物活性成分的研究[J].中医药信息,1986,(2):39-40
    沈振国.硼素营养对油菜花粉萌发的影响[J].中国农业科学,1994,27(1):51-56
    沈宗根,刘文哲,胡正海.薄荷花蜜腺的发育解剖学研究[J].西北植物学报,1994,14(1):29-34
    施立明,贾旭,胡志昂.遗传多样性[M].北京:科学出版社,1993
    师素云,练兴明,薛启汉,等.薄荷离体培养愈伤组织诱导与植株分化[J].江苏农业科学,2000(6):27-28
    宋芸,乔永刚,吕慧敏.药用植物知母染色体核型分析[J].中国农学通报,2009,25(10):104-106
    孙继,叶利勇,陶月良.芜菁种质资源形态性状的多样性分析[J].浙江农业科学,2007,(3):248-251
    孙群,佟汉文,吴波,等.不同种源乌拉尔甘草形态和ISSR遗传多样性研究[J].植物遗传资源学报,2007,8(1):56-63
    孙学忠.“73-8”薄荷高产栽培技术[J].上海农业科技,1990,(3):31-33
    台湾植物志编委会.台湾植物志(第四卷)[M].台北:现代关系出版社,1983:178-484
    唐晓清,吴键,余伯阳,等.药用植物丹参的核型分析和C-banding研究[J].江苏农业学报,2006,18(3):75-77
    王伏雄,钱南芬译,额尔特曼G著.花粉形态与植物分类[M].北京:科学出版社,1962:177-189
    王晖,许卫铭,王宗锐.薄荷醇对柴胡镇痛成分表观生物利用度的影响[J].中成药,1996,18(6):4-6
    王晖,许卫铭,王宗锐.薄荷醇对柴胡镇痛作用的影响[J].中医药研究,1996,(2):38-39
    王晖,许卫铭,王宗锐,等.薄荷醇和氮酮对水杨酸体外透皮吸收的促进作用[J].中国临床药理学与治疗学杂志,1996,1(1):26-28
    王晖,许卫铭,王宗锐,等.薄荷醇对戊巴比妥中枢抑制作用的影响[J].现代应用药学,1995,12(3):1-2
    王浴生主编.中药药理与应用[M].北京:人民卫生出版社,1983:1244
    王振林.薄荷平衡施肥磷钾适宜用量试验研究[J].上海农业科技,2002(3):93-94
    王宗锐,吴宋夏,冯仕苏,等.薄荷醇在正常人皮肤增加曲安缩松的透皮生物利用度[J].中华皮肤科杂志,1992,25(6):375-376
    吴华杰,徐燃,万定荣,等.景天属药用植物遗传多样性的RAPD分析[J].华中农业大学学报,2008,27(6):782-786
    吴涛,朱玉灵,范泽民.薄荷组培苗的组培快繁技术研究[J].安徽农业科学,1999,27(6):609-612
    吴铁.薄荷脑促进扑热息痛经皮渗透作用研究[J].中国医院药学杂志,1992,12(3):104-106
    吴宋夏,王宗锐,湛小红.薄荷醇促皮渗透作用的研究[J].中国医院药学杂志,1994,14(8):366-367
    温春秀,吴志明,田伟,等.丹参种质资源遗传多样性的AFLP分析[J].华北农学报,2007,22:122-125
    夏铭.遗传多样性研究进展[J].生态学杂志,1999,18(3):59-65
    肖苏,张新全,马啸,等.川渝地区野生鹅观草种质资源形态多样性研究[J].北方园艺,2008,(8):10-14
    谢川若,秦杰.薄荷醇对家兔、豚鼠、小鼠离体肠平滑肌、子宫肌的作用[J].教学与医疗,1988,4(3):1-3
    谢果珍,舒少华,王沫,等.栝楼不同居群可溶性蛋白质和酯酶同工酶电泳分析[J].湖北农业科学,2009,48(2):384-387
    徐荣,陈君,陈士林,等.肉苁蓉种质资源多样性的AFLP分析[J].中草药,2007,38(11):1703-1707
    许鹏翔,贾卫民,毕良武.中国新疆椒样薄荷油化学成分分析及品质研究[J].林产化学与工业,2003,23(1):43-46
    阎先喜,胡正海.薄荷盾状腺毛分泌过程的超微结构研究[J].西北植物学报,1998, 18(1):256-261
    杨红兵,崔光红,詹亚华,等.湖北恩施产厚朴ISSR指纹图谱构建[J].2009,32(1):19-22
    杨全,罗烈伟,罗贵超,等.黄苓群体不同形态变异类型遗传多样性的AFLP分析[J].广东药学院学报,2008,24(2):103-105
    杨瑞萍,戴克敏.“海选”薄荷与"73-8”薄荷含油量及油的质量比较[J].香料香精化妆品,1989,2:1-5
    杨瑞萍,戴克敏,施大文.薄荷属4种栽培植物的组织形态[J].上海医科大学学报,1991,18(3):223-227
    杨世杰,吕怡芳,王秋晶,等.薄荷油终止家兔早期妊娠及其机理初探[J].中草药,1991,22(10):454-457
    杨迎花,李先信,曾柏全,等.新型分子标记SRAP的原理及其研究进展[J].湖南农业科学,2009,(5):15-17
    野田光.中国东北(满洲)の植物志[M].东京:风间书房,1971:1083
    阴健,郭力弓.中药现代研究与临床应用[M].北京:学苑出版社,1993:68
    于丽杰,崔继哲.野薄荷叶腺毛的发育形态学研究[J].植物研究,1997,17(1):75-78
    张汉明,许铁峰.药用植物的多倍体育种[J]. CHINESE TRADITIONAL AND HERBAL DRUGS,2002,33(7):1-3
    张继东,王庆琪.薄荷残渣中化学成分及抗炎作用[J].山东医药工业,2000,19(3):34-35
    张旭,吴卫,郑有良,等.紫苏属植物染色体数目和核型分析[J].西北植物学报,2008,28(10):1972-1977
    张援虎,刘颖,胡峻.薄荷中黄酮类成分的研究[J].中草药,2006,37(4):512-514
    张志平,蔡康荣,吴铁.薄荷脑促扑热息痛透过胎几皮肤实验的电镜观察及其助渗机制的探讨[J].解剖学杂志,1994,17(1):11-13
    章文才.果树研究法(第2版)[M].北京:农业出版社,1991:142-171
    赵扬,陈晓阳,王秀荣,等.二色胡枝子遗传多样性ISSR分析[J].植物遗传资源学报,2007,8(2):195-199
    赵永亮,张长付,覃晓娟.金银花的过氧化物酶和淀粉酶同工酶遗传多样性研究[J].安徽农业科学,2008,36(15):6225-6227
    邵天玉,朴锦,吕龙石.北柴胡和狭叶柴胡的过氧化物酶及酯酶同工酶分析[J],延边大学农学学报,2007,29(2):115-118
    郑虎占,董泽宏,佘靖之.中药现代研究与应用(第五卷)[M].北京:学苑出版社,1998,1:4656-4670
    郑健,赵东升,吴斌,等.留兰香中化学成分的分离与鉴定[J].中国中药杂志,2002:27(10):749-751
    中国常用中药材编写组.中国常用中药材[M].北京:科学出版社,1995:824-827
    中国植物志组委会.中国植物志,第66卷[M].北京:科学出版社,1972:260-274
    中华人民共和国卫生部药典委员会编.中华人民共和国药典[M].北京:人民卫生出版社,2000:6097
    周荣汉.药用植物化学分类学[M].上海:上海科技出版社,1988:137
    周延清.DAN分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005
    朱艳,秦民坚,杭悦宇,等.不同种源太子参的RAPD分析[J].植物资源与环境学报,2007,16(3):19-22
    朱有昌.东北药用植物志[M].哈尔滨:黑龙江科学出版社,1989:975
    周正友,朱建峰.薄荷"80-A-53"的性状及丰产技术[J].上海农业科技,1993,(6):37-39
    Adams R P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Illinois:Allured Publishing Corporation,2001
    Ahmet A, Guleray A, Ozlem B, et al. RAPD and FAME analyses of Astragalus species growing in eastern Anatolia region of Turkey[J]. Biochem Syst Ecol,2006,34: 424-432
    Alonso W R, Rajaonarivony JIM, Gershenzon J, et al. Purification of 4S-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha piperita) and spearmint (M spicata)[J]. J Biol Chem,1992,267:7582-7587
    Baser K, Nuriddinov K, Aripov K. Essential oil of Mentha asiatica Boriss. from Uzbekistan[J]. Plant Physiol Bioch,1997,9(4):453-454
    Battaile J, Loomis W D. The site and sequence of terpene formation in peppermint[J]. Biochim Biophys Acta,1961,51:545-552
    Battaile J, Burbott A J, Loomis W D. Monoterpene interconversions:metabolism of pulegone by a cell-free system from Mentha piperita[J]. Phytochemistry,1968,7: 1159-1163
    Benn S. Potent odorants in peppermint and cornmint oils characterized by GC[J]. Perfum Flavor,1998,23:5-16
    Berry C, Van Eck J M, Kitto S L. Agrobacterium-mediated genetic transformation of mint with E. coli glutathione synthetase gene[J]. Plant Cell Tiss Org,1996,44:177-181
    Bertea C M, Schalk M, Karp F, et al. Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase:cloning, functional expression and characterization of the responsible gene[J]. Arch Biochem Biophys,2001,390: 279-286
    Blumwald E, Aharon G S, Lam H. Early signal transduction pathways in plant-pathogen interaction [J]. Trends Plant Sci,1998,3:342-346
    Bohlmann H. The role of thionins in plant protection[J]. Crit Rev Plant Sci,1994,13:1-16
    Bohlmann J, Meyer G, Croteau R. Plant terpenoid synthases:molecular biology and phylogenetic analysis[J]. Proc Natl Acad Sci USA,1998,95:4126-4133
    Botterman J, Leemans J. Discovery, transfer to crops, expression and biologically significance of a bialophos resistance gene[J]. British Crop Prot Council Monograph, 1989,42:63-68
    Bradu B L, Agarval S G, Vashist V N. Comparative performance of diploid and tetraploid Mentha arvensis and evaluation of their oils[J]. Planta Med,1971,20(3):219-220
    Bradshaw L D, Padgett S R, Kimball S L, et al. Perspectives on glyphosate resistance[J]. Weed Technol,1997,11:189-198
    Brian M L. Mint:The Genus Mentha[M]. London:CRC press,2007
    Brandt W H, Lacy M L, Homer C E. Distribution of Verticillium in stem of resistant and susceptible species of mint[J]. Phytopathology,1984,74:587-591
    Burbott A J, Loomis W D. Effects of light and temperature on the monoterpenes of peppermint[J]. Plant Physiol,1967,42:20-28
    Burke C, Croteau R. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate[J]. J Biol Chem,2002,277:3141-3149
    Burke C, Croteau R. Geranyl diphosphate synthase from Abies grandis:cDNA isolation, functional expression and characterization [J]. Arch Biochem Biophys,2002,405: 130-136
    Burke C, Wildung M R, Croteau R. Geranyl diphosphate synthase:cloning, expression, and characterization of this prenyltransferase as a heterodimer[J]. Proc Natl Acad Sci USA, 1999,96:13062-13067
    Burke C, Klettke K, Croteau R. Heteromeric geranyl diphosphate synthase from mint: construction of a functional fusion protein and inhibition by bisphosphonate substrate analogs[J]. Arch Biochem Biophys,2004,422:52-60
    Caissard J C, Faure O, Jullien F, et al. Direct regeneration in vitro and transient GUS expressionin Mentha piperita[J]. Plant Cell Rep,1996,16:67-70
    Clark G S. Menthol[J]. Perfum Flavor,1988,13:37-46
    Clark R J, Menary R C. Environmental effects on peppermint [J]. Aust J Plant Physiol,1980, 7:685-692
    Colby S M, Alonso W R, Katahira E J, et al.4S-Limonene synthase from the oil glands of spearmint (Mentha spicata):cDNA isolation, characterization and bacterial expression of the catalytically active monoterpene cyclase[J]. J Biol Chem,1993,268: 23016-23024
    Croteau R. Biosynthesis and catabolism of monoterpenoids[J]. Chem Rev,1987,87: 929-954
    Croteau R. Genetic engineering of essential oil production in mint[J]. Current Opinion Plant Biol,1999,2:139-144
    Croteau R, Venkatachalam K V. Metabolism of monoterpenes:demonstration that (+)-cis-isopulegone, not piperitenone, is the key intermediate in the conversion of (-)-isopiperitenone to (+)-pulegone in peppermint(Mentha piperita) [J]. Arch Biochem Biophys,1986,249:306-315
    Croteau R, Gershenzon J. Genetic control of monoterpene biosynthesis in mints. Recent Adv Phytochem[J].1994,28:193-229
    Croteau R, Karp F, Wagschal K C, et al. Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpene content[J]. Plant Physiol,1991, 96:744-752
    Daniel L, Daniel, Eduardo D. Essential oils of Mentha pulegium and Mentha rotundifolia from Uruguay[J]. Braz Arch Biol Technol,2002,45(4):123-127
    Davis E M, Ringer K L, McConkey M E, et al. Monoterpene metabolism:cloning, expression and characterization of menthone reductases from peppermint[J]. Plant Physiol,2005,137:873-881
    Desoky S K, Ei-Ansari M A, Negoumy S I. Flavonol glycosides from Mentha lavandulacea[J]. Fitoterapia,2001,72(7):532-537
    Diemer F F, Faure O, Moja S, et al. High efficiency transformation of peppermint(Mentha piperita L.) with Agrobacterium tumefaciens[J]. Plant Science,1998,136:101-108
    Diemer F, Caissard J C, Jullien F. Agrobacterium tumefaciens-mediated transformation of Mentha spicata and Mentha arvensis[J]. Plant Cell Tiss Org Cult,1999,57:75-78
    Ebrahimi R, Zamani Z, Kashi A. Genetic diversity evaluation of wild Persian shallot (Allium hirtifolium Boiss.) using morphological and RAPD markers[J]. Sci Hort,2009,119(2): 345-351
    Eisenreich W, Sagner S, Zenk M H, et al. Monoterpene essential oils are not of mevalonoid origin[J]. Tetrahedron Lett,1997,38:3889-3892
    Faure O, Diemer F, Moja S, et al. Mannitol and thidiazuron improve in vitro shoot regeneration from spearmint and peppermint leaf disks[J]. Plant Cell Tiss Org Cult, 1998,52:209-212
    Fichan I, Larroche C, Gros J B. Water solubility, vapor pressure and activity coefficients of terpenes and terpenoids[J]. J Chem Eng Data,1999,44:56-62
    Fuchs S, Beck T, Sandvoss M, et al. Biogenetic studies in Mentha piperita, Stereoselectivity in the bioconversion of pulegone into menthone and isomenthone[J]. J Agric Food Chem,1999,47:3058-3062
    Gershenzon J, Conkey M E, Croteau R B. Regulation of monoterpene accumulation in leaves of peppermint[J]. Plant Physiol,2000,122:205-214
    Gershenzon J, Maffei M, Croteau R. Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint(Mentha spicata)[J]. Plant Physiol,1989,89:1351-1357
    Gershenzon J, McConkey M, Croteau R. Regulation of monoterpene accumulation in leaves of peppermint (Mentha piperita L.)[J]. Plant Physiol,2000,122:205-213
    Gershenzon J, McCaskill D, Rajaonarivony J, et al. Biosynthetic methods for plant natural products:new procedures for the study of glandular trichome constituents [J]. Recent Adv Phytochem,1991,25:347-370
    Gershenzon J, McCaskill D, Rajaonarivony J I M, et al. Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products[J]. Anal Biochem,1992,200:130-138
    Ghoulami S, Idrissi A, Fkih-Tetouani S. Phytochemical study of Mentha longifolia of Morocco[J]. Fitoterapia,2001,72(8):596-598
    Green R J. Peppermint and spearmint production in the United States-Progress and problems[J]. Int Flav & Food Addit,1975,6:246-247
    Green R J. Peppermint and spearmint production in the midwest[J]. Herb Spice Med Dig, 1985,3:1-5
    Green R J, Stone W J H. The epiphytology of spearmint rust in Indiana [J]. Mycopathologia, 1967,31(1):17-26
    Haley R C, Miller J A, Wood H C S. The formation of monoterpene hydrocarbons from geranyl and neryl diphenyl phosphates [J]. J Chem Soc,1969,19:264-268
    Harley R M, Brighton C A. Chromosome numbers in the genus Mentha[J]. J Linn Soc Bot, 1977,74:71-96
    Harley R M. Taxonomic studies in the genus Mentha[J]. D.Phil. Thesis. Oxford University, England,1963
    HamriekJ L, Godt M J W, Murawski D A, et al. Correlations between species traits and allozyme diversity:implications for conservation biology[A]. New York:Oxford University Press,1991:75-86
    HamriekJ L, Godt MJW. Allozyme diversity in plant species[A]. In:Brown AHD, Clegg MT, Kalller AL, et al. (eds). Plant Population Genetics, Breeding, and Genetic Resouees. Sinauer Sunderland, MA.1989:43-63
    Hiroshi S, Sueo E, Seibi O. Plant regeneration from protoplasts of peppermint(Mgntha piperita L.)[J]. Plant Cell Reports,1993,12:546-550
    Houda C, Sonia M, Mohamed M, et al. Genetic diversity of Sulla genus (Hedysarea) and related species using Inter-simple Sequence Repeat (ISSR) markers[J]. Biochem Syst Ecol,2007,35,682-688
    Horner C E. Diseases of peppermint in Oregon in 1951 [J]. Plant Disease Rep,1952,36:245
    Homer C E, Dooley H L. Propane flaming kills Verticillium dahliae in peppermint stubble[J]. Plant Disease Rep,1965,49(7):581-582
    Howel E C, Newbury H J, Swennen R L, et al. The use of RAPD for identifying and classifying Musa germplasm[J]. Genome,1994,37:328-332
    Ikeda N. Thermetological investigation of genus Mentha by means of cytogenetics[M]. Fac Agr Okayama Univ, Okayama, Japan,1961:264
    Irwin S V, Kaufusi P, Banks K, et al. Molecular characterisation of taro (Colocasia esculenta) using RAPD markers[J]. Euphytica,1998,99:183-189
    Jain A, Bhatia S, Banga S S, et al. Potential use of RAPD technique to study the genetic diversity in Indian mustard(Brassica juncea) and its relationship to heterosis[J]. Theor Appl Genet,1994,88:116-122
    Jullien F, Voirin B, Bernillon J, et al. Highly oxygenated flavones from Mentha piperita[J] Phytochemistry,1984,23(12):2972-2973
    Kak S N, Kaul B L. Radiation induced useful mutants of Japanese mint, Mentha arvensis L.[J]. Z Pflanzenzuchtg,1980,85:170-174
    Karp F, Mihaliak C A, Croteau R. Monoterpene biosynthesis:specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint(Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves[J]. Arch Biochem Biophys,1990,276:219-226
    Kawabe S, Watanabe A, Watase Y. Masspropagation of Mentha arvensis L. by tissue culture[J]. Shokubutsu Soshiki Baiyo(Japan),1993,10(2):184-187
    Kjonaas R, Croteau R. Demonstration that limonene is the first cyclic intermediate in the biosynthesis of oxygenated p-menthane monoterpenes in Mentha piperita and other Mentha species[J]. Arch Biochem Biophys,1983,220:79-89
    Kjonaas R, Martinkus C, Croteau R. Metabolism of monoterpenes:conversion of 1-menthone to 1-menthol and neomenthol by stereospecific dehydrogenases from peppermint (Mentha piperita) leaves[J]. Plant Physiol,1982,69:1013-1017
    Kjonaas R B, Venkatachalam K V, Croteau R. Metabolism of monoterpenes:oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperitenone, by soluble enzyme preparations from peppermint (Mentha piperita) leaves[J]. Arch Biochem Biophys,1985,238:49-60
    Krasnyanski S, May R A, Loskutov A. Transformation of the limonene synthase gene into peppermint (Mentha piperita L.) and preliminary studies on the essential oil profiles of single transgenic plants[J]. Theor Appl Genet,1999,99:676-682
    Lahlou S, Carneiro R F, Leal-Cardoso J H, et al. Cardiovascular effect of the essential oil of Mentha villosa and its main constituent, piperitenone oxide, in the normotensive anaesthetised rats:role of the autonomatic nervous system[J]. Planta Med,2001,67: 638-643
    Lange B M, Croteau R. Isoprenoid biosynthesis via a mevalonate-independent pathway in plants:cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint[J]. Arch Biochem Biophys,1999,365:170-174
    Lange B M, Ketchum R B, Croteau R. Isoprenoid biosynthesis:metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis[J]. Plant Physiol,2001,127:305-314
    Lange B M, Wildung M R, McCaskill D G, et al. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway [J]. Proc Natl Acad Sci USA,1998,95:2100-2104
    Lange B M, Wildung M R, Stauber E J, et al. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes[J]. Proc Natl Acad Sci USA,2000,97:2934-2939
    Lincoln D E, Murray M J, Lawrence B M. Chemical composition and genetic basis for isopinocamphone chemotypes of Mentha citrata hybrids[J]. Phytochemistry,1986,25: 1857-1863
    Li X, Gong Z, Koiwa H, et al. Bar-expressing peppermint (Mentha piperita L. var. Black Mitcham) plants are highly resistant to the glufosinate herbicide Liberty [J]. Mol Breed, 2001,8:109-118
    Li X, Niu X, Bressan R A. Efficient plant regeneration of native spearmint (Mentha spicata L.)[J]. In Vitro Cell Dev Biol Plant,1999,35:333-338
    Lupien S, Karp F, Wildung M, et al. Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species:cDNA isolation, characterization, and functional expression of (-)-4S-limonene-3-hydroxylase and (-)-4S-limonene-6-hydroxylase[J]. Arch Biochem Biophys,1999,368:181-192
    Mackill D J. Classifying japonica rice cultivars with RAPD markers[J]. Crop Sci,1995,35: 889-894
    Mahmoud S S, Croteau R. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase[J]. Proc Natl Acad Sci USA,2001,98:8915-8920
    Mahmoud S S, Croteau R. Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase[J]. Proc Natl Acad Sci USA, 2003,100:14481-14486
    Mahmoud S S, Willaims M, Croteau R. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil[J]. Phytochemistry, 2004,65:547-554
    McCaskill D, Croteau R. Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha piperita) rely exclusively on plastid-derived isopentenyl diphosphate[J]. Planta,1995,197:49-56
    McCaskill D, Croteau R. Strategies for bioengineering the development and metabolism of
    glandular tissues in plants[J]. Nature Biotech,1999,17:31-36
    McCaskill D, Gershenzon J, Croteau R. Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita)[J]. Planta,1992,187:445-454
    McConkey M, Gershenzon J, Croteau R. Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint (Mentha piperita L.)[J]. Plant Physiol,2000,122:215-223
    Mihaliak C A, Gershenzon J, Croteau R. Lack of rapid monoterpene turnover in rooted plants:implications for theories of plant chemical defense[J]. Oecologia,1991,87: 373-376
    Monte F J Q, Kintzinger J P, Trendel J M, et al. Mixture of closely related isomeric triterpenoid derivatives:separation and purification by reversed-phase high-performance liquid chromatography[J]. Chromatographia,1997,46(5):251-255
    Murray M J, Lincoln D E, Marble P M. Oil composition of Mentha aquatica x M. spicata Fl hybrids in relation to the origin of M. piperita[J]. Can J Genet Cytol,1972,14: 13-29
    Nagasawa T, Umemoto K, Tsuneya T, et al. (-)-1R-8-hydroxyl-4-4-menthen-3-one isolated from essential oil of Mentha gentiles L.[J]. Agric Biol Chem,1975,39(2):553-554
    Nei N, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases[J]. Proc Natl Acad Sci,1979,76:5269-5273
    Nikolaev A G., Bang B T. The composition of the essential oil of Mentha lavanduliodora [J]. Chem Nat Compo,1976,10(4):537
    Niu X, Lin K, Hasegawa P M, et al. Transgenic peppermint(Mentha piperita L.) plants obtained by co-cultivation with Agrobacterium tumefaciens[J]. Plant Cell Rep,1998, 17:165-171
    Niu X, Li X, Veronese P, et al. Factors affecting Agrobacterium tumefaciensmediated transformation of peppermint[J]. Plant Cell Rep,2000,19:304-310
    Park S H, Kim S U. Modified monoterpenes from biotransformation of (-)-isopiperitenone by suspension cell culture of Mentha piper ita[1]. J Nat Prod,1998,61:354-357
    Pichersky E, Gang D R. Genetics and biochemistry of secondary metabolites in plants:an evolutionary perspective[J]. Trends Plant Sci,2000,5:439-445
    Pulotova T P. Phenolic compounds of some species of mint[J]. Uzb Biol Zh,1973,17(6): 17-19
    Ramos A C, Heijden R, Verpoorte R. Isopentenyl diphosphate isomerase:a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function[J]. Nat Prod Rep, 1997,14:591-603
    Rech E L, Pires M P. Tissue culture propagation of Mentha spp. by the use of axillary buds[J]. Plant Cell Rep,1986,5:17-18
    Ringer K L, Davis E M, Croteau R. Monoterpene metabolism:cloning, expression and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase from peppermint and spearmint[J]. Plant Physiol,2005,137:863-872
    Ringer K L, McConkey M E, Davis E M, et al. Monoterpene double-bond reductases of the (-)-menthol biosynthetic pathway:isolation and characterization of cDNAs encoding (-)-isopiperitenone reductase and (+)-pulegone reductase of peppermint[J]. Arch Biochem Biophys,2003,418:80-92
    Rohdich F, Hecht S, Adam P, et al. Studies on the nonmevalonate terpene biosynthetic pathway:metabolic role of IspH (LytB) protein[J]. Proc Natl Acad Sci USA,2002,99: 1158-1163
    Sakata I, Koshimizu K. Occurrence of 1-menthyl-β-D-glucoside and methyl palmitate in rhizoma of Japanese peppermint [J]. Agric Biol Chem,1978,42(10):1959-1960
    Schalk M, Croteau R. A single amino acid substitution converts the radiochemistry of the spearmint (-)-limonene hydroxylase from a C6-to a C3-hydroxylase[J]. Proc Natl Acad Sci USA,2000,97:11948-11953
    Sharaf M, El-Ansari M A, Sal eh NAM. Flavone glycosides from Mentha longifolia[J]. Fitoterapia,1999,70(6):478-483
    Slatkin M. Gene flow and the geographic structure of populations[J]. Seience,1987, 236(4803):787-792.
    Subramanian S S, Nair A R. Flavonoids of the leaves of Mentha spicata and Anisochilus carnosus [J]. Phytochemistry,1972,11(8):452-452
    Tucker A O, Hendrik S H, Bo S R, et al. The origin of Mentha gracilis (Lamiaceae) Ⅱ. Essential oils [J]. Eco Bot,1991,45(2):200-215
    Turner G W, Croteau R. Organization of monoterpene biosynthesis in Mentha: immunocytochemical localization of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase[J]. Plant Physiol,2004,136:4215-4227
    Turner G W, Gershenzon J, Croteau R. Development of peltate glandular trichomes of peppermint(Menthapiperita L.)[J]. Plant Physiol,2000,124:665-679
    Tholl D, Kish C M, Orlova I, et al. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases[J]. Plant Cell,2004,16:977-992
    Trapp S C, Croteau R B. Genomic organization of plant terpene synthases and molecular evolutionary implications [J]. Genetics,2001,158:811-832
    Tucker A O. The truth about mints[J]. The Herb Companion,1992,4(6):51-52
    Turner G W, Croteau R. Organization of monoterpene biosynthesis in Mentha: immunocytochemical localization of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase[J]. Plant Physiol,2004,136:4215-4227
    Turner G W, Gershenzon J, Croteau R. Distribution of peltate glandular trichomes on developing leaves of peppermint(Mentha piperita L.)[J]. Plant Physiol,2000,124: 655-663
    Turner G W, Gershenzon J, Croteau R. Development of peltate glandular trichomes of peppermint(Mentha piperita L.)[J]. Plant Physiol,2000,124:665-679
    Turner G W, Gershenzon J, Nielson E, et al. Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells[J]. Plant Physiol,1999,120:879-886
    Vandemark G J, Ariss J J, Bauchan G A, et al. Estimating genetic relationships among historical sources of alfalfa germplasm and selected cultivars with sequence related amplified polymorphisms [J]. Euphytica,2006,152:9-16
    Vial M V, Rojas C, Portilla G, et al. Enhancement of the hydrolysis of geranyl pyrophosphate by bivalent metal ions. A model for enzymic biosynthesis of cyclic monoterpenes[J]. Tetrahedron,1981,37:2351-2357
    Voirin B, Bayet C, Faure O, et al. Free flavonoid aglycones as markers of parentage in Mentha aquatica, M. citrata, M. spicata and M. piperita[J]. Phytochemistry,1999, 50(8):1189-1193
    Voirin B, Bayet C. Developmental variations in leaf flavonoid aglycones of Mentha piperita[J]. Phytochemistry,1992,31(7):2299-2304
    Voirin B, Brun N, Bayet C. Effects of day length on the monoterpene composition of leaves of Mentha piperita[J]. Phytochemistry,1990,29:749-755
    Weidenhamer J D, Macias F A, Fischer N H. Just how insoluble are monoterpenes[J]. J Chem Ecol,1993,19:1799-1807
    Williams D C, McGarvey D J, Katahira E J, et al. Truncation of limonene synthase preprotein provides a fully active'pseudomature'form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair[J]. Biochemistry,1998,37: 12213-12220
    Wust M, Croteau R. Hydroxylation of specifically deuterated limonene enantiomers by cytochrome P450 limonene-6-hydroxylase reveals the mechanism of multiple product formation[J]. Biochemistry,2002,41:1820-1827
    Wust M, Little D B, Schalk M, et al. Hydroxylation of limonene enantiomers and analogs by recombinant (-)-limonene 3-and 6-hydroxylases from mint(Mentha) species: evidence for catalysis within sterically constrained active sites[J]. Arch Biochem Biophys,2001,387:125-136
    Wodehouse R P. Pollen Grains[M]. New York:McGraw-Hill Book Co. Inc,1935:323-340
    Wrigbt S. Evolution and the Genetics of Populations[M]. Chicago:University of Chicago Press,1978
    Yohannes P, Arnulf H. Analysis of genetic diversity and relationships of wild Guizotia species from Ethiopia using ISSR markers[J]. Genet Resour Crop Ev,2008,55(3): 451-458
    Zaidi A, Voirin B, Jay M, et al. Free flavonoid aglycones from leaves of Mentha pulegium and Mentha suaveolens (Labiatae)[J]. Phytochemistry,1998,48(6):991-994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700