用户名: 密码: 验证码:
土质边坡加固机理与安全分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展有效的加固土坡安全评价方法,对于治理和防止滑坡灾害、提高土坡加固工程的合理性和经济性、保证其安全性,具有重要意义。本文针对以抗滑桩加固土坡为代表的加固土坡开展研究,自主研发试验设备,主要采用离心模型试验揭示加固土坡的破坏机理和加固机理,在此基础上发展可用于实际工程的抗滑桩加固土坡安全简化分析方法。主要取得如下新成果:
     1.自主研发了离心模型试验超重力场中高精度模拟完整桩施工过程的入桩及加载模拟系统、只发生剪切破坏且强度可控的剪切结构桩模型。
     2.进行了系列化的抗滑桩等结构加固土坡离心模型试验,揭示了地震、坡顶加载和自重加载等条件下加固土坡的响应特性及主要因素的影响规律。
     3.基于离心模型试验揭示了抗滑桩加固土坡的破坏机理,包括:(1)根据土坡滑裂面与抗滑桩的相对位置关系划分为过桩破坏、绕桩破坏、局部破坏和复合破坏等四类破坏模式;(2)观测证实并根据“可测的变形”定量确定了抗滑桩加固土坡存在的渐进破坏过程;(3)揭示了土坡变形局部化过程、滑裂面形成过程和抗滑桩变形过程的耦变机理,这三个过程互为因果、交替发展、耦合变化;(4)抗滑桩加固土坡破坏模式的多样化和破坏特性的复杂性与不同加载条件下土坡的变形特性密切相关。
     4.对比分析加固土坡和素土坡离心模型试验结果,发现抗滑桩显著减小土坡变形,其影响在向坡内部传递过程中逐渐减小。揭示了土坡的抗滑桩加固机理:抗滑桩与附近土体发生相互作用并表现为增压效应占优,该效应在抗滑桩显著影响区域内向远桩的坡内部传递,在传递过程中存在着增压效应与抗剪效应的转化,并在潜在滑裂面附近主要表现为抗剪效应,从而延缓了土坡变形局部化的发展过程和滑裂面的形成,增强了土坡稳定性。
     5.基于地震离心模型试验揭示了抗滑桩、土工织物、土钉等结构的抗震加固机理,证实了土坡加固机理及其分析理论方法具有良好的普适性。
     6.提出了“等效桩土条”模型,通过几何等效和强度等效在定量上将抗滑桩的三维加固效应简化为二维问题,扩展简化毕肖普法建立了抗滑桩加固应变软化土坡稳定性的分析方法并采用离心模型试验结果验证了有效性。将该方法用于实际土坡抗滑桩加固工程的设计分析,确定了加固显著区域。
It is of great significance to develop an effective safety evaluation methodof reinforced slopes for controlling and preventing landslide disasters, forimproving the economic economy and ensuring the safety level of reinforcementprojects. The stabilizing pile was selected as the representative reinforcementstructure in the investigation of behavior of reinforced slopes in this thesis.Serialized centrifuge model tests, on the basis of development of new testdevices, were conducted to reveal the failure mechanism and reinforcementmechanism of reinforced slopes. Accordingly, a simplified, practice-facedsafety analysis method was proposed to evaluate the stability of pile-reinforcedsoil slopes. The main results and new findings are as follows:
     1. A simulation system was developed to realize the piling process of pilesand surface loading on the top of a slope with high precision in flight of thecentrifuge at high g-levels. A new type of structual pile was produced with aunique shear failure mode and controllable shear strength.
     2. A series of centrifuge model tests of slopes reinforced with differentstructures such as stabilizing piles were conducted to reveal the responsecharacteristics and influencing factors of reinforced soil slopes under theconditions of earthquake, surface loading and self-weighted loading.
     3. The failure mechanism of pile-reinforced slope was obtained on the basisof observations of centrifuge model tests, including:(1) The failure ofpile-reinforced slopes were catagorized into four types failure modes accordingto the relationship between the slip surface and location of piles, namely slipsurface passing through the piles, slip surface passing by the pile, local failure,and composite failure.(2) The progressive failure process of the reinforced soilslopes was confirmed and quantitatively determined using the measurabledeformation.(3) The coupling mechanism of the process of deformationlocalization, the failure process of soil slopes, and response of stabilizing pileswas illustrated with the features of interaction as both cause and effect, alternate development, and coupling change.(4) The diverse failure modes weredependent on the deformation behavior under different loading conditions.
     4. The results of the centrifuge model tests of the reinforced andunreinforced slopes were compared to indicate that the piles significantlyreduced the deformation of soil slope and its influence gradually decreased tothe internal slope from the piles. The pile reinforcement mechanism wasconcluded as follows: The piles performed a significant interaction with thenearby soil and exhibited dominant compression effect; such an effect wastransferred to the internal slope away from the piles within the pile influencezone with a conversion of compression effect and shear effect; the shear effectbecame dominant near the potential slip surface and delayed the deformationlocalization so that the formation of slip surface was prevented; thus thestability level of the slope was increased.
     5. The aseismic reinforcement mechanism of different structures, includingthe pile, the geotextile, and the nail was yielded based on seismic centrifugemodel tests. The reinforcement mechanism, together with the analysis methods,was verified to be universal.
     6. A simplified Bishop slice method was proposed to analyze the stabilitylevel of pile-reinforced strain-softening slopes on the basis of an equivalentmodel used to capture the three-dimensional pile effect. The proposed methodwas confirmed by the centrifuge model tests. The method was applied to thereal-world design of pile reinforcement for a dyke slope, and the analysis resultswere used to determine a significant reinforcement zone.
引文
Abdoun T, Dobry R, Thomas D, et al. Pile response to lateral spreads: centrifuge modeling. Journalof Geotechnical and Geoenvironmental Engineering,2003,129(10):869-878.
    Arulanandan K, Canclini J, Anandarajah A. Simulation of earthquake motions in the centrifuge.Journal of the Geotechnical Engineering Division,1982,108(5):730-742.
    Ashford S A, Juirnarongrit T, Sugano T, et al. Soil-pile response to blast-induced lateral spreading. I:field test. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(2):152-162.
    Ashour M, Ardalan H. Analysis of pile stabilized slopes based on soil-pile interaction. Computersand Geotechnics,2012,39:85-97.
    Ausilio E, Conte E, Dente G. Stability analysis of slopes reinforced with piles. Computers andGeotechnics,2001,28(8):591-611.
    Bishop A W. The use of the slip circle in the stability analysis of slopes. Geotechnique,1955,5(1):7-17.
    Brandenberg S J, Boulanger R W, Kutter B L, et al. Behavior of pile foundations in laterallyspreading ground during centrifuge tests. Journal of Geotechnical and GeoenvironmentalEngineering,2005,131(11):1378-1391.
    Cai F, Ugai K. Numerical analysis of the stability of a slope reinforced with piles. Soils andFoundations,2000,40(1):73-84.
    Cai F, Ugai K. A subgrade reaction solution for piles to stabilise landslides. Geotechnique,2011,61(2):143-151.
    Chen C Y, Martin G R. Soil-structure interaction for landslide stabilizing piles. Computers andGeotechnics,2002,29(10):363-386.
    Chow Y K. Analysis of piles used for slope stabilization. International Journal for Numerical andAnalytical Methods in Geomechanics,1996,20:635-646.
    Deepa V, Viswanadham B V. Centrifuge model tests on soil-nailed slopes subjected to seepage.Proceedings of the Institution of Civil Engineers, Ground Improvement,2009,162(3):133-144.
    Duncan J M. State of the art: limit equilibrium and finite element analysis of slope. Journal ofGeotechnique Engineering,1996,122(7):577-595.
    Guler E, Bozkurt C F. The effect of upward nail inclination to the stability of soil nailed structures.Geotechnical Special Publication,2004,126:2213-2220.
    Hassiotis S, Chameau J L, Gunaratne M. Design method for stabilization of slopes with piles.Journal of Geotechnical and Geoenvironmental Engineering,1997,123(4):314-323.
    Hu Yun, Zhang Ga, Zhang JianMin, et al. Centrifuge modeling of geotextile-reinforced cohesiveslopes. Geotextiles and Geomembranes,2010,28(1):12-22.
    Imamura S, Hagiwara T, Tsukamoto Y, et al. Response of pile groups against seismically inducedlateral flow in centrifuge model tests. Soils and Foundations,2004,44(3):39-55.
    Indraratna B, Nimbalkar S, Christie D, et al. Field assessment of the performance of a ballasted railtrack with and without geosynthetics. Journal of Geotechnical and GeoenvironmentalEngineering,2010,136(7):907-917.
    Ito T, Matsui T, Hong P W. Design method for stabilizing piles against landslide-one row of piles.Soils and Foundations,1981,21(1):21-37.
    Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles. Soils and Foundations,1975,15(4):43-59.
    Jeong S, Kim B, Won J, et al. Uncoupled analysis of stabilizing piles in weathered slopes.Computers and Geotechnics,2003,30(8):671–682.
    Kelln C, Sharma J, Hughes D, et al. Deformation of a soft estuarine deposit under a geotextilereinforced embankment. Canadian Geotechnical Journal,2007,44(5):603-617.
    Kimura M, Inazumi S, Too J K, et al. Development and application of H-joint steel pipe sheet pilesin construction of foundations for structures. Soils and Foundations,2007,47(2):237-251.
    Kumar S, Hall M L. An approximate method to determine lateral force on piles or piers installed tosupport a structure through sliding soil mass. Geotechnical and Geological Engineering,2006,24(3):551-564.
    Kuwano J, Honda T, Takahashi A, et al. Centrifuge investigation on deformations around tunnels innailed clay. Geotechnical Aspects of Underground Construction in Soft Ground,2000:245-250.
    Kourkoulis R, Gelagoti F, Anastasopoulos I, et al. Slope stabilizing piles and pile-groups:parametric study and design insights. Journal of Geotechnical and GeoenvironmentalEngineering,2011,137(7):663-677.
    Kourkoulis R, Gelagoti F, Anastasopoulos I, et al. Hybrid method for analysis and design of slopestabilizing piles. Journal of Geotechnical and Geoenvironmental Engineering,2012,138(1):1-14.
    Lee C Y, Hull T S, Poulos H G. Simplified pile-slope stability analysis. Computers and Geotechnics,1995,17(1):1-16.
    Li Xinpo, He Siming, Wu Yong. Seismic displacement of slopes reinforced with piles. Journal ofGeotechnical and Geoenvironmental Engineering,2010,136(6):880-884.
    Li Xinpo, Pei Xiangjun, Gutierrez M, et al. Optimal location of piles in slope stabilization by limitanalysis. Acta Geotechnica,2012,7(3):253-259.
    Martin G R, Chen C Y. Response of piles due to lateral slope movement. Computers and Structures,2005,83(8-9):588-598.
    Matsui T,Hong W P,Ito T. Earth pressure on piles in a row due to lateral soil movements. Soilsand Foundations,1982,22(2):71-81.
    Matsuo O, Tsutsumi T, Yokoyama K, et al. Shaking table tests and analyses ofgeosynthetic-reinforced soil retaining walls. Geosynthetics International,1998,5(1-2):97-126.
    Miao T, Ma C, Wu S. Evolution model of progressive failure of landslides. Journal of Geotechnicaland Geoenvironmental Engineering,1999,125(10):827-831.
    Nian T K, Chen G Q, Luan M T, et al. Limit analysis of the stability of slopes reinforced with pilesagainst landslide in nonhomogeneous and anisotropic soils. Canadian Geotechnical Journal,2008,45(8):1092-103.
    Pan S S, Pu J L, Yin K T, et al. Development of pile driver and load set for pile group in centrifuge.Geotechnical Testing Journal,1999,22(4):317-323.
    Porbaha A, Goodings D J. Centrifuge modeling of geotextile-reinforced steep clay slopes. CanadianGeotechnical Journal,1996,33(5):696-703.
    Poulos H G. Design of reinforcing piles to increase slope stability. Canadian Geotechnical Journal,1995,32:808-818.
    Poulos H G. Analysis of piles in soil undergoing lateral movement. Journal of the Soil Mechanicsand Foundations Division,1973,99(5):391-406.
    Prevost J H, Scanlon R H. Dynamic soil structure interaction: centrifugal modeling. Soil Dynamicsand Earthquake Engineering,1983,2:212-221.
    Rogers C D, Glendinning S. Improvement of clay soils in situ using lime piles in the UK.Engineering Geology,1997,47(3):243-257.
    Rosquoet F, Thorel L, Garnier J, et al. Lateral cyclic loading of sand-installed piles. Soils andFoundations,2007,47(5):821-832.
    Sandri D. A performance summary of reinforced soil structures in the greater Los Angeles area afterthe Northridge earthquake. Geotextiles and Geomembranes,1997,15(4-6):235-253.
    Satoh H, Ohbo N, Yoshizako K. Dynamic test on behavior of pile during lateral ground flow.Centrifuge98,998:327-332.
    Sawwaf M A. Strip footing behavior on pile and sheet pile-stabilized sand slope. Journal ofGeotechnical and Geoenvironmental Engineering,2005,131(6):705-715.
    Sawwaf M A. Behavior of strip footing on geogrid-reinforced sand over a soft clay slope.Geotextiles and Geomembranes,2007,25:50-60.
    Sawwaf M A. Experimental and Numerical Study of Strip Footing Supported on Stabilized SandSlope. Geotechnical and Geological Engineering,2010,28(4):311-323.
    Smethurst J A, Powrie W. Monitoring and analysis of the bending behaviour of discrete piles usedto stabilise a railway embankment. Geotechnique,2007,57(8):663-677.
    Sommers A N, Viswanadham B V. Centrifuge model tests on the behavior of strip footing ongeotextile-reinforced slopes. Geotextiles and Geomembranes,2009,27:497-505.
    Tatsuoka F, Tateyama M, Mohri Y, et al. Remedial treatment of soil structures usinggeosynthetic-reinforcing technology. Geotextiles and Geomembranes,2007,25(4-5):204-220.
    Terzaghi K, Peck R B. Soil mechanics in engineering practice. New York: Wiley,1948.
    Thusyanthan N I, Madabhushi S P, Singh S. Tension in geomembranes on landfill slopes understatic and earthquake loading-centrifuge study. Geotextiles and Geomembranes,2007,25(2):78-95.
    Turner J P, Jensen W G. Landslide stabilization using soil nail and mechanically stabilized earthwalls: case study. Journal of Geotechnical and Geoenvironmental Engineering ASCE,2005,131(2):141-150.
    Ugai K. A method of calculation of total safety factors of slopes by elasto-plastic FEM. Soils andFoundations,1989,29(2):190-195.
    Viswanadham B V, Konig D. Centrifuge modeling of geotextile-reinforced slopes subjected todifferential settlements. Geotextiles and Geomembranes,2009,27(2):77-88.
    Vucetic M, Kocijan J, Doroudian M. Kinematics and failure of soil-nailed excavation models indynamic centrifuge tests. Landmarks in Earth Reinforcement,2001,1:737-742.
    Wang W L, Yen B C. Soil arching in slopes. Journal of the Geotechnical Engineering Division,1974,100(1):61-78.
    Won J, You K, Jeong S, et al. Coupled effects in stability analysis of pile-slop systems. Computersand Geotechnics,2005,32:304-315.
    Yamin M, Liang R Y. Limiting equilibrium method for slope/drilled shaft system. InternationalJournal for Numerical and Analytical Methods in Geomechanics,2010,34(10):1063-1075.
    Yoo C. Laboratory investigation of bearing capacity behavior of strip footing on geogrid-reinforcedsand slope. Geotextiles and Geomembranes,2001,19:279-298.
    Zeng S P, Liang R. Stability analysis of drilled shafts reinforced slope. Soils and Foundations,2002,42(2):93-102.
    Zhang Ga, Hu Yun, Zhang Jianmin. New image-analysis-based displacement-measurement systemfor geotechnical centrifuge modeling tests. Measurement,2009,42(1):87-96.
    Zhang Ga, Zhang Jianmin. Simplified method of stability evaluation for strain-softening slopes.Mechanics Research Communication,2007,34(5):444-450.
    Zhang J, Pu J, Zhang M, et al. Model tests by centrifuge of soil nail reinforcements. Journal ofTesting and Evaluation,2001,29(4):315-328.
    Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity andplasticity in soil mechanics. Geotechnique,1975,25(4):671-689.
    Zornberg J G, Arriaga F. Strain distribution within geosynthetic-reinforced slopes. Journal ofGeotechnical and Geoenvironmental Engineering,2003,129(1):32-45.
    曹洁,张嘎,王丽萍.坡顶加载时黏性土坡土钉加固前后的离心模型试验比较研究.岩土力学,2011,32(增1):364-369.
    常保平.抗滑桩的桩间土拱和临界间距问题探讨.滑坡文集(第十三集).中国铁道出版社,1998:73-78.
    陈昌富,肖淑君.基于加权残值法和统一强度理论抗滑桩合理锚固深度的确定方法.工业建筑,2009,39(1):85-89.
    陈辉.加筋土强度理论及加筋路堤有限元分析[硕士学位论文].陕西:长安大学,2005.
    陈乐求,杨恒山,林杭.抗滑桩加固边坡稳定性及影响因素的有限元分析.中南大学学报(自然科学版),2011,42(2):490-494.
    陈祖煜.土质边坡稳定分析.中国水利水电出版社,2003.
    陈祖煜,邵长明.最优化方法在确定边坡最小安全系数方面的应用.岩土工程学报.1988.10(4):1-13.
    戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究.岩石力学与工程学报,2002,21(4):517-521.
    高长胜.边坡变形破坏及抗滑桩与土体相互作用研究[博士学位论文].江苏:南京水利科学研究院,2007.
    高长胜,魏汝龙,陈生水.抗滑桩加固边坡变形破坏特性离心模型试验研究.岩土工程学报,2009,31(1):145-148.
    胡晓军,王建国.基于强度折减的刚性抗滑桩锚固深度确定.土木工程学报,2007,40(1):65-68.
    胡耘.黏性土坡变形破坏过程的机理与规律研究[博士学位论文].北京:清华大学水利系,2011.
    黄绍槟,吉随旺,李海清,等.昔格达地层抗滑桩现场加载试验研究.工程勘察.2009,8:7-12.
    黄义,何芳社.弹性地基上的梁、板、壳.北京:科学出版社,2005:26-48.
    蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析.岩土力学,2006,27(3):445-450.
    李长冬.抗滑桩与滑坡体相互作用机理及其优化研究[博士学位论文].北京:中国地质大学,2009.
    郦建俊,黄茂松,王卫东,等.开挖条件下抗拔桩承载力的离心模型试验.岩土工程学报,2010,32(3):388-396.
    李明,张嘎,李焯芬,等.离心模型试验中边坡开挖设备的研制与应用.岩土工程学报,2010,32(10):1638-1642.
    李荣建.土坡中抗滑桩抗震加固机理研究[博士学位论文].北京:清华大学水利系,2008.
    李荣建,于玉贞,吕禾,等.饱和砂土地基上抗滑桩加固边坡的动力离心模型试验研究.岩土力学,2009,30(4):897-902.
    李维树,黄志鹏,丁秀丽,等.基于抗滑桩计算宽度的水平推力试验研究.长江科学院院报,2005,22(5):40-43.
    刘晓洁.粘性土中抗滑桩离心模型试验研究[硕士学位论文].重庆:重庆交通大学,2010.
    刘小丽.新型桩锚结构设计计算理论研究[博士学位论文].四川:西南交通大学,2003.
    刘新荣,梁宁慧,黄金国,等.抗滑桩在边坡工程中的研究进展及应用.中国地质灾害与防治学报,2006,17(1):56-62.
    雷文杰,郑颖人,冯夏庭.滑坡治理中抗滑桩桩位分析.岩土力学,2006,27(6):950-954.
    龙驭球.弹性地基梁的计算.北京:人民教育出版社,1981:6-23.
    年廷凯,栾茂田,郑德凤,等.抗滑桩锚固深度的极限分析下限方法.水利学报,2007,38(6):743-748.
    潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980.
    钱纪芸,张嘎,张建民.离心场中边坡降雨模拟系统的研制与应用.岩土工程学报,2010,32(6):838-842.
    任伟中,陈浩,唐新建,等.运用钻孔测斜仪监测滑坡抗滑桩变形受力状态研究.岩石力学与工程学报,2008,27(增2):3667-3672.
    戎斌斌.边坡抗滑桩空间优化布置与安全监测[硕士学位论文].浙江:浙江大学,2010.
    沈强,陈从新,汪稔,等.边坡抗滑桩加固效果监测分析.岩石力学与工程学报,2005,24(6):934-938.
    申永江.边坡工程中抗滑桩的效果评价与优化设计[博士学位论文].浙江:浙江大学,2009.
    沈珠江.桩的抗滑阻力和抗滑桩的极限设计.岩土工程学报,1992,14(1):51-56.
    石庆瑶.砂性土中抗滑桩离心模型试验研究[硕士学位论文].重庆:重庆交通大学,2010.
    苏栋,李相崧.水平多向荷载下桩-土相互作用初探.岩土力学,2008,29(3):603-608.
    孙雪,李争,孙常玉.抗滑桩加固边坡的影响因素分析.江苏建筑,2007,6:39-41.
    铁道部第二勘测设计院.抗滑桩设计与计算.中国铁道出版社,1983.
    王成华,陈永波,林立相.抗滑桩间土拱力学特性与最大桩间距分析.山地学报,2001,19(6):556-559.
    王辉,赵法锁,李强.拱形抗滑桩墙支护结构体系模型试验相似材料研制.防灾减灾工程学报.2011,31(3):311-315.
    王年香.桩基码头岸坡稳定和桩基性状的简化计算.水利水运科学研究,2000,(1):21-29.
    王铁证,兰永贵,王凤波,等.梅软基加固中土工织物应用及其稳定性分析.黑龙江交通科技,2001,5:7-8.
    王薇,徐志诚,邓清禄.滑坡治理抗滑桩内力监测方法与数据处理.安全与环境工程,2010,17(2):5-8.
    王卓娟,李孝平.抗滑桩在滑坡治理中的研究现状与进展.灾害与防治工程,2007,62(1):45-50.
    魏作安,李世海,赵颖.底端嵌固桩与滑体相互作用的物理模型试验研究.岩土力学,2009,(8):2259-2263.
    吴坤铭,王建国,谭晓慧.基于可靠度分析确定刚性抗滑桩锚固深度.岩土工程学报,2012,34(2):237-242.
    邢建营,邢义川,梁建辉.土工离心模型试验研究的进展与思考.水利与建筑工程学报,2005,3(1):27-31.
    熊朝辉.深汕高速公路101滑坡整治新技术——园安抗滑桩明洞.岩石力学与工程学报,2001,20(4):532-537.
    姚爱军,史高平,梅超.悬臂抗滑桩加固边坡地震动力响应模型试验研究.岩土力学,2012,33(2):53-58.
    杨茜,张明聚,孙铁成.软弱土层复合土钉支护试验研究.岩土力学,2004,25(9):1401-1408.
    杨明,姚令侃,王广军.抗滑桩宽度与桩间距对桩间土拱效应的影响研究.岩土工程学报,2007,29(10):1477-1482.
    杨明.桩土相互作用机理及抗滑加固技术[博士学位论文].四川:西南交通大学,2008.
    姚志勇,程谦恭,孟祥龙.观音堂隧道高边坡抗滑桩现场监测分析.路基工程.2010,3:95-97.
    油新华,李晓.国外离心模型试验技术在边坡工程中的应用现状与展望.工程地质学报,2000,8(4):442-445.
    俞季民,邹勇.土钉支护结构模型试验研究.土工基础,1998,12(1):14-19.
    于玉贞,邓丽军.抗滑桩加固边坡地震响应离心模型试验.岩土工程学报,2007,29(9):320-1323.
    于玉贞,邓丽军,李荣建.砂土边坡地震动力响应离心模型试验.清华大学学报(自然科学版),2007,47(6):789-792.
    于玉贞,李荣建,李广信,等.抗滑桩静力与动力破坏离心模型试验对比分析.岩土工程学报,2008,30(7):1090-1093.
    曾云华,郑明新.预应力锚索抗滑桩的受力模型试验.华东交通大学学报,2003,20(2):15-18.
    张建华,谢强,张照秀.抗滑桩结构的土拱效应及其数值模拟.岩石力学与工程学报,2004,23(4):699-703.
    张俊,陈志新,门玉明.锚杆抗滑桩嵌固深度研究.东北大学学报(自然科学版),2008,29(11):1637-1640.
    张建民,于玉贞,濮家骝,等.电液伺服控制离心机振动台系统研制.岩土工程学报,2004,26(6):843-845.
    张明聚,郭忠贤.土钉支护工作性能的现场测试研究.岩土工程学报,2001,23(3):319-323.
    张明聚,宋二祥.土钉支护变形性能的有限元分析.土木工程学报,1999,32(6):59-63.
    赵尚毅,郑颖人,时卫民,等.有限元强度折减法求边坡稳定安全系数.岩土工程学报,2002,24(3):343-346.
    章为民,赖忠中,徐光明.电液式土工离心机振动台的研制.水利水运工程学报,2002,(1):63-66.
    张友良,冯夏庭,范建海,等.抗滑桩与滑坡体相互作用的研究.岩石力学与工程学报,2002,21(6):839-842.
    张玉萍.抗滑桩振动台模型试验数值模拟[硕士学位论文].四川:西南交通大学,2011.
    张元斌.膨胀土边坡降雨入渗稳定性离心模型试验研究[硕士学位论文].广东:华南理工大学,2011.
    张晁,郑俊杰,辛凯.土钉支护技术在软土基坑中的应用.岩石力学与工程学报,2002,21(6):23-925.
    张忠苗,辛公锋,吴庆勇,等.考虑泥皮效应的大直径超长桩离心模型试验研究.岩土工程学报,2006,28(12):2066-2071.
    郑轶轶.抗滑桩加固边坡的稳定性分析[硕士学位论文].辽宁:大连理工大学,2008.
    郑颖人,陈祖煜,王恭先,等.边坡与滑坡工程治理.人民交通出版社,2007.
    周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨.岩土工程学报,2004,26(1):132-135.
    周健,亓宾,曾庆有.被动侧向受荷桩模型试验及颗粒流数值模拟研究.岩土工程学报,2007,29(10):1449-1454.
    周小文.盾构隧道土压力离心模型试验及理论研究[博士学位论文].北京:清华大学,1999:64-65.
    邹广电,陈生水.抗滑桩工程的整体设计方法及其优化数值模型.岩土工程学报,2003,25(1):1-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700