用户名: 密码: 验证码:
基于破损力学的黄土滑坡机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土在其形成过程中和地质历史时期,发育了大量不同成因、不同形态性状、不同尺度规模、不同力学性质和不同时期的节理、裂隙等,代表着黄土的破损特征。这些破损面扩展、贯通,不仅破坏黄土体的整体性,还成为雨水等的快速入渗通道。同时黄土又具有水敏性。
     系统总结了黄土滑坡的工程分类,提出黄土滑坡的新类型,即滑动面位于吴起古湖湖相沉积的粉质粘土层,该层粘性颗粒多于上覆黄土,而砂粒多于下伏红粘土,具有较好的滞水层效应和适宜滑动的岩性特征,控制大型(巨型)黄土滑坡。
     通过颗粒分析,揭示黄土颗粒中粉粒含量占绝对优势,砂粒和粘粒含量基本相当。结合钻孔资料和土工试验,分析了黄土层内部的物理性质随深度的变化规律。
     野外调查结合现场原位试验、室内直剪试验、环剪试验,分析了黄土剪切滑动时以滑动擦痕为代表的宏观剪切特征。借助电镜扫描,分析了黄土剪切时土粒滑移、拉长、削平为代表的微观剪切特征。试验结果说明残余剪切强度普遍低于原始剪切强度,而饱和后的剪切强度大大低于天然抗剪强度值,足见水对黄土强度的影响很大。不同深度处的或不同含水量的黄土具有不同的剪切行为特性。
     以岩土破损力学为基础,比较黄土的二元介质模型、结构性土抗剪强度、非饱和黄土抗剪强度,认为黄土的抗剪强度可以表示为三部分:结构体粘聚强度、结构体摩擦强度和结构带摩擦强度。结构块从边缘损伤开始,逐渐向内破损,结构块破损后演变为结构带,结构带扩展、连通、贯通后形成剪切面(带);雨水等渗入破损面,应力应变在彼此“消长”过程中体现了黄土剪切破损特征。提出破损黄土概念,建立了黄土剪切破损地质模型,分析了局部强度弱化型黄土剪切破坏和局部应力集中型黄土剪切破坏两种类型的剪切破损黄土滑坡的形成机理。运用FLAC模拟了代表第一类滑坡的大台滑坡和代表第二类的大路沟滑坡,分析了形成机理和滑动过程。
     黄土滑坡是黄土破损特性和水敏性的共同作用、相互促进的结果。
The Loess Plateau is an important area for human activities. There are a lot of different formations,different sizes, different shapes, different scales, different periods and different mechanical properties ofjoints, cracks, etc, in Loess, which are on behalf of breakage characteristics of loess. Not only it breakedthe wholeness soil mass, but also became it a fast track for water. At the same time,water sensitivitydamages the loess and loess landslide caused by the water and the breakages.
     It is comprehensively reviewed the engineering classifications of Loess landslide. Then a new type ofloess landslide is proposed. The slip surface of the new type of landslide is situated among the siltyclaydeposited in the ancient Lake in Wuqi conty. The clay content of the siltyclay is more than that of theoverlying loess. But the sand content of the siltyclay is more than that of red clay. All of these propertiesbring to better water aquitard and apt to slide. What is more to the point, the layer of the deposited siltyclaycontrols most large loess landslides in Wuqi area.
     By grading analysis of the loess sample, it is revealed that silty contents are dominated. But thecontents of the sand grains are similar to the clay contents. Combining with borehole data and geotechnicaltests, it is analyzed of variation of physical properties of the loess layer with depth.
     Combining Field survey with in-situ testing and laboratory direct shear test, ring shear test, themacroscopic characteristics of shearing loess are analyzed, such as surface scratches. On the other hand,micro-characteristics of shearing loess are analyzed by making use of electron microscopy scanning. Thetest results indicate the residual shear strength of shear strength is lower than the nature one. And thesaturated shear strength shear strength value is much lower than natural demonstration of water a largeinfluence on the strength of loess. Among different depths, different shear behaviors of loess with differentwater content are attributed.
     Based on the breakage mechanics, advanced by Shen Zhujiang, comparing binary medium model forloess, structural soil shear strength and shear strength of unsaturated loess, the loess shear strength can berepresented as three parts: the cohesion strength of the bonded blocks, the friction strength of the bondedblocks, and friction strength of weakened bands. The bonded blocks are damaged from the edge to theinner. Finally they are broken to be weakened bands, and the weakened bands are extended to be somebreakage surfaces. Adjustment of stress and strain illustrates the characteristics of loess shearing damage. The concept of breakage loess is advanced. Furthermore, a shearing geological model of breakage loess isestablished. Therefore two types of shear breakage mechanism of loess landslide, part-weakening ofshearing strength and part-concentrating of shearing stress, are advanced to analyze shearing failure ofLoess slope. At last, they are simulated by FLAC.
     As a conclusion, breakage characteristics and water sensitivity of loess are interaction and mutualpromotion. They may be the main factors to cause loess landslide.
引文
[1]刘东生等,黄土的物质成分与结构[M].北京:科学出版社.1966,14-26..
    [2]王永焱,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1991,3-19.
    [3]刘东生等,中国的黄土堆积[M].北京:科学出版社.1965,1-9.
    [4]孙建中,黄土学(上册)[M].香港:香港考古学会出版.2005,1-32.
    [5]张宗枯,张之一,王芸生.中国黄土[M].北京:地质出版社,1989,3-16..
    [6]刘东生等,黄土与环境[M].北京:科学出版社.1985,1-22.
    [7]赵景波,黄土的本质与形成模式[J].沉积学报,2003,21(2):198-204.
    [8]雷祥义.黄土高原地质灾害与人类活动[M].西安:西北大学出版社,2001.
    [9]张茂省,黄玉华,唐亚明等.陕西省延安市宝塔区地质灾害详细调查报告[R].中国地质调查局西安地质调查中心,2006.
    [10]陕西省滑坡治理办公室.陕西省滑坡灾害预测图(750000)[M].两安:西安地图出版社,1995.
    [11]殷跃平.中国地质灾害减灾回顾与展望—从国际减灾十年到国际减灾战略[J].国土资源科技管理,2001,18(3):26–29.
    [12]濮声荣.陕西黄土滑坡发生的制约因素和诱发原因[J].资源环境与工程,2008,20(增刊):133-136.
    [13]文宝萍.黄土地区典型滑坡预测预报及减灾对策研究[M].北京:科学出版社,1997.
    [14]王念秦.黄土滑坡发育规律及其防治措施研究[D].成都理工大学,2004.
    [15]王念秦,张倬元.黄土滑坡研究[M].兰州:兰州大学出版社,2005.
    [16]陈志新等.黄土地区地质灾害发育规律研究[R].长安大学,2011.
    [17]陈志新,倪万魁.延安滑坡及其灾害防治[M].北京:科学出版社.2002.
    [18]徐张建,林再贯,张茂省.中国黄土与黄土滑坡[J].岩石力学与工程学报[J].2007,26(7):1297-1312.
    [19]王志荣,王念秦.黄土滑坡研究现状综述[J].中国水土保持.2004.11:16-19.
    [20]许领,戴福初,闵弘.黄土滑坡研究现状与设想[J].地球科学进展,2008,23(3):236-242.
    [21] Zhou Jinxing,Zhu Chunyun,Zheng Jingming.Landslide disaster in the loess area of China[J]. Journalof Forestry Research.,2002,13(2):157-161.
    [22]赵法锁,陈新建等.陕西省延安市吴起县地质灾害详细调查报告[R].长安大学,2009.
    [23]陈新建等.陕西省延安市吴起县地质灾害调查与区划报告[R].长安大学,2007.
    [24] Terzaghi K..Mechanism of landslide. In S. Paige(ed) Application of Geology to EngineeringPractice,Geological Society of America,Berkey,1950:83-123.
    [25] Bishop A W, Morgenstern N. Stability coefficients for earth slopes. Geotechnique,1960,10(4):129-150.
    [26] Sassa,K..Geotechnical model for the motion of landslide.Proceedings of5th Int[J].Symp.onlandslides,1988,(1):37-55.
    [27] Taylor D W. Stability of earth slope. Journal of Boston Society of Civil Engineers,1937,24:197-246.
    [28] Morgenstern N. Stability charts for earth slopes during rapid rundown. Geotechnique,1963,13(2):121-131.
    [29] Spencer E. Amethod of analysis of the stability of embankments assuming parallel inter-slice force.Geotechnique,1967,17(1):11-26.
    [30] Skempton AW. Long-term stability of clay slopes.Geotechnique,1964,14(2):77-101.
    [31] Skempton A W. Residual strength of clays in landslides,folded strata and the laboratory.Geotechnique,1985,35(1):3-18.
    [32] Skempton A.W. First-time slides in over-consolidated clays.Geotechnique,1970,20(3):320-324.
    [33]宋克强,孙超图,袁继国.黄土滑坡的模型试验研究[J].水土保持学报,1991,5(2):14-21.
    [34]卢全中,彭建兵,范文,孙刚臣.大尺寸裂隙性黄土的直剪试验[J].公路,2006,5:184-187.
    [35]张照亮,赵德安,陈志敏等.注浆黄土原位剪切试验[J].交通标准化,2006,153(5):59-62.
    [36]陈志敏,赵德安,李双洋等.黄土滑坡最不利滑面综合分析方法[J].铁道工程学报,2007,106(7):12-16.
    [37]周永习,张得煊,周喜德.黄土滑坡流滑机理的试验研究[J].工程地质学报,2010,18(1):72-77.
    [38]王松鹤,骆亚生,董晓宏,付中原.黄土剪切蠕变特性试验研究[J].岩石力学与工程学报,2010,29(增1):3088-3092.
    [39]王松鹤,骆亚生.黄土三轴剪切蠕变特性研究[J].岩土工程学报,2010,32(10):1633-1637.
    [40]张帆宇,黄土的剪切行为和黄土滑坡[D].兰州大学博士学位论文,2011.
    [41]张茂花,谢永利,刘保健.增湿时黄土的抗剪强度特性分析[J].岩土力学,2006,27(7):1195-1200.
    [42]党进谦,李靖.非饱和黄土的结构强度与抗剪强度[J].水利学报,2001,(7):79-83.
    [43]龙建辉,李同录.黄土滑坡滑带土的物理特性研究[J].岩土工程学报,2007,29(2):289-293.
    [44]袁晓蕾.黄土滑坡的滑带土强度试验参数统计及可靠性研究[D].长安大学学位论文,2007.
    [45]李瑞娥.黄土滑坡滑带土的研究[DI.西安:西北大学硕士学位论文,2005.
    [46]雷胜友,唐文栋,王晓谋,戴经梁.原状黄土损伤破坏过程的CT扫描分析(Ⅱ)[J].铁道科学与工程学报,2005,2(1):51~56.
    [47]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程报,2004,26(4):531-536.
    [48]李宏儒.结构性黄土破损变形发展演化特性的研究[D].西安理工大学博士论文,2009.
    [49]李宏儒,胡再强.结构性黄土二元介质本构模型在局部化剪切带中的应用[J].岩土力学,2012,33(9):2803-2810.
    [50]崔向美.利用动扭剪试验研究黄土动力特性并初步探讨其结构损伤[D].长安大学,2011.
    [51]吴志刚,非饱和黄土结构强度与抗剪强度的试验研究[D].西北农林科技大学,2007.
    [52]蔡东艳.非饱和黄土结构性-吸力与抗剪强度特性的试验研究[D].西北农林科技大学,2008.
    [53]焦黎杰.黄土剪切破损结构演化机理的试验研究[D].西安理工大学硕士学位论文,2009.
    [54]沈珠江,胡再强.黄土的二元介质模型[J].水利学报,2003,(7):1-6
    [55]房江锋.黄土节理抗剪强度和渗透性试验研究及工程应用[D].西安建筑科技大学,2010.
    [56]王景明等.黄土构造节理的理论及其应用[M].北京:中国水利水电出版社,1996.
    [57]王景明,倪玉兰,孙建中.黄土构造节理研究及其应用[J].工程地质学报,1994,.2(4):31-42.
    [58]卢全中,彭建兵.黄土高原地区黄土裂隙发育特征及其规律研究[J].水土保持学报,2005,19(5):191-194.
    [59]卢全中,彭建兵.黄土体结构面的发育特征及其灾害效应[J].西安科技大学学报,2006,26(4):446-450.
    [60]卢全中.裂隙性黄土的力学特性及其工程灾害效应研究[D].长安大学博士论文,2007.
    [61]王志新.平面应变条件下的裂隙性黄土剪切带试验研究[硕士学位论文D].西安:长安大学,2008.
    [62]靳德武,牛富俊,陈志新等.土体冻融过程中渗流场-应力场-温度场耦合作用机理研究[J].煤田地质与勘探,2003,31(5):40-42.
    [63]赵景波,徐芹选,张晓龙等.西安地区黄土地层含水空间研究[J].陕西师范大学学报(自然科学版),2001,29(4):101-105.
    [64]王家鼎,张倬元.典型高速滑坡群的系统工程地质研究[M],成都:四川科学技术出版社,1999.
    [65]许领,戴福初,邝国麟.黄土滑坡典型工程地质问题分析[J].岩土工程学报2009,31(2):287-293
    [66]黄质宏,朱立军,廖义玲,等.裂隙发育红粘土力学特征研究[J].工程勘察,2004,(4):9-12.
    [67]余雄飞,谢定义.湿陷性黄土增湿剪切破坏问题[C].第七届土力学与基础工程学术会议论文集.北京:中国建筑工业出版社,1994.232-235.
    [68]谢定义.讨论我国黄土力学研究中的若干新趋向[J].岩土工程学报.2001,23(1):1-13.
    [69]余雄飞,谢定义.土体极限平衡理论应用的特例[J].力学与实践,1997,19(2):45-47
    [70]李鹏,胡再强,焦黎杰,等.水敏性黄土的湿剪试验研究[J].岩土工程学报2010,32(9):1434-1438.
    [71]沈珠江.二元介质模型在黄土增湿变形分析中的应用[J].水利学报,2005,36(2):129-134.
    [72]张继文.水敏性黄土增湿的应力等效特性研究[D].西安理工大学硕士学位论文,2004.
    [73]张苏民等.湿陷性黄土的增湿变形特征[J].岩土工程学报,1990,12(4):21-31.
    [74]关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社,1992
    [75]张原丁.论黄土的湿陷敏感性[J].岩土工程学报,1996,18(5):79-83.
    [76] KATO Shoji, Kawai Katsuyuki. Deformation characteristics of a compacted clay in collapse underisotropic and triaxial stress state[J]. Soils and Foundations,2000,40(5):75–90.
    [77] MEILANI I,RAHARDJO H, LEONG E.Pore-water pressure and water volume of an unsaturated soilunder infiltration condition[J].Can Geotech J,2005,42:1509-1531.
    [78]倪万魁,牛富俊,刘东燕.降雨入渗对非饱和黄土强度的影响分析[J].工程勘察,2002(3):15-18.
    [79]胡再强,黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D].西安理工大学博士论文,2001.
    [80]吴兴辉.黄土的水敏性与结构性研究[D].西安理工大学硕士论文,2006.
    [81]程小勇.含水量对黄土强度的影响试验研究[D].中国地质大学硕士论文,2009.
    [82]党进谦.含水量对非饱和黄土强度的影响[J].西北农业大学学报,1996,24(1):57-60.
    [83]米海珍,李如梦,牛军贤.含水量对兰州黄土剪切强度特性的影响[J].甘肃科学学报,2006,18(1):78-81.
    [84]刘祖典,郭增玉,夏旺民.黄土滑坡发育的普遍规律和稳定性判断[J].西北建筑与建材,2003,101:26-27.
    [85]毛君.吴起县黄土滑坡滑动模式及形成机理研究[D].长安大学硕士学位论文,2009.
    [86]吴玮江,王念秦.黄土滑坡的基本类型与活动特征[J].中国地质灾害与防治学报,2002,13(2):36-40
    [87]吴玮江,王念秦.甘肃滑坡灾害[M].兰州:兰州大学出版社,2005:1-10.
    [88]铁道部科学研究院西北分院.滑坡防治[M].北京:人民铁道出版社,1977:5-80.
    [89]乔平定,李增均.黄土地区工程地质[M].北京:水利电力出版社,l990:1-50.
    [90] Wang,CH.Thomas,HR, Rainfall induced instability of partly saturated soil slopes:Aparametric studyof some facts.Lslides in research,theypractice.Proc.of the8thInt.SymposiumonLslides,Cardiff,UK.2000Vol3,pp1545-1550.
    [91]李同录,龙建辉,李新生.黄土滑坡发育类型及其空间预测方法[J].工程地质学报,2007,15(04):500-505.
    [92]许领,戴福初,等.黑方台黄土滑坡类型与发育规律[J].山地学报.2008,5.
    [93] Kyoji Sassa,Hiroshi Fukuoka,Gonghui Wang,Naohide Ishikawa. Undrained dynamic-loadingring-shear apparatus and its application to landslide dynamics[J]. Landslides,2004,1(1):1~6
    [94] Sassa K.Geotechnical model for the motion of landslides[C].Special Lecture of5thInternationalSymposium on Lausanne,1988,1:37–55
    [95] Sassa K. The mechanism starting liquefied landslides and debris flows[C].4th InternationalSymposium Landslide.1984:349-354
    [96]刘红玫,石玉成.黄土地区不同类型滑坡的特征及影响因素[J].西北地震学报,2006,28(4):360-3641.
    [97] ZHOU Jin-xing,ZHU Chun-yun,ZHENG Jing-ming,etc.Landslide disaster in the loess area ofChina[J].Journal of Forestry Research,2002,13(2):157-161.
    [98]王恭先,徐峻龄,刘光代等.滑坡学与滑坡防治技术[M].北京:中国铁道出版社,2007.
    [99]晏同珍,杨顺安,方云.滑坡学[M].北京:中国地质大学出版社,2000.
    [100]陈自生.论滑坡学[J].山地研究,1996,14(2):96-102.
    [101]徐邦栋等.滑坡分析与防治[M].北京:中国铁道出版社,2000.
    [102]朱照宇,丁仲礼,中国黄土高原第四纪古气候与新构造演化[M].北京:地质出版社,1994,53~59.
    [103]孙蕗,岳乐平,王建其,等.黄土高原北部晚新近纪“吴起古湖”的古地磁年代学与古环境记录[J].地球物理学报,2010,53(6):1451-1462.
    [104]孙蕗.黄土高原北部“吴起古湖”沉积物的古地磁年代学与古环境记录[D].西北大学硕士学位论文,2010.
    [105]刘海松.考虑沉积环境和应力历史的黄土力学特性研究[D].长安大学博士学位论文,2008.
    [106]陈新建,赵法锁,胡志平.延安-吴起省道改扩建工程大路沟滑坡勘察报告(R).长安大学工程设计研究院,2007.
    [107]罗丽娟,赵法锁,陈新建.巨型黄土滑坡剪出口滑带土的原位剪切试验研究[J].西安科技大学学报,2009,29(4):459-464.
    [108]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997
    [109]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002
    [110]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [111]王思敬,黄鼎成主编.中国工程地质世纪成就[M].地质出版社,2004.
    [112]周成,陈铁林,沈定贤.岩土微观力学测试技术进展综述[A],西部大开发科教先行与可持续发展—中国科协2000年学术年会文集[C],2000:835.
    [113] Sassa K. Themechanism starting liquefied landslidesand debris flows[C].4th InternationalSymposium Landslide.1984:349-354.
    [114] Seed H.B. Landslide during earthquakes due to soil liquefaction.Journal Soil MechanicsFoundations Division,ASCE,1966,94(5):1053-1122
    [115] BRAND E W. Some thoughts on rain-induced slope failures[C].Proceedings of10th InternationalConference on Soil Mechanics and Foundation Engineering.Sweden,1981:373-376
    [116] LEROUEIL S. Natural slopes and cuts: movement and failuremechanisms[J].Geotechnique,2001,51(3):197-243
    [117] ZHU J H,ANDERSON S A. Determination of shear strength of Hawaiian residual soil subjected torainfall-induced landslides[J]. Geotechnique,1998,48(1):73-82
    [118]王恭先.滑坡学与滑坡防治技术文集[M].北京:人民交通出版社,2010
    [119] WEN B P,AYDIN A. Mechanism of a rainfall-induced slide-debris flow:constraints frommicrostructure of its slip zone[J].Engineering Geology,2005,78(1/2):69–88
    [120] Wen B P,Aydin A. Microstructural study of a natural slip zone: quantification and deformationhistory.Engineering Geology,2003,68(3-4):289-317
    [121]卢肇钧.土的变形破坏机理和土力学计算理论问题[J].岩土工程学报,1989,11(6):65-74
    [122]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,2009
    [123]胡广韬.滑坡动力学[M].西安:陕西科学技术出版社,1995
    [124]徐峻岭.高速滑坡形成三要素及“闸门”效应[J].路基工程,1990,8(4):20-24
    [125]王思敬,王效宁大型高速滑坡的能量分析及其灾害预测[C].1987年全国滑坡学术讨论会论文选集,成都:四川科学技术出版社,1989
    [126]刘光代.浅谈牵推式滑坡的变形机制[J].路基工程,1992,3:41-46
    [127]高根树,张咸恭.大型滑坡高速滑动机理[J].中国地质灾害与防治学报,1992,3(4):29-34
    [128]廖小平,徐峻岭,郑静.高速远程滑坡的动力分析和运动模拟[J].中国地质灾害与防治学报1993,4(2):26-30
    [129]王家鼎.地震诱发高速黄土滑坡的机理研究[J].岩土工程学报,1999,21(6):670~674.
    [130]王家鼎,肖树芳,张倬元.灌溉诱发高速黄土滑坡的运动机理[J].工程地质学报,2001,9(3):241-246
    [131]王家鼎.高速黄土滑坡的一种机理-饱和黄土蠕动液化[J].地质论评,1992,38(6):532~538
    [132]王家鼎,刘悦.高速黄土滑坡蠕、滑动液化机理的进一步研究[J].西北大学学报,1999,29(1):79-82.
    [133]金艳丽,戴福初.灌溉诱发黄土滑坡机理研究[J].岩土工程学报,2007,29(10):1493-1499
    [134]孙萍,殷跃平,吴树仁,等.高速远程地震黄土滑坡发生机制试验研究[J].工程地质学报.2009,17(4):449-454.
    [135]邢爱国,高广运,陈龙珠等.大型高速滑坡启程流体动力学机理研究[J].岩石力学与工程学报,2004,23(4):607-613
    [136]熊传祥,龚晓南,王成华.高速滑坡临滑变形能突变模型的研究[J].浙江大学学报,2000,34(4):443-447
    [137]汪发武.高速滑坡形成机制:土粒子破碎导致超孔隙压力的产生[J].长春科技大学学报,2001,31(1):64-69.
    [138]赵法锁,王启耀,王勇智等.平面旋转坡体稳定性的悬臂梁法[J].岩土工程学报,2000,22(4):493-495
    [139]赵法锁.坡体平面旋转稳定性研究[M].西安:西安地图出版社,2000
    [140]李滨.多级旋转型黄土滑坡形成演化机理研究[D].长安大学,2009
    [141]陈力华,靳晓光,刘新荣等.多滑面滑坡稳定性分析[J].地下空间与工程学报.2008,4(6):1138-1141
    [142]戴福初,陈守义,李焯芬.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报,2000,22(1):127-130
    [143] Dai Fuchu,Lee C F,Wang S J. Analysis of rainfall-introduced slide-debris flows on natural terrain ofLandaus Island,Hong Kong[J].Engineering Geology,1999,51:179-190.
    [144]陈祖煜.土质边坡稳定分析—原理、方法、程序[M].北京:中国水利水电出版社,2003
    [145]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,(26):433-454
    [146]殷跃平等.中国典型滑坡[M].北京:中国大地出版社,2007
    [147]孙广忠等.中国典型滑坡[M].北京:中国地质出版社,1994
    [148] Krahn J, Fredlund D G,Klassen M J. Effects of soil suction on slope stability at NorthHill[J].Canadian Geotechnical Journal,1989,26:269-278.
    [149] NgC W W,Pang Y W. Influence of stress state on soil-water characteristics and slopestability[J].Journal of Geotechnical and Geo-environmental Engineering,ASCE,2000,126(2):157-166.
    [150] BRUCKLE P. Cause-effect models of large landslides[J].Natural Hazards2001,23(2):291-314.
    [151]雷祥义.泾阳南塬黄土滑坡与引水灌溉的关系[J].工程地质学报,1994,3(1):56-64.
    [152]武彩霞,许领,戴福初黑方台黄土泥流滑坡及发生机制研究[J].岩土力学,2011,32(6):1767-1773
    [153]周永习.黄土滑坡流滑机理的研究[D].上海交通大学博士学位论文,2009
    [154]廖红建,李涛,彭建兵.高陡边坡滑坡体黄土的强度特性研究[J].岩土力学,2011,32(7):1939-1944.
    [155] AUS W C. Rain-induced slope instability in Hong Kong[J].Engineering Geology,1998,51(1):1–36.
    [156] Xinjian Chen,Fasuo Zhao,Hui Wang. Evaluation of Failure Mechanics of Giant Thick LoessLandslide[C]. The2rd International Conference on Information Science andEngineering,IEEE,2011,1:309-312.
    [157] Xinjian Chen,Jing Zhang,Fasuo Zhao. In-situ Shear Experimental Study on Loess Landslide[C].Applied Mechanics and Materials,2011,94-96:63-66.
    [158] Dexuan Zhang,Gonghui Wang. Study of the1920Haiyuan earth-quake-induced landslides inloess.[J]. Engineering Geology,2007,94(7):76~88.
    [159]张茂省,李同录.黄土滑坡诱发因素及其形成机理研究[J].工程地质学报,2011,19(4):530-540.
    [160] D.G.Fredlund, Bringing unsaturated soil mechanics into engineering practice[C]2th InternationalConference on Unsaturated Soils.Beijing,1998:1-36.
    [161] D.G.Fredlund,H.Rahardjo.非饱和土力学(陈仲颐等译)[M].北京:中国建筑工业出版社,1997:145-190.
    [162]沈珠江.土体结构性的数学模型,21世纪土力学的核心问题[J].岩土工程学报, l996,18(1):95-97.
    [163]沈珠江,陈铁林.岩土破损力学:基本概念、目标和任务[A].中国岩石力学与工程学会编.岩石力学新进展与西部开发中的岩土工程问题[C].北京:中国科学技术出版社,2002:9~12.
    [164]沈珠江,陈铁林.岩样变形和破坏过程的二元介质模拟[J].水利水运工程学报,2004,(1):1-5.
    [165]沈珠江.岩土破损力学与双重介质模型[J].水利水运工程学报,2002,(4):1~6
    [166]沈珠江,胡再强.黄土的二元介质模型[J].水力学报,2003,(7):1-6.
    [167]沈珠江.岩土破损力学:理想脆弹塑性模型[J].岩土工程学报,2003,25(3):253-257.
    [168]沈珠江,陈铁林.岩土破损力学:结构类型与荷载分担[J].岩土力学与工程学报,2004,25(13):2137-2142.
    [169] SHEN Z J. Binary medium modeling of geological material[C].International Conference ofHeterogeneous Materials Mechanics. Chongqing:[s. n.],2004:581-584.
    [170]沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力应变关系[J].岩土工程学报,2005,27(5):489-494.
    [171]刘恩龙,沈珠江.结构性土的二元介质模型[J].水利学报,2005,36(4):391-395.
    [172]刘恩龙,沈珠江.结构性土的强度准则[J].岩土工程学报,2006,28(10):1248-1252.
    [173]刘恩龙.岩土破损力学:结构块破损机制与二元介质模型[J].岩土力学,2010,31(增1):13-24.
    [174]刘恩龙.结构性粘土变形特征分析[D].南京水利科学研究院土工所博士论文,2003.
    [175] Bishop A W,Alpan I,Blight G E et al. Factors Controlling the Shear Strength of Partly SaturatedCohesive Soils [A].ASCE Research Conference on the Shear Strength of Cohesive Soils [C].Univ ofColorado,1960.
    [176] Fredlund D G,Morgenstem N R,Widger R A.The shear strength of unsaturated soils [J].CanadianGeotechnical Journal,1978,15:313-321.
    [177] LI Xiao-jun,WANG Zhi-ren,YIN jing-ze. CT discrimination of fabric change of unsaturatedcompacted loess during compression process [J].Chinese Journal of Rock Mechanics andEngineering,2002,21(1):107-111.
    [178]卢肇钧等.非饱和土的抗剪强度与膨胀压力[J].岩土工程学报,1992,21(3):1-8.
    [179]缪林昌,殷宗泽.非饱和土的剪切强度[J].岩土力学,1999,20(3):1-6.
    [180]邢义川,吴培安,骆亚生.非饱和原状黄土三轴试验方法研究[J].水利学报,1996,(1):47-52.
    [181]陈正汉,卢再华,朱元青.非饱和土的理论与实践[J].力学与实践,2001,23(5):8-15.
    [182]邢义川,谢定义,李振.非饱和黄土的破坏条件[J].工程力学,2004,21(2):167-172.
    [183]胡再强,沈珠江,谢定义.非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19(6):775-779.
    [184]赵彦旭,张虎元,吕擎峰,等.压实黄土非饱和渗透系数试验研究[J].岩土力学,2010,31(6):1809-1812.
    [185] HUANG S Y. Evaluation and laboratory measurement of the coefficient of permeability indeformable, unsaturated soils[D]. Saskatoon: University of Saskatchewan,1994.
    [186] ARBHABHIRAMA A, KRIDAKORN C. Steady down-ward flow to a water table[J]. WaterResources Research,1968,4(6):1249-1257.
    [187] PHILIP J R. Linearized unsteady multidimensional infiltration[J]. Water Resources Research,1986,22(12):1717-1727.
    [188] LOBBEZOO J P,VANAPALLI S K. A simple technique for estimating the coefficient ofpermeability of unsaturated soils[C],Proceedings of55thCanadian Geotechnical Conference. NiagaraFalls,2002:1277-1284.
    [189] DOUSSAN C, RUY S. Prediction of unsaturated soil hydraulic conductivity with electricalconductivity[J].Water Resources Research,2009,45(10):104-108.
    [190]王铁行,卢靖,张建锋.考虑干密度影响的人工压实非饱和黄土渗透系数的试验研究[J].岩石力学与工程学报,2006,25(11):2364-2368.
    [191]李云峰.洛川黄土地层渗透性与孔隙性的关系[J].西安地质学院学报,1991,13(2):60-64.
    [192]陈敬虞,Fredlund D.G..非饱和土抗剪强度理论的研究进展[J].岩土力学,2003,24: Supp:655-660.
    [193]卢肇钧.粘性土抗剪强度研究的现状与展望[J].土木工程学报,1999,32(4):1-9.
    [194]梁燕,邢鲜丽,李同录,等.晚更新世黄土渗透性的各向异性及其机制研究[J].岩土力学,2012,33(5):1313-1318.
    [195] X B Tu,AKL Kwong,FC Dai.Field monitoring of rainfall infiltration in a loess slope and analysis offailure mechanism of rainfall-induced landslides[J].Engineering Geology,2009,105:134-150.
    [196]刘海松,倪万魁,杨鸿全.黄土路基现场入渗试验[J].地球科学与环境学报,2008,30(1):60-63.
    [197]吴玮江,王念秦.甘肃滑坡灾害[M].兰州:兰州大学出版社,2006.
    [198]李守存.黄土抗拉特性研究[D].西北农林科技大学硕士学位论文,2005.
    [199]党进谦,郝月清,李靖.非饱和黄土抗拉强度的研究[J].河海大学学报2001,29(6):106-108.
    [200]骆亚生,邢义川.黄土的抗拉强度[J].陕西水力发电1998,14(4):6-10.
    [201]朱安龙.粘性土抗拉强度试验研究及数值模拟[D].四川大学硕士学位论文,2005.
    [202]张少宏,郭敏霞,邢义川.三轴拉伸试验技术研究[J],西北水资源与水工程,2001,6(2):24-27
    [203]邢义川,骆亚生,李振.黄土的断裂破坏强度[J],水力发电学报,1999,4:36-44
    [204]孙萍.黄土破裂特性试验研究[D].长安大学博士学位论文,2007.
    [205]郝俊卿,曹明明.区域产业结构演进与城市化发展关系研究-以关中地区为例[J].西北大学学报(自然科学版).2012.42(1):127-132
    [206]郝俊卿,曹明明.产业集聚作用下的城市群空间结构研究[J].生态经济.2013.(5):246-249
    [207]王雁林,郝俊卿.地质灾害防治绩效考核评价体系探讨[J].灾害学,2012,27(4):47~50
    [208]王雁林,郝俊卿,赵法锁.汶川地震触发陕西省境内地质灾害灾险情特征[J].工程地质学报.2011.19(1):52-57
    [209]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700