用户名: 密码: 验证码:
伺服阀滑阀叠合量液动测量系统及其关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液伺服控制系统广泛应用在航天、航空和航海等航行器的航行控制领域中,电液伺服阀作为电液伺服控制系统的核心元件,其性能直接影响整个伺服控制系统的品质。滑阀是由阀芯和阀套两部分组成,通常用作电液伺服阀的功率放大级,其精度要求高,加工难度大。阀芯和阀套的轴向配合尺寸的加工是伺服阀制造过程中的关键工序,这种轴向配合尺寸通常称之为叠合量。叠合量的实质是指滑阀在零位时的阀口开启状态的数值,由于滑阀通常有四个阀口,所以需要有四个叠合量数值需要保证。叠合量一般为1-2μm,公差要求约为±0.5μm,通常是通过磨削阀芯台肩的方式来达到和调整阀芯各节流边的轴向尺寸,进而保证叠合量的要求,实际加工是通过测量——磨削——再测量直到达到精度要求为止。各个阀芯和阀套之间并没有互换性,加工方式是一种偶件配作的方式,因此叠合量加工和测量可称作为“配磨”加工。由于没有互换性,不能通过单独测量某个阀芯节流边轴向位置尺寸来计算和控制叠合量的数值,必须配合对应的阀套一同测量,而通过分别测出相配对的阀芯阀套各自的节流边轴向尺寸经计算得到叠合量的方法也不便采用。必须将阀芯阀套装在一起测量相对的工作边开口情况(即叠合量),因此叠合量的测量一直以来是伺服阀制造中的难点之一。目前我国伺服阀生产主要以军品为主,当单件小批试制性生产时,滑阀的配磨工序已经是影响伺服阀生产效率的瓶颈之一了。随着航空航天事业的不断发展,对伺服阀也提出了批生产的要求,滑阀叠合量的测量精度和效率更成为伺服阀制造中的技术关键,因此研究滑阀叠合量测量技术对提高伺服阀的制造工艺水平,进而提升军工生产能力有着重要意义和应用前景。
     对滑阀阀口的流量特性进行研究,为叠合量液动测量提供理论基础。利用CFD数值模拟的方法,仿真分析了理想阀口、阀芯工作棱边带圆角阀口和有径向间隙的阀口的流量特性。针对阀口流体流态变化对阀口流量系数的影响,建立了阀口流量系数与雷诺数之间数学模型,适用于滑阀阀口流体在不同流态下的流量系数的计算。在此基础上,建立了新的阀口流量的数学模型。该模型中综合了阀口流态变化对阀口流量的影响,相对于传统的小孔出流模型,阀口流体流量的计算不受阀口流体流态变化的影响,更加适合于描述滑阀阀口流量。进行阀口流量特性实验,验证数值模拟和建立的数学模型的正确性。
     在深入分析了伺服阀滑阀叠合量气动测量方法缺点的基础上,提出了一种采用液压油作为测量介质的流量式叠合量测量方法,即“流量式”液动测量法。通过测量滑阀阀口四条流量特性曲线,利用回归的方法计算出滑阀的叠合量。建立了滑阀叠合量测量的误差模型,将测量误差分为结构误差和流态误差两种。结构误差主要受阀口阀芯当量圆角和径向间隙的影响,流态误差受阀口流体流态的影响,给出了叠合量计算时误差补偿的方法。
     针对目前伺服阀滑阀叠合量测量技术和系统对于伺服阀滑阀尤其是大流量伺服阀滑阀叠合量测量精度不高和测量数据不准确的问题,研制新的测量系统,提高叠合量测量精度,保证测量数据准确性,并能够适应于多型号不同流量范围的伺服阀滑阀叠合量测量,提高叠合量测量设备的通用性,实现叠合量的自动测量。
     阀口压差的稳定是高精度液动测量的保证,因此深入研究了阀口压差控制技术。压差控制系统由定量泵-电液比例溢流阀控系统组成,采用PID控制方法,通过压力传感器反馈阀口压差,得到阀口压差的偏差值作为PID控制器输入的闭环控制方法。在深入研究了流量计的压力损失特性的基础上,为提高压差控制系统的性能,提出一种基于前馈的复合PID控制策略,并通过实验验证了该控制方法的有效性和优点。
     液压油温度变化是对测量精度影响的主要因素之一,因此深入研究了液压油温度控制技术。实现了一种压缩机——电加热器的温度控制方法。并针对压缩机制冷控制中存在非线性时变的特点,将一种自适应模糊控制算法应用到了压缩机系统蒸发器过热度的控制中。这种算法实现量化因子和比例因子的自整定。为验证控制效果,进行了蒸发器过热度控制实验,对比分析模糊控制器和自适应模糊控制器的控制效果。
Electro-hydraulic servo control system is widely applied in the navigating control field for astronavigation, navigation and aviation, and as the key part of electro-hydraulic servo control system, the performance of electro-hydraulic servovalve takes an important role on the servo control system. Spool valve is composed of valve spool and valve sleeve, and as the power stage of servo valve, it has a high degree of accuracy and is difficult for machining. The mate-grinding for axial mate dimension of valve spool and valve sleeve is the key process during machining, and the axial mate dimension is called as overlap values. Actually, overlap value reflects the opening state of spool’s null position, and there are four orifices on a spool valve, so there are four overlap values. The overlap value is 1-2μm, and the tolerance is about±0.5μm. Generally, grinding on valve spool shoulder is the way for getting and adjusting the overlap value, which is ensured by the process of repeatedly measuring and grinding practically. Each valve spool or valve sleeve does not have the capability of interchangeable assembly, spool valve couple is made by so called matching part mate machining, so the spool null cutting and measuring are called as“mate-grinding”. According to the above analysis, it is unable to calculate and control the overlap value by individually measuring the axial position dimension of throttling edge for each valve spool. Moreover, the method of measuring axial position dimension of each throttling edge for valve spool and the mate valve sleeve and calculating the overlap value is infeasible, and it is necessary to measure the relative opening state of working edge by assembling the valve spool and valve sleeve, so to measuring overlap value of spool valve is a difficulty in servovalve industry. At present, servovalves are mainly produced for military demands, which belong to small batch production and trial-manufacture, the produce of spool valve is the bottle-neck problem which decreases production efficiency. With the development of navigation and astronavigation industry, the large batch production of servovalves is bringing forward, and spool valve overlap measuring precision and efficiency has became the key point in servovalve machining process, the reaserch on the measuring technology for overlap value of spool valve has an important significance for increasing national defense strength and application foreground.
     This dissertation researches on the discharge characteristic of spool valve orifice, and analyzes the discharge characteristics of ideal orifice, and actual orifice which has round angle on spool working edge and diametral clearance using CFD numerical simulation method. In order to analyze effect of flow pattern change of fluid’s contribution on orifice discharge coefficient, this dissertation develops a mathematic model about discharge coefficient versus Reynolds number, this model can be used to calculate discharge coefficient of spool valve fluid in the different flow patterns. Based on this foundation, obtains a new flow rate formula for orifice, which discards the impact of changing of flow pattern, and has a commonality for describing the discharge characteristic of spool valve orifice. And a verification experiment has been made to ensure the formula is correct.
     Based on thorough analyzing the disadvantages of the pneumatic measurement for servovalve overlap value, this dissertation proposes a flow measurement method adopted hydraulic oil as the measuring medium, which is called as flow hydraulic measurement method. For measuring the four discharge characteristic lines of spool valve, and then calculates overlap values by regression method. This dissertation develops the error model of overlap measurement, which divides the source of errors into structural errors and flow pattern errors. The structural errors come from the round angle and the diametral clearance of spool valve. The flow pattern errors are affected by fluid flow pattern, and an error compensation method was put forward for calculating overlap values.
     The present servovalve spool valve overlap value measurements and systems have low degree of precision and inaccuracy data for measuring large flow servovalves. In order to solve this problem, a new measuring system has be developed in this dissertation, which improves measuring precision, insures data accuracy, and can adapt to overlap value measuring for multi types of different flow range servovalve, improves the versatility of measuring equipment and realizes automatic measurement.
     Constant orifice differential pressure is the premise for high accuracy hydraulic measuring, so thorough analyse of orifice differential pressure control technology has been taken. Differential pressure control system is composed of a constant flow pump-electro hydraulic proportional safety valve system, using PID closed loop control method. On the basis of thorough analysis of pressure drop of flowmeter, in order to improve the controller performance, this dissertation develops a compound PID control strategy based on feedforward control, and a verification experiment is made for approving the validity and merits of this method.
     Hydraulic oil temperature is one of main influence factors for measuring, so this dissertation researches the hydraulic oil temperature control technology in detail. This dissertation develops a compressor-electric heater temperature control method, and considers the non-linearity time-variation feature in compressor refrigeration control, and a self-adapting fuzzy control algorithm has been utilized in compressor system superheat control. Quantization and proportion factors can be self-adjusted in this algorithm. And an evaporator superheat experiment is made. The control results between normal fuzzy controller and self-adapting fuzzy controller has been compared in this experiment.
引文
1方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势.机床与液压. 2007,35(11): 162~165
    2 G. Card, D. Parker. Servo Valve Design Considerations. Hydraulic Pneumatic Mechanical Power. 1985,31(364): 95~98
    3史维祥.流体传动及控制的现状及新发展(续1).流体传动与控制. 2004,(1): 9~15
    4 Ioan Ursu, Felicia Ursu, Florica Popescu. Backstepping design for controlling electrohydraulic servos. Journal of the Franklin Institute. 2006,(343): 94~110
    5 T. Knohl, H. Unbehauen. Adaptive position control of electrohydraulic servo systems using ANN. Mechatronics. 2000,(10): 127~143
    6陈刚,朱石沙,王启新,吴瀚晖.电液控制技术的发展与应用.机床与液压. 2006,(4): 1~3,10
    7谢朝夕,韩崇伟,肖文伟,佟庆雨.喷嘴挡板式电液伺服阀的应用及仿真.机床与液压. 2007,35(10): 128~129
    8顾瑞龙.电液伺服阀的发展和应用.制造技术与机床. 1981,(11): 27~30
    9王勇.大型汽轮机组DEH系统电液伺服阀的应用及维护.江西电力. 2005,29(5): 7~8,15
    10李宜霞,陈奎生.一种新型的电液伺服阀.机床与液压. 2006,(4): 142~143
    11朱忠惠等.推力矢量控制伺服系统.宇航出版社, 1995:61~63
    12陈彬,易孟林.电液伺服阀的研究现状和发展趋势.液压与气动. 2005,(6): 5~8
    13李其朋,丁凡.电液伺服阀技术研究现状及发展趋势.工程机械. 2003,(6): 28~33
    14李洪人.液压控制系统.国防工业出版社, 1990:9,113~116
    15 S. Li, Y. Song. Dynamic response of a hydraulic servo-valve torque motor with magnetic fluids. Mechatronics. 2007,17(8): 442~447
    16董云峰.喷嘴挡板式压电伺服阀的研究.液压与气动. 2006,(4): 67~68
    17陈召国,黄琪.双喷嘴挡板电液伺服阀流量特性的研究.机床与液压.2006,(3): 115~117
    18黄增,候保国,方群,王学星.射流管式与喷嘴挡板式电液伺服阀之比较.流体传动与控制. 2007,4(23): 43~45
    19任光融,张振华,周永强.电液伺服阀制造工艺,宇航出版社, 1988:9,92
    20 Deadwyler, Richard, Manion, M. Francis. Design Considerations for Improver Fluidic Input Servovalve Performance. Harry Diamond Laboratories, 1989,79(4): 28
    21 H.Hahn, A. Piepenbrink and K.D.Leimbach. Input/output Linearization Control of an Electro Servo-hydraulic Actuator. Proceedings of the IEEE Conference on Control Applications. 1994,(2): 995~1000
    22陈伦强,罗克然,陶崇德.精密电液伺服阀阀芯轴向精密闭环控制系统的研究.航天工艺. 1992,(4): 29~31
    23赵军,陶崇德.一种用微机控制的轴向自动配磨系统.微电子学和计算机. 1990,(9): 18~20
    24陈建华.滑阀付开口叠合量气动测量精度的提高.航天工艺. 1989,(8): 49~52
    25范鸿滏.滑阀开口量的气动测量分析.计量学报. 1981,2(3): 169~178
    26刘冀民.气动测量在液压控制阀制造调试和出厂试验中的应用.湖南农学院学报. 1993,19(5): 505~509
    27龚达平.气动测量在伺服阀滑阀加工中的应用.机械. 1998,(25): 177~179
    28张申雄.滑阀付开口叠合量气动测量曲线的研究.上仪情报. 1991, (1): 37~43
    29张舒勃,卢泽生,罗克然,陶崇德.高精密伺服阀气动测量的研究.计量技术. 1990,(11): 1~3
    30陶崇德,罗克然.精密阀套方孔控制边位置度测量法.航天工艺. 1987,(4): 18~22
    31陶崇德,王广林.气动精测滑阀付节流口叠合量的分析和研究.哈尔滨工业大学学报. 1986,(4):71~77
    32陶崇德,王广林.微机控制滑阀付节流口叠合量气动测量系统的研究.微电子学与计算机. 1987,(3): 16~19
    33王广林,陶崇德,邵东向,陈大维.伺服阀阀口棱边几何精度的研究.哈尔滨工业大学学报. 1999,31(5): 120~122
    34陶崇德等.精密偶件棱边加工质量的探讨.第三届中日超精密加工技术学术研讨会论文集. 1983: 19~21
    35高维新.滑阀副节流边叠合量新的测量方法和装置的研究.哈尔滨学位工业大学硕士论文. 1989: 11~45
    36叶湘滨.微机控制压力式气动测量确定滑阀付叠合量的研究.哈尔滨工业大学硕士学位论文. 1986: 13~58
    37王广林.伺服阀阀口加工质量自动检测与控制的研究.哈尔滨工业大学博士学位论文, 2000: 31~33
    38张建锋.伺服阀液动配磨技术的研究.哈尔滨工业大学硕士学位论文, 1999: 5~8
    39周永强,张建锋.差压式流量计在伺服阀制造中的应用.航空精密制造技术. 1999,35(4): 32~34
    40浙人.加工精密伺服阀的自动化“流量配磨”系统.世界制造技术与装备市场. 1994,(4): 70~72
    41王福军.计算流体动力学分析——CFD软件原理与应用.清华大学出版社, 2004: 7~9, 144~158,185
    42潘小强,袁璟. CFD软件在工程流体数值模拟中的应用.南京工程学院学报(自然科学版). 2004,2(1): 62~66
    43 R.A. Tomlinson, D. Pugh, S.B.M. Beck. Experiment and modelling of birefringent flows using commercial CFD code. International Journal of Heat and Fluid Flow. 2006,(27): 1054~1060
    44 Del Vescovo G, Lippolis A. CFD analysis of flow forces on spool valves. In: Proceedings of the 1st international conference on computational methods in fluid power technology, Melbourne 2003: 26~28
    45刘重阳,于芳,徐让书. CFD计算网格误差分析的一个算例.沈阳航空工业学院学报. 2006,4: 21~24
    46刘萍,张东速.基于FLUENT的小流量射流流场中的可视化研究.安徽理工大学学报(自然科学版). 2006,6: 26~29
    47 D. C. Pountney, W. Weston and M. R. Banieghbal. A Numerical Study of Turbulent flow characteristics of Servo-valve Orifices. Proc Instn Mech Engrs, Part A, 205, 1991: 139~147
    48韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用.北京理工大学出版社, 2004: 108~110
    49李人宪.有限体积法基础.国防工业出版社, 2005: 7
    50 Y-H. Chiu, D.W. Etheridge. External flow effects on the discharge coefficients of two types of ventilation opening. Journal of Wind Engineering and Industrial Aerodynamics. 2007,95(4): 225~252
    51 S. J. Lin, A.Akers. Dynamic Model of the Flapper-nozzle Component of an Electrohydraulic Servovalve. Measurement and Control. 1989,111(1): 105~109
    52程平,程耕国,李受人.流体通过滑阀的流场结构的数值解析.数值计算与计算机应用. 2004,2: 155~160
    53 P.chow, M.Cross, K.Pericleous. A Natural Extension of The Conventional Finite Volume Method into Polygonal Unstructured Meshes for CFD Application. App, Math, Modelling. 1996,20: 170~183
    54 R. Amirante, G. Del Vescovo, A. Lippolis. Flow forces analysis of an open center hydraulic directional control valve sliding spool. Energy Conversion and Management. 2006,47(1): 114~131
    55 Borghi M, Milani M, Paoluzzi R. Stationary axial flow force analysis on compensated spool valves. Int J Fluid Power. 2000,1(1): 17~25
    56 Amirante R, Del Vescovo G, Lippolis A. A flow forces analysis of an open center hydraulic directional control valve sliding spool. Energy Conversion and Management. 2006,47(1): 14~31
    57 R. Amirante, G. Del Vescovo, A. Lippolis. Evaluation of the flow forces on an open centre directional control valve by means of a computational fluid dynamic analysis. Energy Conversion and Management. 2006,47: 1748~1750
    58 R. Amirante, P.G. Moscatelli, L.A. Catalano. Evaluation of the flow forces on a direct (single stage) proportional vavlve by means of a computational fluid dynamic analysis. Energy Conversion and Management. 2007,48: 942~953
    59张也影.流体力学.高等教育出版社, 1986: 241~243, 326~330
    60 Bert Blocken, Ted Stathopoulos, Jan Carmeliet. CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment. 2007,(41): 238~252
    61 M. Fossa, G. Guglielmini. Pressure drop and void fraction profiles during horizontal flow through thin and thick orifices. Experimental Thermal and Fluid Science. 2002,26(5): 513~523
    62 A. Ellman, R. Piche. A two regime orifice flow formula. Trans. ASME J. Dyn. Syst., Measure., Control. 1999,121: 721~724
    63 K. Ramamurthi, K. Nandakumar. Characteristics of flow through small sharp-edged cylindrical orifices. Flow Measurement and Instrumentation. 1999,10: 133~143
    64 J . Stone. Discharge coefficients and steady state flow force for hydraulic poppet valves. Trans. ASME, J. Basic Engng. March. 1960: 144~156
    65 D. N. Johnston, K. A. Edge, N. D. Vaughan. Experimental investigation of flow and force characteristics of hydraulic poppet and disc Valves. Proc Instn Mech Engrs, Part A, 205. 2001: 161~171.
    66 Masahiro Ishibashi, Masaki Takamoto. Theoretical discharge coefficient of a critical circular-arc nozzle with laminar boundary layer and its verification by measurements using super-accurate nozzles. Flow Measurement and Instrumentation. 2000,11: 305~313
    67 Y. Measson, O. David, F. Louveau, J. P. Friconneau. Technology and control for hydraulic manipulators. Fusion Engineering and Design. 2003,69(1-4): 129~134
    68 Joseph C. Leung. A theory on the discharge coefficient for safety relief valve. Journal of Loss Prevention in the Process Industries. 2004,17(4):301~313
    69 A. Alexiou, N.J. Hills, C.A. Long, A.B. Turner, L.-S. Wong, J.A. Millward. Discharge coefficients for flow through holes normal to a rotating shaft. International Journal of Heat and Fluid Flow. 2000,21: 701~709
    70 Masahiro Ishibashi, Masaki Takamoto. Methods to calibrate a critical nozzle and flowmeter using reference critical nozzles. Flow Measurement and Instrumentation. 2000,11: 293~303
    71 A. Datta, S.K. Som. Numerical prediction of air core diameter, coeStructure of the Annular Non-swirling Flow Past an Axisymmetric Poppet Valve.Proc Instn Mech Engrs, Part C, 212, 1998: 455~467
    73 S. Nadarajah, S. Balabani, M. J. Tindal and M. Yianneskis. The Effect of Swirl on the Annular Flow Past an Axisymmetric Poppet Valve. Proc Instn Mech Engrs, Part C, 212, 1998: 473~484
    74 M. Borghi, G.. Cantore, M. Milani and R. Paoluzzi. Analysis of Hydraulic Components using Computational Fluid Dynamics Models. Proc Instn Mech Engrs, Part C, 212, 1998: 619~629
    75 N. D Vaughan, D. N. Johnston and K. A. Edge. Numerical simulation of fluid flow in poppet valves. Proc Instn Mech Engrs, Part A, 206, 1992: 119~127
    76 David A. McNeil, Jack Addlesee, Alastair Stuart. An experimental study of viscous flows in contractions. Journal of Loss Prevention in the Process Industries. 1999,12: 249~258
    77 A. Ellman, M.J. Vilenius. Methods for simulating the steady-state and dynamic behavior of two-way cartridge valve circuits. SAE J. Commer. Vehicles. 1990,99: 384~393
    78 N. Rau, R. Fingerle, G. Hübner. Judgement of surface structures and changes in fuel-injection tubing by a pneumatic measuring method. International Journal of Machine Tools and Manufacture. 1992,32(1-2): 227~232
    79刘玉初.气动量仪.机械工业出版社, 1991: 28~31
    80季夜眉.概率与数理统计.电子工业出版社, 2001: 98~99
    81梁国伟,蔡武昌.流量测量技术及仪表.机械工业出版社, 2005: 6~13
    82章宏甲,黄谊.液压传动.机械工业出版社, 1995: 97
    83程晓东,张作龙.恒功率恒压变量泵的特性及前景.机械. 2006,33(11): 17~21
    84莫波,雷明,曹泛.恒功率恒压泵变量机构的调节原理.液压与气动. 2002,(6): 5~6
    85 Shengdun Zhao, Ji Wang, Lihong Wang, Chunjian Hua, Yupeng He. Iterative learning control of electro-hydraulic proportional feeding system in slotting machine for metal bar cropping. International Journal of Machine Tools & Manufacture. 2005,(45): 923~931
    86 Cheng-Yi Chen, Li-Qiang Liu, Chi-Cheng Cheng, George T.-C. Chiu. Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system. Control Engineering Practice. 2008,(16): 658~673
    87萧汉卿,谢纪绩.容积式流量计.中国计量出版社, 1997: 59~64
    88林克努.关于罗茨流量计的压力损失.自动化仪表. 1980,(5): 56~64,77
    89 K. Aflekt, E. Brendeng, A. Hafner, P. Neska, J. Pettersen. Reversible vapor compression system. American Chemical Society. 2002,38(6): 66
    90 J.M. Choi, Y.C. Kim. Capacity modulation of an inverter-driven multi-air conditioner using electronic expansion valves. Energy. 2003,28: 141~155
    91陈文勇,陈芝久,朱瑞琪,吴业正.电子膨胀阀调节蒸发器过热度的控制算法.上海交通大学学报. 2001,35(8): 1228~1232
    92 A.G. Agwu Nnanna. Application of refrigeration system in electronics cooling. Applied Thermal Engineering. 2006,26: 18~27
    93 C. Aprca, C. Rcnno. Experimental analysis of a transfer function for an air cooled evaporator. J. Appl. Therm. Eng. 2001,21: 481~493
    94周志云,沈振华,赵建华.工程热力学与制冷原理.农业出版社, 1992: 70, 153~161
    95 C. Aprea, R. Mastrullo. Experimental evaluation of electronic and thermostatic expansion valves performances using R22 and R407C. Applied Thermal Engineering. 2002,22: 205~218
    96 S.G. Kim, M.S. Kim. Experimental investigation of the performance of R22, R407c and R410a in several capillary tubes for air-conditioners. International Journal of Refrigeration. 2002,25: 521~531
    97 R. Schmidt, Low temperature electronic cooling. Electronics Cooling Magazine.2000,6: 3
    98 J.W. Peeples. Vapor compression cooling for high performance applications. Electronics Cooling Magazine. 2001,7(3): 547
    99 M.A. Tahat, G.A. Ibrahim, S.D. Probert. Performance instability of a refrigerator with its evaporator controlled by a thermostatic expansion-valve. Applied Energy. 2001,70: 233~249
    100 N.J. Hewitt, J.T. Mcmullan, N.E. Murphy, C.T. Ng. Comparison of expansion valve performance. Int. J. Energy Res. 1995,19: 347~359
    101 S.A. Tassou, H.O. Al-Nizari. Investigation of the e?ects of thermostaticand electronic expansion valves on the steady-state and transient performance of commercial chillers. Int. J. Refrig. 1993,16(1): 49~56
    102朱瑞琪.制冷装置自动化.西安交通大学出版社, 1993, 80~88
    103 L.A. Zadeh. Fuzzy logic. Computer. 1988,21(4): 83~93
    104李士勇.模糊控制·神经控制和智能控制论.哈尔滨工业大学出版社. 1998: 255~278
    105 Masahiro Ishibashi, Masaki Takamoto. Theoretical discharge coefficient of a critical circular-arc nozzle with laminar boundary layer and its verification by measurements using super-accurate nozzles. Flow Measurement and Instrumentation. 2000,11: 305~313
    106 Ma Shanwei, Zhang Chuan, Chen Jiangping, Chen Zhiujiu. Experimental research on refrigerant mass flow coefficient of electronic expansion valve. Applied Thermal Engineering. 2005,25: 2351~2366
    107 A. Outtagarts, P. Haberschill, M. Lallemand. The transient response of an evaporator fed through an electronic expansion valve. Int. J. Energy Res. 1997,2: 793~807
    108 A. Outtagarts, P. Haberschill, M. Lallemand. The transient response of an evaporator fed through an electronic expansion valve. International Journal of Energy Research. 1997,21: 793~807
    109 Xuquan Li, Jiangping Chen, Zhijiu Chen, Weihua Liu, Wei Hu, Xiaobing Liu. A new method for controlling refrigerant flow in automobile air conditioning. Applied Thermal Engineering. 2004,24: 1073~1085

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700