用户名: 密码: 验证码:
含钕类普鲁士蓝化学修饰电极对甲酸的电催化氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲酸燃料电池(DFAFC)是一种以甲酸为阳极燃料,并使其直接在电极上进行氧化反应从而转化出电能一种能源装置。DFAFC具有结构简单,燃料补充方便,效率高等一系列优点。在DFAFC中,阳极催化剂对甲酸的氧化效率以及电池的耐用性有着非常重要的影响。因此,寻找对甲酸电催化氧化具有高催化活性的催化剂是十分重要的研究课题。
     基于以上原因,本文以含钕类普鲁士蓝修饰电极为基础,并复合了铂微粒、聚苯胺制备了几种多元混配物复合电极,这几种新型修饰电极对甲酸的电催化氧化均具有较高的催化活性,良好的抗毒化性以及稳定性,以其作为DFAFC的阳极催化剂具有很好的应用研究价值。
     论文共分为四章:
     第一章:综述
     该部分主要介绍了化学修饰电极,以及多核过渡金属铁氰化物薄膜修饰电极及其制备应用。并简述了直接甲酸燃料电池的发展及存在的问题,对作为直接甲酸燃料电池中阳极催化剂载体的有机导电聚合物种类及聚苯胺的结构性质进行了详细的阐述。
     第二章:首次用电沉积法制备了Nd-Fe-WO_4~(2-)氰桥混配物修饰铂电极(Nd-Fe-WO_4~(2-)/Pt),并通过SEM和XRD技术分别表征了该修饰电极的表面形貌和修饰物的晶相结构。采用循环伏安法和计时电流法研究了甲酸在该修饰电极上的电氧化行为,实验发现甲酸在修饰电极上的电催化氧化电流密度与裸铂电极相比增加了10余倍,而且CV回扫阳极电位边界对属于吸附中间体的反扫峰形状有很大影响。此外,还研究了支持电解质中H~+和SO_4~(2-)浓度变化对甲酸氧化过程伏安特性的影响。结果表明:甲酸电催化主氧化峰的电位随H~+浓度的增加而正向移动,随SO_4~(2-)浓度增加而负向移动;当这两种离子共存时,H~+的影响起主导作用。这表明甲酸在该修饰电极上电催化氧化反应的速率控制步骤是脱质子过程,而且SO_4~(2-)/HSO_4~-在电极表面的吸附有利于氧化反应正向进行。以上结论为解释甲酸的电催化氧化机理提供了新的实验依据。同时,计时电流曲线和电极稳定性实验均表明该修饰电极对甲酸的电催化氧化过程具有良好的催化活性和抗毒化能力。
     第三章:本文采用电沉积法在Nd-Fe-WO_4~(2-)氰桥混配物修饰铂电极基底上制备了铂微粒/Nd-Fe-WO_4~(2-)氰桥混配物复合修饰铂电极(Pt/ Nd-Fe-WO_4~(2-)/Pt),用SEM表征了该电极的表面形貌。考察了沉积电位、沉积时间、氯铂酸浓度、起扫电位静息时间对甲酸电催化氧化的影响。并用循环伏安和计时电流法考察了该修饰电极对甲酸的电催化氧化性能,实验结果表明,甲酸在该修饰电极上的电催化氧化峰电流密度约是Nd-Fe-WO_4~(2-)/Pt电极的10倍,而且扫速在50 mV/s ~450 mV/s之间时,氧化电流密度与扫描速率的平方根在呈良好的线性关系。此外,还研究了回扫阳极边界对甲酸电催化氧化的影响,当回扫阳极电位较低时,毒性中间体的氧化溶出反应被抑制,不利于甲酸氧化反应的发生。
     第四章本文采用电化学方法制备了聚苯胺分散铂微粒/Nd-Fe-WO_4~(2-)氰桥混配物复合修饰铂电极(PAn-Pt/ Nd-Fe-WO_4~(2-)/Pt),通过SEM对其进行了表征,并采用循环伏安法和计时电流法研究了甲酸在该电极上的电催化氧化行为。实验发现,甲酸在该修饰电极上的反应与温度密切相关,氧化电流密度与温度分别在25~40℃和45~55℃范围内呈良好的线性关系,且低温区温度系数约是高温区温度系数的4倍。扫描速度的平方根与甲酸电催化氧化电流密度呈良好的线性关系,说明甲酸在该修饰电极上的氧化反应是受扩散控制的,而且甲酸电催化氧化CV曲线中PtO与CO2的还原峰随回扫阳极电位边界的增加而逐渐增大。此外,这种将无机聚合物Nd-Fe-WO_4~(2-)膜与有机导电聚合物聚苯胺膜相结合,并与分散铂微粒共同修饰制备的新型复合电极的催化性能、稳定性、抗毒化性均与Pt/ Nd-Fe-WO_4~(2-)/Pt电极相当,由此可以得出这种复合聚合物Nd-Fe-WO_4~(2-)膜也具有良好的伏安性能。
Direct formic acid fuel cell (DFAFC) is a new energy installations, formic acid is adopted as its anode fuel and converted into electric energy by reacting on the electrode.DFAFC have a lot of advantages, such as the simple structure, high efficiency and high convenience of adding fuel, etc. Anode catalyst has great impact on the oxidation efficiency of formic acid and the durable property of the fuel cell in DFAFC. Therefore, looking for the catalyst possessed high catalytic activity becomes a very important research topic.
     For the above reasons, based on contained-Nd Prussian blue analoge modified electrode, we prepared several multiple mixture modified electrodes complexed Pt particles and polyaniline. These newly modified electrodes were all possessed high catalytic activity, better tolerance to toxic intermediate contamination, and high stability to the electrocatalytic oxidation of formic acid. These electrodes will have excellent application and research value as anode catalyst of DFAFC.
     There were four chapters in this paper:
     Chapter one: This section mainly introduced the chemically modified electrode, the polynuclear transition metal hexacyanoferrates modified electrode, the preparation and application of polynuclear transition metal hexacyanoferrates modified electrode. The development and problems existed in DFAFC were introduced in brief, the kinds of organic conductive polymers, which acted as carrier of anode catalyst in DFAFC were also discussed. The structure and properties of polyaniline were described in detail.
     Chapter two: Nd-Fe-WO_4~(2-) cyanide-bridged mixed complexes modified platinum electrode was successfully prepared by using electrodeposition method for the first time. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the morphology and crystalline lattice structure of the modified materials. Formic acid electrocatalytic oxidation behavior on this modified electrode was evaluated by means of cyclic voltammetry and chronoamperometry. The results indicated that the electrocatalytic oxidation current density of formic acid on modified electrode was about 10 times more than on bare Pt electrode,and CV anodic limit potential had significant effect on peak figuration of absorption intermediate in the reverse scan. Moreover, the influence of H~+ and SO_4~(2-) concentration in electrolyte solution on the voltammetric characteristics of formic acid electrocatalytic oxidation was also studied, it showed that the peak potential increased with increasing H~+ concentration, however, decreased with increasing SO_4~(2-) concentration, but being coexistence of H~+ and SO_4~(2-), the effect of H~+ played a dominant role. This phenomenon revealed that the rate-determining step of electrocatalytic oxidation of formic acid on modified electrode was correlative with deprotonation process, and the adsorption of SO_4~(2-)/HSO_4~- would promote the forward oxidation reaction. These conclusions provided new experimental evidences for explaining the mechanism of formic acid electrocatalytic oxidation. Meanwhile, the electrode stability experiments as well as chronoamperometry also demonstrated that the newly developed modified electrode possessed much better electrocatalytic activity and tolerance to toxic intermediate contamination.
     Chapter three: Based on Nd-Fe-WO_4~(2-) cyanide-bridged mixed complexes modified platinum electrode, the new Pt/Nd-Fe-WO_4~(2-)/Pt modified electrode was prepared by means of electrodeposition. The morphology of this modified electrode was characterized by SEM. The effect factors of formic electrocatalytic oxidationon, such as deposition potential, deposition time, the concentration of H2PtCl6 and quiet time were investigated. Formic acid electrocatalytic oxidation behavior on this modified electrode was evaluated by means of cyclic voltammetry and chronoamperometry. The results indicated that the electrocatalytic oxidation current density of formic acid on the modified electrode was about 10 times more than that on Nd-Fe-WO_4~(2-)/Pt electrode, and when the scan rate was between 50 mV/s and 450 mV/s, oxidation current density of formic acid and the root of scan rate showed good linear relationship. Furthermore, the effect of anode limit in the reverse scan on formic acid electrocatalytic oxidation was also studied. When the anode limit was lower, the oxidation reaction of toxic intermediate was suppressed, it was not conducive to the oxidation reaction of formic acid.
     Chapter four : PAn-Pt/ Nd-Fe-WO_4~(2-)/Pt modified electrode was successfully prepared by using electrochemical method, SEM was employed to characterize the morphology of electrode, formic acid electrocatalytic oxidation behavior on this modified electrode was evaluated by means of cyclic voltammetry and chronoamperometry. The results indicated that the reaction of formic acid on this modified electrode was closed related to temperature, the electrocatalytic oxidation current density and temperature showed good linear relationship between the range of 25~40℃and 45~55℃,and the temperature coefficient of low temperature area was about 4 times more than that in high temperature area. The good linearity between square root of scan rate and current density of formic acid electrocatalytic oxidation indicated that formic acid oxidation on the modified electrode was controlled by diffusion. The reduction peak of PtO and CO2 increased with increasing anode limit in the reverse scan at CV of formic acid electrocatalytic oxidation. Moreover, the catalytic activity, stability and tolerance to toxic intermediate contamination of the newly complex electrode, which composed with inorganic polymer Nd-Fe-WO_4~(2-) membrane, organic conductive polymer polyaniline film and platinum particles, were the same as Pt/ Nd-Fe-WO_4~(2-)/Pt electrode, so we could conclude that the Inorganic polymer Nd-Fe-WO_4~(2-) film also showed excellent voltammetry property.
引文
[1] Wen M, Qi H Q, Zhao W G, Chen J et al.Phase transfer catalysis: Synthesis of monodispersed FePt nanoparticles and its electrocatalytic activity,Colloids and Surfaces A,2008,312(1):73.
    [2] Xu Y Y, Peng X L,Zeng H T et al.Study of an anti-poisoning catalyst for methanol electrooxidation based on PAn–C composite carriers,Comptes Rendus Chimie, 2008,11(1-2):147-151.
    [3]董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社, 2003
    [4] Liu Z Y, Pan K, Liu M. et al.Al2O3-coated SnO2/TiO2 composite electrode for the dyesensitized solar cell.Electrochim.Acta,2005,50(13):2583.
    [5] Chun L,Tsukasa H. Facile design of poly(3,4-ethy-lenedioxythiophene) -tris(2,2′-bipyridine) ruthenium(II)composite film suitable for a threedimensional light-harvesting system,Tetrahedron,2004,60(37): 8037
    [6] K W P, Song Y J, Lee J M. Influence of Pt and Au nanophases on electrochro- mism of WO3 in nanostructure thin-film electrodes.Electrochem.Commun., 2007,9(8):2111.
    [7] ChenY H,Wu J Y,ChungY C.Preparation of polyaniline-modifiedelectrodes cont -aining sulfonated polyelectrolytes using layer-by-layer techniques, Biosen- sorsand Bioelectronics,2006,22(4):489.
    [8] Rahul M,Kotkar,Purvi B.Desai and Ashwini K.Srivastava,Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes, Sens.Actuat.B,2007,124(1):90.
    [9] Yang N J, Wang X X, Wan,Q J.Silver nucleation on mercaptoacetic acid covered gold electrodes,Electrochim.Acta,2007,52(14):4818.
    [10] Cheng X, Zhang S, Zhang H Y.Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode,Food Chemistry,2008,106(2):830.
    [11] Allan H H, K H V.Evaluation of various strategies to formation of pH responsive hydroquinone-terminated films on carbon electrodes,Electrochim.Acta, 2007,53(4):1680
    [12] Besbes S, Ltaief A, Reybier K .Injection modifications by ITO functionali zation with a self-assembled monolayer in OLEDs,Synthetic Metals.,2003, 138(1-2):197
    [13] Cazzanelli E,Marino S,Bruno Vetal,Characterizations of mixed Bi/V oxide films, deposited via solgel route,used as electrodes in asymmetric liquid crystal cells,Solid State Ionics.,2003,165(1-4):201.
    [14] Dhana L ,Piyush S.Sharma and Bhim B.Prasad,Imprinted polymer modified hanging mercury drop electrode for differential pulse cathodic stripping voltam- metric analysis of creatine, Biosensors and Bioelectronics,2007,22(12):3302.
    [15] MaryVergheese T, Sheela B.Selective NO reduction using blue ferrocenyl cation,Electrochim.Acta, 2006,52(2):567.
    [16] Panagoulis D,Pontiki E,Skeva E et al.,Synthesis and pharmacochemical study of new Cu(II) complexes with thiophen-2-yl saturated andα,β-unsaturated substitu- ted carboxylic acids,J.Inorg.Biochem.,2007,101(4):623.
    [17] Vanessa B,Federica V,Emanuela T et al. Synthesis and characterization of poly -meric films and nanotubule nets used to assemble selective sensors for nitrite detection in drinking water,Sens.Actuat.B,2007,122(1):236.
    [18] Arkady A.Karvakin,Elena E.Karvakina,Lo Gorton.The electrocatalytic activity of Prussian blue in hydronen peroxide reduction studied using a wall-jet electrode with continuous flow.Journal of Electroanalytical hemistry.1998,456:97.
    [19] Honda K, Kuwano A.Solid state electrochromic device using polymuclear metal complex containing solid polymer electrolyte.J.Eelectrochem.Soc.1986,133:85.
    [20] Monk P M S, Mortimer R J, Rosseinsky.D.R.Electrochromism,Fundamentals and applications,VCH:Weinheim.1995,Chap.6.
    [21] Keggin E, Miles F D. Stuctures and formulus of the Prussian blues and related compounds.Nature,1936,138:577.
    [22] KaryakinA.A.Prussianblue and its analogues : eleetrochemistry and analytical applications;Electroanalysis;2001:13:813.
    [23] Itaya K,Akahoshi H,Toshima S.Prussian-blue-modified electrodes:An application for a stable electrochromic display device.J.Appl.Phys.1982,53,804.
    [24] Ma Y J. Pan Y Y.Wang W F.Yang M X.Zhou M. Electrocatalytic oxidation ofmethanol at platinum electrode modified with Eu-Fe cynide-bridged binuclear complexes,Chinese Chemical Letters 2010,21,337.
    [25] Ellis D, Eckhof F M, Neff V D.Electrochromism in the mixed-balance hexacy- anides,voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue.J.Phys.Chem.1981,85:1225.
    [26] Jiang M, Zhou X Y, Zhao Z F . Cobalt(II)-Cyanometallates as New Inorganic Polymeric Materials for Surface-Modification of Some Conducting Substrates. Phys.Chem.1991,95,720.
    [27] Jiang M, Zhou X Y, Zhao Z F.Preparation and characterization of mixed- valent titanium hexacyanoferrate film modified glassy carbon electrode. J.Electroanal Chem.1990,292(1-2):289.
    [28] Jiang M, Zhou X Y, Zhao Z F.New zeolitic thin film based on chromium hexacyanoferrate on conducting substractes.J.Electroanal Chem.1990, 287(2):389.
    [29]王光清,高志强,赵藻藩.铁氰化钴膜电极的制备及特性.高等化学学报. 1991, 2,243.
    [30]薄爱丽,林祥钦.六氰亚铁酸镍修饰玻碳电极的现场红外光谱电化学研究.分析化学研究报告.1999,27(3):254-260.
    [31] Giuse E,Benedetto D,Maria G R. Analysis by X-ray photoelectron spectroscopy of ruthenium stabilised polynuclear hexacyanometallate film electrodes .Analy- tical Chimica Acta,2000,410(1-2):143.
    [32] Nakayama M.In situ infrared spectroscopic investigations on the electrochemical properties of Prussian blue polyaniline modified electrodes with various anionic Fe(II) complexes working as a mediator for the electoreduction of CO2. Electroanal Chem,1997,440(1-2):251-257
    [33] Kulesza P J,Malik M A,Skorek J.Countercation sensitive electrochromism of cobat hexacyanometalate films .Electrochem Soc,1996,143(1-2):10.
    [34] Siperko L M,Kuwanan T.Elecctrochemical and spectroscopic studies of metal hexacyanometalate films.ElectrochemSoc,1996,143(1):10.
    [35] Pournaghi M H,Dastango H.Electrochemical characteristics of an aluminum electrode modified by a palladium hexacyanoferrate film,synthesized by a simpleelectroless procedure.Electroanal Chem,2002,523(1-2):26.
    [36] Pournaghi M H ,Razmi N H.Voltammetric behavior and electrocatalytic activity of the aluminum electrode modified with nickel and nickel hexacyanoferrate films,prepaed by electroless deposition.Electroanal Chem,1998,456(1-2):83.
    [37]石彦茂,多核金属铁氰化物的不同制备方法及其表征,南京师范大学硕士学位论文,2007,1.
    [38]薛茗月,六氰合铁酸锰铬修饰电极的制备与表征,重庆大学硕士学位论文,2006,11.
    [39]王升富,蒋勉,周性尧.铁氰化镍修饰电极对抗坏血酸电催化氧化的研究.高等学校化学学报.1992,13(3):325.
    [40] Suely S L.Castro,Valdir R.Balbo,Paulo J.S.Barbeira,Nelson R.Stradiotto,Flow injection amperometric detection of ascorbic acid using a Prussian blue film-modified electrode,Talanta,2001,55:249.
    [41] Garcia T, Casero E,Lorenzo E,Pariente F.Electrochemical sensor for sul?te determination based on iron hexacyanoferrate ?lm modi?ed electrodes, Sensors and Actuators B, 2005,106:803–809.
    [42] Malinauskas A, AraminaitéR, Mickevi?iūtéG, Garjonyté, Evaluation of operational stability of Prussian blue- and cobalt hexacyanoferrate-based amperometric hydrogen peroxidesensors for biosensing application. Materials Science and Engineering C, 2004, 24:513–519.
    [43] Chen S M, Lu M F, Lin K C. Preparation and characterization of ruthenium oxide/hexacyanoferrate and ruthenium hexacyanoferrate mixed ?lms and their electrocatalytic properties. J. Electroanalytical Chemistry, 2005 ,579:163–174.
    [44] Bharathi S, Yegnaraman V, Rao G P.Molecular recognition of alkali metal canons by a nickel hexacyanferrate monolayer anchored to self-assembled monolayers of 3,3-thiodipropionic acid on gold.Langmuir.1995,11:666.
    [45] Rave Shankaran D, Sriman Narayana S,Amperometric sensor for thiosulphate based oncobalt hexacyanoferrate modified electrode.Sensors and Actuators B.2002,86:180.
    [46] Chen S M, Chan C Preparation,characterization,and elecltrocatalytic properties of copper hexacyanoferrate film and bilayer film modified electrodes.J.Electroanal.Chem.2003,543:161.
    [47] Chen S M.Electrocatalytic oxidation of thiosulfate by metal hexacyanoferrate film modified electrodes.J.Electroanal.Chem.1996,417:145.
    [48] Wang P, Yuan Y, Jing X Y, Zhu G Y,Amperometric determination of thiosulfate at a surface-renewable nickel(II)hexacyanoferrate-modifed carbon ceramic electrode.Talanta.2001,53:863.
    [49] Chen S M. Electrocatalytic oxidation of thiosulfate by metal hexacyano ferrate film modified electrodes. J. Electroanalytical Chemistry , 1996,417:145- 153.
    [50] Mo J W, Ogorevc B, Zhang X J, Pihlar B.Cobalt and copper hexacyanoferrate modifiedcarbon fiber microelectrode as an all-solid potentiometric microsensor for hydrazine,Electroanalysis,2000,12(1);48.
    [51] Koncki R, Wolfbeis O S,Composite films of Prussian blue and N-substituted polypyroroles:fabrication and application to optical determination of pH.Anal Chem.1998,70:2544.
    [52] Koncki R, Wolfbeis O S.Optical chemical sensing based on thin films of Prussian Blue,Sens.Actuators B,1998,51:355.
    [53] Pournaghi-Azar M H, Dastangoo H. Electrochemical characteristics of an aluminum electrode modi?ed by a palladium hexacyanoferrate ?lm, synthesized by a simple electroless procedure. J.Electroanalytical Chemistry,2002,523:26-33.
    [54] Zhou J, Wang E.Electrocatalytic oxidationand amperometric determination of sulfhydrtl compounds at a copper hexacyanoferrate film glassy carbon electrode in liquid chromatography.Electroanalysis.1994,6:29.
    [55] Chang C Y, Chau L K, Hu W P, Wang C Y, Liao J H, Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Microporous and Mesoporous Materials, 2008,109:505–512.
    [56] Shankaran D R,Narayanan S,Chemically modified sensor for amperometric determination of sulphur dioxide,Sens.Actuators B,1999,55:191.
    [57] Cai C X, Ju J H, Chen H Y.Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a microband gold electrode modified with nickel hexacyanoferr-ate.Anal.Chim.Acta.1995,310:145.
    [58] Cai C X,Ju J H, Chen H Y,Cobalt hexacyanoferrate modified microband gold electrode and its electrocatalytic activity for oxidation of NADH.J.Electroanal. Chem.1995,397:185.
    [59] Chen S M.Characterization and electrocatalytic properties of cobalt hexacyano- ferrate films.Electrochim.Acta.1998,43:3359.
    [60] Chen S M, Liao C J.Preparation and characterization of osmium hexacyano- ferrate ?lms and their electrocatalytic properties. Electrochimica Acta,2004, 50:115–125.
    [61] Pournaghi-Azar M H, Dastangoo H, Fadakar bajeh baj R. Simultaneous determination of dopamine and its oxidized product (aminochrom), by hydrodynamic amperometry and anodic stripping voltammetry, using the metallic palladium and uranalyl hexacyanoferrate coated aluminum electrodes. Biosensors and Bioelectronics, 2010,25:1481-1486.
    [62] Chen S M, Peng K T.The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II) hexacyanoferrate ?lms. J. Electroanalytical Chemistry,2003, 547:179-189.
    [63] Tao W Y, Pan D W, Liu Y J, Nie L H, Yao S Z.Characterization and electro- catalytic properties of cobalt hexacyanoferrate ?lms immobilized on Au-colloid modi?ed gold electrodes.J. Electroanalytical Chemistry, 2004,572:109–117.
    [64] Jesús A.López, Manríquez J, Mendoza S, Luis A.Godínez, Design and construc- tion of nickel hexacyanoferrate– Starburst PAMAM dendrimer modi?ed gold electrodes for the potentiometric detection of potassium in aqueous media. Electrochemistry Communications ,2007,9:2133–2139.
    [65] Huang Z Q, Zhou X Y, Wang G Q, Li P B, Zhao Z F.Potassium ion-selective electrode based on a cobalt(Ⅱ)-hexacyanoferrate film-modified electrode.Anol. Chim.Acta.1991,224:39.
    [66] Cox J A, Das B K.Determination of anionic impurities in selected concentrated electrolytes by iron chromatography.Anal.Chem.,1985,57:383-385
    [67] Xu J J, Fang H Q, Chen H Y.The electrochemical characteristics of an inorganic monolayer film modified gold electrode and its molecular recognition of alkalimetal cation.J.Electroanal.Chem.1997,426:139.
    [68] Krishnan V, Xidis A L, Nef V D,Prussian blue solid-state films and membranes as potassium ion-selected electrodes,Anal.Chim.Acta,1990,239:7.
    [69] Gao Z, Zhou X, Wang G, Li P, Zhao Z,Electrochemical and spectroscopic studies of cobal-hexacyanoferrate film modified electrodes,Anal.Chim.Acta. 1991,361:147.
    [70] Mortimer R J,P Sarbeira J B, Sene A F B, Stradiotto N R,Potentiometric determination of potassium cations using a nickel(II)hexacyanoferrate-modified electrode,Talanta 1999,49:271.
    [71] Kulesza P J, Zamponi S, Malik M A, Berrettoni M, Wolkiewicz A, Marassi R Spectroelectrochemical characterization of cobalt hexacyanoferrate films in potassium salt electrolyte.ElectrochimicaActa.1998,43(8):919.
    [72] Javalakshmi M, Scholz F.Charne-discharne characteristics of a solid-state Prussian blue secondary cells.Journal of Power Sources.2000,87:212.
    [73] Javalakshmi M, Scholz F.Performance characteristics of zinc hexacyanoferrate/ prussian blue and copper hexacyanoferrate/Prussian blue solid state secondary ce11s.Journal of Power Sources.2000,91:217.
    [74] Imanishi N, Morikawa T, Kondo.J,etc.Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary secondary battery.Journal of Power Sources.1999,79:215.
    [75] Imanishi N, Morikawa T, Kondo J,etc.Lithium intercalation behavior of iron cyanometallates.Journal of Power Sources.1999,81-82:530.
    [76] Kulesza P J,Jedral T.A new development in polynuclear inorganic films:silver(I)“corsslinked”nickel(II)-hexacyanoferrate(II,III)microstructures. Electrochim Acta,1989,34(6):851.
    [77] Herme M,Lovric M.On the electrochemically driven formation of belayed systems of solid Prussian blue metal hexacynoferrats:a model cadium hecacyanoferrate supported by finite differences simulations.Electroanal Chem, 2001,501:193.
    [78] Vielstich W,Gasteiger H A,Lamm A,Eds.Handbook of Fuel Cells[M].New York:Wiley-VCH,2003
    [79]谢晓峰,范星河.燃料电池技术[M].北京:化学工业出版社,2004
    [80]毛宗强,陆天虹.燃料电池[M].北京:化学工业,2005
    [81]陈胜洲,董新法,林维明.[J].化工新型材料,2002,30,10:17.
    [82]陆天虹,唐亚文,张玲玲,高颖.各种燃料电池产业化概况,电池工业[J],2007,12:119.
    [83] Ha R I,Masel R I,Waszczuk P,Wieckowski A,Barnard T.Direct formic acid fuel cells. J Power Sources,2002,111:83
    [84] Ha S,Larsen R,Zhu Y,Masel R I.Direct Formic Acid Fuel Cells with 600 mA cm-2 at 0.4V and 22℃.Fuel Cells,2004,4:337.
    [85] Rhee Y W,Ha S Y,Masel R I.Crossover of formic acid through Nafion membranes.J Power Sources,2003,117:35.
    [86] Wang X,Hu J M,Hsing I M.Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion membrane J Electroanal Chem,2004,562:73.
    [87] Demirci U B.Direct liquid-feed fuel cells: Thermodynamic and environmental concerns.J Power Sources,2007,69:239.
    [88] Anderson B,Grantscharava E,et al.Systematic Theoretical Study of Alloys of Platinum for Enhanced Methanol Fuel Cell Performance.J Electrochem Soc,1996,143(6):2075.
    [89] Bogdan G, Rameshkrishnan V,et al. Structural and Electrochemical characteriza -tion of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation.J Phys Chem B 1998,102:9997.
    [90] Liu R X,Hakim,etal. Potential-dependent infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelecton Spectroscopy of Arc-Meted Single-Phase Pt,PtRu,PtOs,PtRuOs,and Ru Electrodes.J PhysChemB,2000,104:3518.
    [91] Gotz M,Wendt H. Binary and ternary anode catalyst formulations including the elements W,Sn and Mo for PEMFCs operated on methanol or reformate gas Electrochimica Acta,1998,43(24):3637.
    [92] Roth C,Goetz M, Fuess H.Synthesis and characterization of carbon-supported Pt-Ru-WOx catalysts by spectroscopic and diffraction methods.J.Applied Electro -chemistry,2001,31:793.
    [93] Gotz M, Wendt H.Composite electrocatalysts for anodic methanol-reformate oxidation.J.Applied Electrochemistry, 2001, 31:811.
    [94] Lasch K, Joridden L,et al.The effect of metal oxides as co-catalysts for the electrooxidation of methanol on platinum-ruthenium J.Power Sources, 1999,84;225.
    [95] Lima A, Coutanceau C,etal.Investigation of catalysts for electrooxidation. Applied Electrochemistry,2001, 31 :79.
    [96] Arico A S, Poltarzewski Z, etal. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells.Power Sources,1995,55:159.
    [97]潘玉莹.稀土掺杂类普鲁士蓝化学修饰电极上甲醇、甲醛的电催化性质及分析应用研究,西北师范大学硕士学位论文,2010,6.
    [98] Sun Z P, Zhang X G, Liang Y Y, Li H L, Highly dispersed Pd nanoparticles on covalent functional MWNT surfaces for methanol oxidation in alkaline solution. Electrochemistry Communications, 2009, 11: 557.
    [99] Guo D J,Qiu X P,Zhu W T,Chen L Q,Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application. Applied Catalysis B: Environmental, 2009, 89(3-4): 597.
    [100]赵彦春兰黄鲜田建袅罗全迁蔡英,钯铂修饰N-乙酰苯胺膜电极对甲酸的电催化氧化.化学通报,2009,7,644.
    [101] Borja-Arco .E, R. Castellanos. H, J. Uribe-Godínez, A. Altamirano-Gutierrez, O. Jimenez-Sandoval.Osmium–ruthenium carbonyl clusters as methanol tolerant electrocatalysts for oxygen reduction. Journal of Power Sources, 2009, 188:387.
    [102]周海晖,焦树强,陈金华,魏万之,旷亚非,Pt微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化.物理化学学报, 2004, 20(1): 9.
    [103]任莉君,胡中爱,李宗孝,王晓梅,载铂聚苯胺/聚砜复合膜修饰电极对甲醇电催化氧化行为研究.应用化工,2009, 38(4): 521.
    [104]魏杰,杨红,杨玉光,张忠林,磷钼酸修饰铂电极的电化学行为及对甲醇氧化的电催化作用.无机化学学报, 2003, 19(9): 945.
    [105]吴婉群,万本强,罗维忠,载铂微粒的聚苯胺薄膜电极对甲醇的电催化氧化.应用化学, 1994, 11(2):40.
    [106]都君华,李伟善,李红,黄启明,陈红雨,袁中直,氢钼青铜修饰铂电极对醇氧化的电催化作用.精细化工, 2002, 19(10): 571.
    [107]徐红艳,吴华强,徐冬梅,王谦宜,碳纳米管负载纳米Ni修饰电极及碱液中电氧化甲醇.应用化学, 2007, 24(5): 503.
    [108]易清风,章晶晶,黄武,一种新型的钛基纳米多孔网状铂电极对甲醇氧化反应的电催化活性.高等学校化学学报, 2007, 28(9): 1768.
    [109]李国华,田伟,汤俊艳,马淳安,WC/CNT纳米复合材料制备及其对甲醇氧化的电催化性能.物理化学学报, 2007, 23(9): 1370.
    [110]赵彦春,兰黄鲜,田建袅,杨秀林,王凤阳,多孔聚乙酰苯胺纳米纤维载铂催化剂对甲醇的电催化氧化.物理化学学报, 2009, 25(10): 2050.
    [111]赵彦春,兰黄鲜,田建袅,罗全迁,蔡英,铂钴修饰聚乙酰苯胺复合膜对甲醇的电催化氧化.广西师范大学学报(自然科学版),2009, 27(1):63.
    [112]董军,何晓英,郭红,许秀琴,蔡铎昌,Pt2羧基化CNTs/GC复合修饰电极的制备及对甲醇电催化氧化性能.西华师范大学学报(自然科学版), 2004, 25(2): 172.
    [113]衣宝廉等.燃料电池—原理,技术,应用[M].北京:化学工业出版社, 2003:181.
    [114]张关永,陆兆愕.直接式甲醇燃料电池的研究进展[J].化学世界, 1997 ,38(10):507.
    [115] OconEsteban P, Leger J M,Lamy C.Eleetroeatalytic oxidation of methanol on Platinum disPersed inPolyanilin conductingPolymers.J.Appl Eleetroehem ShortCommunieation,1989,19:462.
    [116]吴婉群,万本强,罗维忠,载铂微粒的聚苯胺薄膜电极对甲醇的电催化氧化[J].应用化学,1994,11(2):21.
    [117] KentM Kost,DuaneE.Bartak,BethKazee,et al.Electrode Position of Platinum mi-cropartieles into polyaniline films with electrocatalytic applications.J.Allal. Chem,1988,60:2379.
    [118] MikhaylovaA A,MolodkinaE B,KhazovaO.A.et al.Eleetrocatalytic and adsor -ption ProPerties of Platinum microparticles eleetrodeposited into polyaniline filmsJ.Electroanal.Chem.2001,509: 119.
    [119]钟起玲,吴文.电催化甲酸氧化中把微粒与聚苯胺的相互作用[J].物理化学学报1994,10(19):813.
    [120]都君华,李伟善,李红,等.甲醇在聚苯胺修饰分散铂电极上的电催化氧化[J].电源技术,2003,27(增刊):183.
    [121] Labode H, legerJ M, lamy C.Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed eleetrodes.J.Appl.Electroehem,1994,24:219.
    [122]周海晖,焦树强,陈金华,Pt微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化.物理化学学报.2004,20(l):9.
    [123] Cail T,ChenH Y. Preparation and eleetroaetivity of polyaniline/poly(acrylic acid)film electrodes modified by platinum microparticles.J.Appl. Electrochem,1998,28:161.
    [124]于黄中,陈明光,贝承训等.导电聚苯胺特性、应用及进展[J].高分子材料科学与工程,2003,19(4):18.
    [125]王科,张旺玺.导电聚苯胺的研究进展.合成技术及应用.2001,19(l):23-27
    [126] Kang T E,Neoh K G,TanK L.Polyaniline:a polymer with many interesting insrinsic redox states .Polymer.Sci.1988,23:277.
    [127]林薇薇,南军义,田永辉,梁辉建.XPS研究聚苯胺的竞争掺杂行为[J].化学物理学报.2000,13(5):592.
    [128]王利祥,王佛松.导电聚合物一聚苯胺的研究进展n电子现象、导电机理、性质和应用[J].应用化学,1990,7(6):l.
    [129]陈宏,鲁戈舞,周海晖,等.金属微粒修饰聚苯胺膜电极的研究进展[J]材料导报,2004,18(1):18.
    [1] Park S, Xie Y, Weaver M J. Electrocatalytic Pathways on Carbon-Supported PlatinumNanoparticles: Comparison of Particle-Size-Dependent Rates of methanol, Formic Acid, and Formaldehyde Electrooxidation. Langmuir 2002,18, 5792.
    [2] Chen Y,Zhou Y M,Tang Y W,Lu T H.Electrocatalytic properties of carbon supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation J. Power Sources 2010,195,4129.
    [3] Yi Q F,Chen A C, Huang W,Zhang J J,Liu X P,Xu G R, Zhou Z H. Titanium- supported nanoporous bimetallic Pt–Ir electrocatalysts for formic acid oxidation. Electrochem Commun. 2007,9,1513.
    [4] Obradovi(?) M D,Tripkovi(?) A V,Gojkovi(?) S L.The origin of high activity of Pt- Au surfaces in the formic acid oxidation. Electrochim Acta. 2009, 55,204.
    [5] Waszczuk P,Barnard T M, Rice C,Masel R I, Wieckowski A. A nanoparticle catalyst with superior activity for electrooxidation of formic acid.Electrochem Commun. 2002,4,599.
    [6] Miyake H,Okada T,SamjeskéG,Osawa M. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Phys. Chem. Chem .Phys. 2008,10,3662.
    [7] Chen Y X,Heinen M, Jusys Z, Behm R J. Kinetics and Mechanism of the Electro -oxidation of Formic Acid—Spectroelectrochemical Studies in a Flow Cell. Angew.Chem. Int. Ed. 2006,45,981.
    [8] Chen Y X,Heinen M,Jusys Z,Behm R J.Bridge-Bonded Formate:Active Intermidat -e or Spectator Species in Formic Acid Oxidation on a Pt Film Electrode(?). Langmuir 2006,22,10399.
    [9] Okamoto H,Kon W, Mukouyama Y. Stationary Voltammogram for Oxidation of Formic Acid on Polycrystalline Platinum.J.Phys.Chem.B 2004,108,4432.
    [10] Neurock M,Janik M, Wieckowski. A. A (?)rst principles comparison of themechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 2008,140,363.
    [11] Rice C, Ha S,Masel R I,Waszczuk. P,Wieckowski. A, Barnard. T. Direct formic acid fuel cells .J. Power Sources 2002, 111,83.
    [12] Zhu Y M,Ha S Y, Masel R I. High power density direct formic acid fuel cells. J. Power Sources 2004,130,8.
    [13] Rhee Y W, Ha S Y, Masel R I. Crossover of formic acid through Na(?)on membranes .J. Power Sources 2003,117,35.
    [14] Rice C, Ha S, Masel R I, Wieckowski.A. Catalysts for direct formic acid fuel cells .J. Power Sources 2003,115,229.
    [15] Shen P K,Chen K Y,Tseung AlfredC C.Performance of CO-electrodeposited Pt -Ru/WO3 electrodes for the electrooxidation of formic acid at room temperature. J. Electroanal Chem. 1995, 389,223.
    [16] Zhang Z H,Huang Y J,Ge J J, Liu C P, Lu T H, Xing W. WO3/C hybrid material as a highly active catalyst support for formic.J. Electrochem Commun. 2008,10,1113.
    [17] Jayashree R S,Spendelow J S, Yeom J, Rastogi C,Shannon M A,Kenis P J A. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells Electrochim Acta. 2005,50,4674.
    [18]张丽娟,夏定国.金属间化合物PtBi对甲酸的电催化氧化,无机化学学报,2006,22,6:1085.
    [19]陈玲,王新东,郭敏,NdOx作为助催化剂对PtRu/C电催化氧化甲醇活性的影响物.理化学学报,2006,22,2:141.
    [20] Tang Z C,Lu G X. High performance rare earth oxides LnOx (Ln = Sc, Y, La, Ce, Pr and Nd) modi(?)ed Pt/C electrocatalysts for methanol electrooxidation. J. Power Sources 2006,162,1067.
    [21] He B B,Ding D, Xia C R. Ni–LnOx (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) cermet anodes for intermediate-temperature solid oxide fuel cells.J.Power Sources 2010,195,1359.
    [22]王海涛,秦玉春,罗丽莎,邹洪梅,李宇轩,张恒彬,Y~(3+)和Tm~(3+)对甲醇电氧化的影响.吉林大学学报(理学版),2007,45,6:1015.
    [23] Jusy Z,Schmidt T J,Dubau L,Lasch K, J(?)rissen L, Garche J, Behm R J. Activity of PtRuMeOx(Me=W,Mo or V) catalysts towards methanol oxidation and their characterization.J. Power Sources 2002,105,297.
    [24] Tanase S,Reedijk.Chemistry and magnetism of cyanido-bridgedd–f assemblies .J. Coordination Chemistry Reviews 2006,250,2501.
    [25] Gurunatha K L,Mostafa G, Ghoshal D,Maji T K. Single-Crystal-to-Single -Crystal Structural Transformation in a Three-Dimensional Bimetallic (4f-3d) Supramolecular Porous Framework. Crystal Growth & Design 2010,10, 2483.
    [26] Li G M,Akitsu T,Sato O,Einaga Y.Photoinduced Magnetization of the Cyano -Bridged 3d 4f Heterobimetallic Assembly Nd(DMF)4(H2O)3(í-CN)Fe(CN)5 H2O (DMFN,N-Dimethylformamide).J. Am. Chem. Soc. 2003,125, 12396.
    [27] Ma Y J,Pan Y Y,Wang W F,Yang M X,Zhou M. Electrocatalytic oxidation of methanol at platinum electrode modified with Eu-Fe cynide-bridged binuclear complexes,Chinese Chemical Letters 2010,21,337.
    [28] Liu S Q,Chen H Y. Spectroscopic and voltammetric studies on a lanthanum hexacyanoferrate modi(?)ed electrode .J. Electroanal Chem. 2002,528,190-195.
    [29] Aubert P H,Goubard F, Chevrot C, Tabuteau A. Charge transport properties in microcrystalline KDyFe(CN)6.Journal of Solid State Chemistry2007, 180,765.
    [30]袁爱华,周虎,沈小平,氰基桥联配合物的研究进展.化学研究与应用,2005,5,582.
    [31] Koner R, Drew M G. B,Figuerola A, Diaz C, Mohanta S A new cyano-bridged one-dimensional GdIIIFeIIIcoordination polymer with o-phenanthroline as the blocking ligand: synthesis, structure, and magnetic properties. Inorganica Chimica Acta2005, 358,3041.
    [32] Yamada M,Yonekura S Y.Nanometric Metal Organic Framework of Ln[Fe-(CN)_6]:Morpho logical Analysis and Thermal Conversion Dynamics by Direct TEM Observation .J.Phys.Chem.C 2009, 113,21531.
    [33] WangY J, Wu B,Gao Y,Tang Y W, Lu T H,Xing W, Liu C P. Kinetic study of formic acid oxidation on carbon supported Pd electrocatalyst .J. Power Sources. 2009, 192,372.
    [34]万本强,甲酸在铂微粒修饰的聚2 ,5-2二甲氧基苯胺电极上的电催化氧化应用化学,1999,16,2:60.
    [1]陈先学,卢建树.直接甲醇燃料电池电催化剂的研究进展[J].化工新型材料, 2003, 31 (5) : 24.
    [2] Shen P K, Tseung A C C. Anodic oxidation of methanol on Pt /WO3 in acidic media. J Electrochem Soc, 1994, 141( 11) :3082.
    [3] Renxuan Liu,Eugene S S. Array membrane electrode assemblies for high throughput screening of direct methanol fuel cell anode catalysts. J. Electroanalytical, 2002, 535 (1 - 2) : 49.
    [4]张兵,刘跃龙,章磊,等.铂微粒修饰玻碳电极在乙醇氧化中的电催化行为[ J ].江西师范大学学报(自然科学版) , 2003,27 (3) : 257.
    [5]陈卫祥,韩贵,LEE J im Yang,等. Pt/CNT纳米催化剂的微波快速合成及其对甲醇电化学氧化的电催化性能[ J ].高等学校化学学报, 2003, 24 (12) : 2285 .
    [6]孙世刚,王津建,穆纪千.甲酸在Pt( 100)单晶电极表面解离吸附过程的动力学[ J] .物理化学学报, 1992, 8( 6) : 732.
    [7] Nordlund J, Lindberbh G. A model for porous direct methanol fuel cells anode. J.Electrochem.Soc.,2002,149(9):A1007
    [8] Iwasita T. Electrocatalysis of methanol oxidation. J.Electroanal .Chim.Acta., 2002,48(3):289
    [9] Lamy C, Belgsir E M,Léger J M. Electrocatalytic oxidation of aliphatic alcohols:application to the direct alcohol fuel cell(DAFC). J. Applied Electrochem, 2001,31(7):799
    [10] Lamy C, Lima A, Lerhun V, Delime F, CoutanceauC, Léger J M. Recent advances in the development of direct alcohol fuel cells(DAFC). J Power Recourses, 2002,105:283
    [11] Dillon R, Srinivasan S, AricòA S, Antonucci V. International activities in DMFC R&D: status of technologies and potential applications. J. Power Sources,2004,127(1-2): 112.
    [12] Costamagna P, Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects.J Power Sources, 2001,102(1-2): 242.
    [13]都君华,李伟善,李红.甲醛在聚苯胺修饰分散铂电极上的电催化氧化.[J]华南师范大学学报,2003,4:78.
    [14] Park S,Xie Y,Weaver M J.Electrocatalytic Pathways on Carbon-Supported Platinum Nanoparticles:Comparison of Particle-Dependent Rates of Methanol,Formic Acid,and Formaladehyde Electrooxidation.Langmuir, 2002,18(15):5792.
    [15] Zhao M Ch, Rice C, Masel R I, Waszczuk P, Wieckowski A.Kinetic Study of Electrooxidation of Formic Acid. J.Electrochem Soc, 2004,151(1):A131.
    [1] Couper A M, Pletcher D, Walsh F C ,Eleetrode materials for electrosynthesis, Chem.Rev,1990:90,837.
    [2] Andrieux C P,Dumas-Bouchiat J M,Saveat J M,Catalysis of electrochem icalreactions at redox Polymer electrodes:Kinetic model for stationary voltamm -etric techniques.J.Electroanal.Chem,1982.131:1.
    [3]赵庆琦,陈实,邓锐,等.一氧化氮在大环铜配合物修饰电极上的电催化氧化及测定.分析测试学报,2001,20(3):9.
    [4]王志贤,王赤撒,胡效亚,化学修饰电极的制备及其药物分析应用的研究进展阴,化学传感器,2007,27(4):9.
    [5]张玉龙,温金凤,崔胜云,抗坏血酸在L一半胧氨酸自组装膜修饰电极上的电化学特性,延边大学学报(自然科学版),2008,34(2):121.
    [6]罗济文,李家洲,黄志伟,聚毗咯掺杂澳酚蓝修饰玻碳电极的制备和电化学性质,玉林师范学院学报,2005,26(3):48.
    [7]丁杰,董绍俊,导电高分子薄膜修饰电极的研究(n)一杂聚阴离子掺杂聚毗咯膜的胜质,高等学校化学学报,1996,17(8):1191.
    [8] Retalmal B A, Vaschetto M E, Zagal J H.Catalytic electrooxidation of 2-merc aptoethanol using cobalt phthalocyanine+poly(2-chloroaniline) modified electrodes.J.Electroanal.Chem. 1997,431,1.
    [9] Fabre B, Bidan G, Electrosynthesis of different electronic conducting polymer films doped with an iron-substituted heterpolytungstate: choice of the immobilization matrix the most suitable for the electrocatalytic reduction of nitrite ions Electrochim.Acta 42(1997)2587.
    [10] Lu S Y,Li C .,Zheng D D,etal.,Electron transfer on an electrode of glucose oxidase immobilized in polyaniline.J.Electroanal.Chem.,1994,364:31.
    [11] Yonezawa S,Kanamura K,Takehara Z,Discharge and charge characteristics of polyamine prepared by electropolymerization of aniline in nonqueous solvent.J.Electrochem.Soc.1993,3:629.
    [12] Mathiyarasu J,Senthilkumar S,Phani K L N ,etal.,Selective detection of dopamine using a functionalized polyaniline composite electrode.J.Appl.Electrochem, 2005,5:513.
    [13]胡自强,边界,沈良.聚苯胺二茂铁甲酸修饰的酶传感器的研究.杭州师范学院学报(自然科学版),2001,2,1:41.
    [14]董绍俊,宋发益.聚苯胺薄膜修饰电极对抗坏血酸的电催化氧化.物理化学学报,1992,8,1:82.
    [15]武克忠,王庆飞,马子川,段晓伟,李彩宾,甄晓燕.循环伏安法电化学合成聚苯胺.绍兴文理学院学报,2010,30,8:24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700