用户名: 密码: 验证码:
现代柴油机燃烧过程中微粒生成历程及形态特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着柴油机保有量的持续增加,其排放微粒对环境和人类健康的危害日益严重,因此,研究柴油机微粒的生成机理及控制技术具有重大的现实意义。为研究现代柴油机微粒的生成规律,以便今后有的放矢的采取技术措施降低颗粒物的排放,作者利用前期开发的现代柴油机全气缸取样系统,开展了柴油机燃烧过程中缸内微粒生成历程及其形态特性的研究。本文的具体研究内容如下:
     1.优化前期开发的全气缸取样系统,并通过试验摸索出最优的发动机台架试验方案,确立了合理的取样方法并完成了取样过程标定。
     2.采用过滤称重法和电子低压冲击仪(ELPI)检测法,研究了柴油机燃烧过程中微粒的生成历程,即在燃烧过程中微粒质量浓度和粒数浓度随曲轴转角的变化规律,并使用索氏萃取法对微粒中吸附的可溶性有机物和碳烟微粒进行分离。研究结果表明,在燃烧过程中,碳烟微粒质量浓度随发动机曲轴转角(℃A)呈单峰状分布,其峰值出现在上止点后13~15℃A,且峰值随喷油压力和负荷的增高而增大;微粒粒数浓度随曲轴转角也呈单峰状分布,峰值出现在14~18℃A ATDC之间;且不同取样时刻粒数浓度随粒径近似正态分布变化,粒数浓度最大值大约出现在100nm~200nm之间。
     3.用场发射透射电镜对燃烧过程中的微粒样品进行形貌和基本粒子微观结构的观察分析,并运用Image-Pro Plus和ImageJ图像处理软件研究了基本粒子粒径和凝聚态微粒的分形维数。研究结果表明,燃烧过程中形成的微粒是由数十个、数百个准球状基本碳粒子构成,主要呈簇状、球状、链状、枝状及环状等不规则的形状,具有分形结构特性;基本碳粒子分外壳和内核两部分,外壳为稳定的多层石墨结构,内核为不稳定的非晶态结构;基本碳粒子的粒径分布呈高斯分布规律,在燃烧开始,基本碳粒子大多数为15~20nm,随着燃烧过程的进行粒子增长,峰值出现在20~30nm之间,随后粒子开始被氧化;基本粒子平均粒径随曲轴转角的变化呈单峰状变化,峰值出现在12~15℃A ATDC,平均粒径介于19.7~29.7nm之间;微粒的分维数介于1.2~1.74之间,且在扩散燃烧初期有降低的趋势。
With the increase of diesel engines in the world, the pollution of particulateemissions from diesel engines, which are harmful to the atmosphere environment andhuman health, is getting more and more serious. Therefore, it has a great practicalsignificance to study the formation mechanism of the modem diesel particulates andthen work out the control techniques for them. To investigate the formation mechanismof the in-cylinder particulate and obtain the scientific basis to control the particulateemission from modem diesel engines, the research was carried out using the totalcylinder dumping system developed by predecessors, and its emphasis was on theformative histories and morphological properties of particulate matter duringcombustion process. The major achievements are listed as follows:
     1. The primary total cylinder dumpling system was optimized. Based on theimproved system, the scientific experimental scheme and sampling method wereestablished, meanwhile, the sampling process was calibrated.
     2. The disciplinarians of the in-cylinder particulate's mass formation history and itsnumber distribution were investigated by both filtration-weighing method and theElectrical Low Pressure Impactor (ELPI) detection method, meanwhile the SoxhletExtraction method was used to separate the soluble organic fraction (SOF) from thediesel particulates. Experiment results indicated that the particle mass (PM)concentration showed unimodal distribution with the crank angle (°CA). The peakpoint lied at about 13~15℃CA ATDC and the peak value of PM increased with the fuelinjection pressure increasing. During the combustion process, the total particle numberdistribution also presented unimodal distribution with the crank angle (°CA), andreached a peak between 14 and 18°CA ATDC, the particle number distribution waslognormal in form with the particle diameter, and the maximum value was lied atabout 100nm~200nm particle diameter.
     3. The investigation on the morphology and microstructure of primary carbonparticle in-cylinder particulates were conducted on a field emission gun transmissionelectron microscopy (FEG TEM), and the results were analyzed by the imagetechnology. The results illustrated that in-cylinder particulates consist of tens tohundreds of near-spherical primary particles, and these aggregate particles exhibit avariety of different shapes, such as clustery, spherical, chain-like, branchlike andarmularity, and they all have fractal nature. A primary soot particle has tow distinctparts: an inner core and an outer shell. The outer shell is composed of graphiticstructure, and the inner core is amorphous structure. It was also found that the primaryparticles size distribution was Gauss distribution, and at the beginning of combustion,the primary particles has a diameter of 15N20nm, the diameter of primary particlesincreased with the processing of combustion, the peak of it was lied about 20~30nmdiameter meter. The average diameter was measured in a range of 16.3~29.7nm, andthe peak value present to 10~15℃CA ATDC. The fractal dimension of diesel sootmeasured was in a range of 1.2~1.74, and it declined at the early diffusive combustionperiod.
引文
[1] 杨复沫,贺克斌,马永亮等.北京PM2.5浓度的变化特征及其与PM10、TSP的关系[J].中国环境科学.2002,22(6):506~510.
    [2] 朱光一.大气可吸入颗粒物研究进展[J].环境保护科学.2002,28(113):3~5.
    [3] 蒋红梅,王定勇.大气可吸入颗粒物的研究进展[J].环境科学动态.2001,1:11~15.
    [4] 刘巽俊.内燃机的排放与控制[M].北京:机械工业出版社,2002.11,48~54,257~260.
    [5] 李大秋,王东海.空气颗粒物中有机污染物粒径分布规律的研究[J].环境保护.1996,(12):39-40.
    [6] Winfried Moller, Thomas Hofer. Ultrafine Particles Cause Cytoskeletal Dysfunctions in Macrophages[J]. Toxicology and Applied Pharmacology. 2002, 182: 197~207.
    [7] Panyacosit L. A Review of Particulate Matter and Health: Focus on Developing Countries[R]. Laxengurg, Austria: ⅡASA, 2000.
    [8] K.A. Berube, T. P. Jones, B. J. Williamson et al. Physicochemical Characterization of Diesel Exhaust Particles: Factors for Assessing Biological Activity [J]. Atmospheric Environment. 1999, 33: 1599-1614.
    [9] Bond T.C., Streets D.G., Yarber K.F., Nelosn S.M., Woo J., Klimont Z.. A Technology-bsed Global Inventory of Black and Organic Carbon Emissions from Combustion [J]. Journal of Geophysical Research. 2004, 109, D14203.
    [10] Park K., Kittelson D.B., Zachariah M.R., & McMurry, EH.. Measurement of Inherent Material Density of Nanoparticle Agglomerates [J]. Journal of Nanoparticle Research. 2004, 6, 267.
    [11] 张延峰,宋崇林,成存玉等.车用柴油机排气颗粒物中有机组分和无机组分的分析[J].燃烧科学与技术.2004,10(3):197~201.
    [12] Jan Broz, et al. The Effect of Oils on PAH, PCDD, PCDF and PCB Emissions from a Spark Engine Fueled with Leaded Gasoline. Chemosphere, 2000, 41 (12): 1905~1911.
    [13] Yuzo Aoyagi et al. A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine[J]. SAE Paper 800254, 1980.
    [14] H. Zhao, G. Lowry, N. Ladommatos. Time-Resolved Measurements and Analysis of In- Cylinder Gases and Particulates in Compression-Ignition Engines[J]. SAE Paper 961168,1996.
    [15] P. Weiss and J. C. Keck. Fast Sampling Valve Measurements of Hydrocarbons in the Cylinder of a CFR Engine [J]. SAE Paper 810149, 198t.
    [16] A. Voiculescu and G. L. Borman. An Experimental Study of Diesel Engine Cylinder Averaged NOx Histories [J]. SAE Paper 780228, 1978.
    [17] G. H. Hedding, D. B. Kittelson and H. Scherrer et al. Total Cylinder Sampling from a Diesel Engine[J]. SAE Paper 810257, 1981.
    [18] X. liu and D. B. Kittelson. Total Cylinder Sampling from a Diesel Engine (Part Ⅱ)[J]. SAE Paper 820360, 1982.
    [19] Cao Jian Du and David B. Kittelson. Total Cylinder Sampling from a Diesel Engine: Part Ⅲ-Particle Measurements [J]. SAE Paper, 830243.
    [20] Du Cao Jian, Kittelson David B, Zweidinger Roy B. Measurement of Polycyclic Aromatic Compounds in the Cylinder of an Operating Diesel Engine [J]. SAE Paper 840364,1984.
    [21] D. B. Kittelson, M. J. Pipho, J. L. Arabs et al. Particle Concentrations in a Diesel Cylinder: Comparison of Theory and Experiment [J]. SAE Paper 861569.
    [22] 刘仪,藏仲冬,白翎等.直喷式柴油机缸内气体全量取样技术开发及其在缸内微粒形成过程研究中的应用[J].内燃机学报.1995,13(1):71~76.
    [23] 刘仪.柴油机全气缸取样系统开发及缸内微粒形成过程研究[D].长春:吉林工业大学,1989.
    [24] 刘仪,季雨,郭英男等.柴油机全气缸取样系统及其缸内微粒形成过程研究中的应用[J].内燃机学报.1990,8(2):125~130.
    [25] Michael J. Pipho, Jeffrey L. Ambs and David B.Kittelson. In-Cylinder Measurements of Particulate Formation in an Indirect Injection Diesel Engine [J]. SAE Paper 860024, 1986.
    [26] D.B.Kittelson, M.J.Pipho, J.L.Ambs et al. Particle Concentrations in a Diesel Cylinder: Comparison of Theory and Experiment [J]. SAE Paper 861569, 1986.
    [27] David B. Kittelson, Michael J. Pipho, Jeffrey L. Ambs et al. In-cylinder Measurements of Soot Production in a Direct-Injection Diesel Engine [J]. SAE Paper 880344, 1988.
    [28] FujiwaraY., S.Fukazawa, S.Tosaka, T.Murayama. Formation of Soot Particulates in the Combustion Chamber of a Precombustion Chamber Type Diesel Engine[J]. SAE Paper 840417, 1984.
    [29] Matsui T., T.Kamimoto, S.Matsuoka. Formation and Oxidation Processes of Soot Particulate in a D.I. Diesel Engine-An Experimental Study Via the Two-color Method [J]. SAE 82046.
    [30] Luo Lang. In-cylinder particulate size distribution measurements in a direct-injection diesel engine [D], University of Minnesota, 1991.
    [31] B. Bougie, L.C. Ganippa, A.P. van Vliet et al. Laser-Induced Incandescence Particle Size Measurements in a Heavy-duty Diesel Engine[J]. Combustion and Flame. 2006, 145: 635~637.
    [32] Du Cao Jian, Kittelson David B, Zweidinger Roy B. Measurement of Polycyclic Aromatic Compounds in the Cylinder of an Operating Diesel Engine [J]. SAE Paper 840364,1984.
    [33] Yasuhiro Fujiware and Shigeru Tosaka. Formation Process of SOF in the Combustion Chamber of IDI Diesel Engines [J]. SAE Paper 932799, 1993.
    [34] 彭美春.柴油机排气微粒的理化特性及其催化净化[D].长春:吉林工业大学,1990.
    [35] B.E.Haye著.徐新阳、康雁、陈旭等译.A Random Walk Through Fractal Dimensions分形漫步[M].沈阳:东北大学出版社,1994.9.
    [36] Burtscher H. Characterization of Ultra Fine Particle Emissions from Combustion Systems[R]. Society of Automotive Engineers:Technical Paper Series, SAE Paper 2000-01-1997, 2000.
    [37] M. Wentzel, H. Gorzawski, K.-H. Naumann et al. Transmission Electron Microscopical and Aerosol Dynamical Characterization of Soot Aerosols[J]. Aerosol Science. 2003, 34: 1347~1370.
    [38] Magin Lapuerta, Rosario Ballesteros, Francisco J. Martos. A Method to Determine the Fractal Dimension of Diesel Soot Agglomerates [J]. Journal of Colloid and Interface Science. 2006, 303: 149~158.
    [39] Kyeong Ook Lee, Jinyu Zhu and Stephen Ciatti. Sizes, Graphitic Structures and Fractal Geometry of Light-duty Diesel Engine Particulates [J]. SAE Paper 2003-01-3169.
    [40] C. Van Gulijk, J.C.M. Marijnissen, M. Makkee, J.A. Moulijn, A. Schmidt-Ott. Measuring Diesel Soot with a Scanning Mobility Particle Sizer and an Electrical Low-Pressure Impactor: Performance Assessment with a Model for Fractal-like Agglomerates[J]. Aerosol Science. 2004, 35: 633~655.
    [41] 成存玉.柴油机全气缸取样系统的开发[D].天津:天津大学,2005.
    [42] 郭振鹏.柴油机全气缸取样系统改进及微粒生成历程的初步研究[D].天津:天津大学,2006.
    [43] Jinyu Zhu, Kyeong Ook Lee, Ahmet Yozgatligil, Mun Young Choi. Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulate [J]. Proceedings of the Combustion Institute. 2005,30:2781~2789.
    [44] Urs Mathis, Martin Mohr, Ralf Kaegi. Influence of Diesel Engine Combustion Parameters on Primary Soot Particle Diameter[J]. Environ. Sci.Technol. 2005, 39: 1887~1892.
    [45] A.M. Brasil, T.L. Farias, M.G. Carvalho. A Recipe For Image Characterization of Fractal-like Aggregates[J]. J. Aerosol Sci. 1999, 30(10): 1379~1389.
    [46] Koylu U.O., Faeth G.M., Farias T.L., Carvalho M.G., Fractal and Projected Structure Properties of Soot Aggregates [J]. Combust Flame. 1995, 100: 621~633.
    [47] Tomoji Ishiguro, Yoshiki Takatori, Kazuhiro Akihama, Microstructure of Diesel Soot Particles Probed by Electron Microscopy: First Observation of Inner Core and Outer Shell [J]. Combustion and Flame. 1997, 108: 231-234.
    [48] 新井纪男(日).燃烧生成物的发生与抑制技术[P].北京:科学出版社,2001,159~169.
    [49] Su D.S., Muller J.O., Jentoft R.E., et al, Fullerene-like Soot from Euro IV Diesel Engine: Consequences for Catalytic Automotive Pollution Control [J]. Topics in Catalysis, 2004, 30(31): 241~245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700