用户名: 密码: 验证码:
深部开采底板破坏及高承压突水模式、前兆与防治
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在深部开采防治水实践中,煤层底板不同结构的隔水层和作用在隔水层的水压力是决定能否突水的一对基本矛盾,深入研究和认识不同结构底板隔水层的采动破坏规律、突水模式及前兆信息,对于有效防止突水事故的发生极为重要。
     本论文以深部开采底板承压超过5MPa的特殊条件为研究对象,围绕复杂结构底板隔水层采动破坏及其诱发高承压突水这一核心问题,以大量突水资料为背景,分析了底板突水的形成及影响因素、水岩相互作用、时空分布及规律,总结了底板突水的两类基本模式,即完整型底板突水模式和断裂构造型底板突水模式;采用现场实测、数值模拟及物理模拟等手段,揭示了深部开采条件下底板隔水层的采动破坏规律,即在底板承压超过5MPa条件下,工作面底板隔水层受超前应力破坏明显,深度一般在25m左右;在相同底板隔水层结构和开采条件下,随着水压的升高,底板破坏深度及范围不断增大;工作面底板不同位置的破坏范围具有差异性,从工作面正下方往采空区方向由“倒马鞍形”逐步过渡到“倒梯形”;利用高承压矿井突水模拟试验系统,设计并完成了单一结构、多层组合结构以及断裂结构底板隔水层条件的底板高承压突水模拟试验;揭示了不同底板结构模型突水的压力及孔隙水压力变化特征;试验结果表明采动引起的底板压力及孔隙水压力呈周期性波动,与工作面推进距离有关;突水通道形成过程中,各参数均表现为较大幅度升高并剧烈波动;通道一旦形成并发生突水时,压力和孔隙水压力均急剧下降,并稳定在某一范围;试验结果表明,底板压力和孔隙水压力信息是较为理想的底板突水监测预报信息源;以典型底板隔水层条件为基础,建立了深部高承压厚隔水层条件下安全开采评价方法以及薄隔水层条件下“底板富水性探查-注浆改造-物探钻探验证-安全开采评价-回采”的决策及实践范例;发现了豫中矿区寒武系石灰岩上段20~30m层段岩溶不发育,具有良好的隔水性,分析了该层段隔水性的地质成因,将寒武系石灰岩上段岩溶不发育段作为隔水层考虑,并成功应用于马陵山井田井巷工程布置,实现了-350m上车场进入寒武系石灰岩上段垂深55.5m,合计320m长度巷道的安全施工并投入使用2年。
     本文的研究成果对深部高承压水上安全开采以及矿井突水的监测与临突预测预报等具有重要的理论意义和实践价值。
In the water disaster prevention practice of deep mining above aquifer, there is always a basic contradiction between the floor aquifuge with different structures and the water pressure that the aquifuge is subjected to. Therefore, the further study and understanding on the floor structure and mining-induced failure characteristics, the high pressure water inrush models and precursors are significant for efficiently prevention of the water inruch hazards.
     This paper presents the models, precursors and characteristics of complex structure aquifuge failure in the floor and the confined water inrush with high pressure over 5MPa in deep underground coal mining. The occurrence and influencing factors of floor water inruch, interaction between water and rock, temporal-spatial distribution were analyzed based on numerous water inruch data. And then, two basic patterns of floor water inruch, including integrated and fractured floor water inrush pattern, were concluded and summarized. The characteristics of floor failure under deep mining conditions were revealed according to field measurements, numerical and physical simulations. The results show that, with the condition of confined water pressure over 5MPa that the aquifuge is subjected to, the floor failure is influenced significantly by advance stress and the failure depth is about 25m. The failure depth and range are enlarged with the increasing of water pressure under the same floor structure and mining conditions. There are some differences of the failure range exist from the area under the working face to the goaf, the ranges change gradually from“inverted saddle shape”to“inverted ladder shape”. Three scaled models, including simplex structure, multilayer structure and faultage structure for floor water inruch with high pressure were then designed and established with the high pressure water inruch simulation equipment. And then, the basic characteristics and laws of stress and pore water pressure variation during the water inruch process with high pressure induced by coal mining under different floor aquifuge structures were also systematically summarized on the basis of the experimental results. The periodic fluctuation of the floor stress and pore water pressure due to coal mining are closely related to the mining progress. During the conformation of mining-induced water inrush pathway, all the parameters increase sharply and fluctuate violently. When the water inrush into the working face, all the parameters decrease considerably and then at a certain range of a low level for a long period. It can be deduced from these results that the floor stress and pore water pressure can be significant precursors for monitoring and forecasting the water inrush hazards in coalmines. Safety mining practices under typical floor acquifuge conditions were then summarized. Evaluation method of safety deep mining under high pressure and thick acquifuge condition was established. Then, the example of“floor water abundance exploration-grouting for aquifer alteration-physical and drilling exploration verification- safety mining evaluation-coal mining”under high pressure and thin aquifuge condition was put into practice. It was found that at least 20~30m of the upper Cambrian limestone can be considered as aquifuge because of its poor karst development characteristics and impermeability And then, the viewpoint has been successfully applied to the decision making of excavating the shaft bottom at -350 m level and 55.5 m deep into the upper Cambrian limestone at a coalmine of central Henan Province and a total 320 m long tunnel in the shaft bottom has been excavated safely and put into practice for 2 years.
     The achievements of this paper lay an important basis for monitoring and forecasting the water inrush disasters in deep undeground coalmines, and for safety coal mining above aquifer with high pressure.
引文
[1]赵铁锤.华北地区奥灰水综合防治技术[M].北京:煤炭工业出版社,2006.
    [2]胡耀青,杨栋等.矿区突水监控理论及模型[J].煤炭学报,2000(S1):130-133.
    [3]靳德武.我国煤层底板突水问题的研究现状及展望[J].煤炭科学技术,2002,30(6):1-4.
    [4]李化敏,付凯.煤矿深部开采面临的主要技术问题及对策[J].采矿与安全工程学报,2006,23 (4), 468-471.
    [5]尹传理,李化敏.我国煤矿深部开采问题探讨[J].煤矿设计,1998,8,7-11.
    [6] M.Y.Wang, J.S.Li. Technology of mine water control in China[J]. International Journal of Mine Water, 1987, 6(3):25-38.
    [7] J.C.Zhang, S.P.Peng. Emergency responses to water disasters in coalmines, China[J]. Environmental Geology, 2005,48: 1068–1076.
    [8] G.Y.Li, W.F.Zhou. Impact of karst water on coal mining in North China[J]. Environmental Geology, 2006,49: 449-457.
    [9]古德生,李夕兵.有色金属深井采矿研究现状与科学前沿[J].矿业研究与开发.2003(S1):1-5.
    [10]王希良,彭苏萍,郑世书.深部煤层开采高承压水突水预报及控制[J].辽宁工程技术大学学报,2004,23(6):758-760.
    [11]何满潮,谢和平,彭苏萍.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803 -2813.
    [12]何满潮,谢和平,彭苏萍.深部开采岩体力学及工程灾害控制研究[J].煤矿支护,2007(3):1-14.
    [13] S.P.Peng, J.C.Zhang. Engineering Geology for Underground Rocks[M]. Springer Berlin Heidelberg, 2007.
    [14]杨天鸿,唐春安等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2),268-277.
    [15] S.X.Yin, J.C.Zhang. Impacts of karst paleo-sinkholes on mining and environment in northern China[J]. Environmental Geology, 2005,48: 1077–1083.
    [16] J.C.Zhang, S.P.Peng. Water inrush and environmental impact of shallow seam mining[J]. Environmental Geology, 2005,48: 1068–1076.
    [17] K.Q.He, D.Guo, X.W.Wang. Mechanism of the water invasion of Gaoyang Iron Mine, China and its impacts on the mine groundwater environment[J]. Environmental Geology, 2006, 49: 1163–1172.
    [18] W.F.Zhou. Drainage and flooding in karst terranes[J]. Environmental Geology, 2007,51: 963–973.
    [19]彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社,2001.
    [20]赵阳升,胡耀青.承压水上采煤理论与技术[M].北京:煤炭工业出版社,2004.
    [21]施龙青,韩进.底板突水机制及预测预报[M].徐州:中国矿业大学出版社,2004.
    [22] M.S.Reibieic. Hydrofracturing of rock as a method of water, mudmand gas inrush hazards in underground coal mining, 4th IMWA, 1991,1(Yugoslavia).
    [23]斯列萨列夫.水体下安全采煤的条件,国外矿山防治水技术的发展与实践[R],冶金矿山设计院,1983.
    [24] C. F. Santos, Z. T. Bieniawski. Floor design in underground coalmines[J]. Rock Mechanics and Rock Engineering, 1989,22(4):249-271.
    [25] J.Motyka, A.P.Bosch. Karstic phenomena in calcareous-dolomitic rocks and their influence over the inrushes of water in lead-zinc mines in Olkusz region (South of Poland)[J]. International Journal of Mine Water, 1985,4:1-12.
    [26] O.Sammarco. Spontaneous inrushes of water in underground mines[J].International Journal of Mine Water, 1986,5(2):29-42.
    [27] O.Sammarco. Inrush prevention in an underground mine[J].International Journal of Mine Water, 1988,7(4):43-52.
    [28] D.Kuscer. Hydrological regime of the water inrush into the Kotredez Coal Mine (Slovenia, Yugoslavia)[J]. Mine Water and the Environment, 1991,10:93-102.
    [29] V.Mironenko, F.Strelsky. Hydrogeomechanical problems in mining[J].Mine Water and the Environment, 1993,12(1):35-40.
    [30] M.Sails, L.Duckstein. Mining under a limestone aquifer in southern Sardinia a multi-objective approach[J].International Journal of Mining Engineering,1983,1(4):357-374.
    [31] S.V.Kuznetsov, V.A.Trofimov. Hydrodynamic effect of coal seam compression[J].Journal of Mining Science, 1993,12:35-40.
    [32] A.V.Mokhov. Fissuring due to inundation of coalmines and its hydrodynamic implications [J]. Doklady Earth Sciences, 2007,414(4):223-225.
    [33] P. Schreck. Environmental impact of uncontrolled waste disposal in mining and industrial areas in Central Germany[J]. Environmental Geology, 1998,35(1):66-72.
    [34] C.Wolkersdorfer, F.Saxony. Mine Water Notes[J]. Mine Water and the Environment,2004, 23:54–55.
    [35] P.L.Younger, C.Wolkersdorfer. Mining Impacts on the Fresh Water Environment[J]. Mine Water and the Environment, Mine Water and the Environment, 2004,23:2–80.
    [36] C.Wolkersdorfer, R.Bowell. Contemporary Reviews of Mine Water Studies in Europe[J]. Mine Water and the Environment ,2004, 23: 161.
    [37] C.Wolkersdorfer, R.Bowell. Contemporary Reviews of Mine Water Studies in Europe, Part 1[J]. Mine Water and the Environment ,2004, 23: 162-182.
    [38] C.Wolkersdorfer, R.Bowell. Contemporary Reviews of Mine Water Studies in Europe, Part 2[J]. Mine Water and the Environment , 2005,24: 2–37.
    [39] C.Wolkersdorfer, R.Bowell. Contemporary Reviews of Mine Water Studies in Europe, Part 3[J]. Mine Water and the Environment , 2005,24: 58–76.
    [40]李白英,沈光寒,荆自刚等.预防采掘工作面底板突水的理论与实践[J].煤矿安全,1988(5): 47-48.
    [41]沈光寒,李白英,吴戈.矿井特殊开采的理论与实践[M].北京:煤炭工业出版社,1992:56-72.
    [42]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报,1999(4):11-18.
    [43]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15 (1):46-54.
    [44]张金才,张玉卓,刘天泉.岩体渗流与煤层低板突水[M].北京:地质出版社,1997.
    [45]张金才.采动岩体破坏与渗流特征研究[D].北京:煤炭科学研究总院博士学位论文,1998.6.
    [46]许学汉,王杰.煤矿突水预报研究[M].北京:地质出版社,1991.
    [47]中国科学院地质所.中国煤矿岩溶水突水机理的研究[M].北京:科学出版社,1992.
    [48]王作宇,刘鸿泉.煤层底板突水机制的研究[J].煤田地质与勘探,1989(1):11-13.
    [49]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1992.
    [50]黎良杰.采场底板突水机理的研究[D].徐州:中国矿业大学博士学位论文,1995.
    [51]钱鸣高,缪协兴等.岩层控制中的关键层理论[J].煤炭学报,1996,21(3):225-230.
    [52]黎良杰,殷有泉.评价矿井突水危险性的关键层方法[J].力学与实践,1998,20(3):34-36.
    [53]黎良杰,钱鸣高,李树刚.断层突水机理分析[J].煤炭学报,1996,21(2):119-123.
    [54]黎良杰,钱鸣高,殷有果.采场底板突水相似材料模拟研究[J].煤田地质与勘探,1996.25 (1):33-36.
    [55]钱鸣高,缪协兴,黎良杰.采场底板破坏规律的理论研究[J].岩土工程学报,1995, 17(6):55-62.
    [56]王经明.承压水沿底板递进导升机理的模拟与观测[J].岩土工程学报,1999,21:546-550.
    [57]王经明.承压水沿底板递进导升机理的物理方法研究[J].煤田地质与勘探,1999,27(6):40-44.
    [58]王经明.承压水沿煤层底板递进导升的突水机理及其应用[D].北京:煤炭科学研究总院博士学位论文,2004.
    [59]李抗抗,王成绪.用于煤层底板突水机理研究的岩体原位测试技术[J].煤田地质与勘探,1997(3): 31-34.
    [60]王成绪,王红梅.煤矿防治水理论与实践的思考[J].煤田地质与勘探,2004,32(Z1): 100-103.
    [61]高延法,施龙青,娄华君等.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社,1999.
    [62]倪宏革,罗国煌.地下开采中优势面控水控稳机制分析.工程地质学报,2000, 08(03):316-319.
    [63]李金凯.矿井岩溶水防治[M].北京:煤炭工业出版社,1990.
    [64]魏久传.煤层底板岩体断裂损伤与底板突水机理研究[D].泰安:山东科技大学博士学位论文,2000, 73-80.
    [65]李子林.大采深条件下徐、奥灰突水机理及防治技术研究[D].青岛:山东科技大学博士学位论文,2007.
    [66]尹尚先.煤矿区突(涌)水系统分析模拟及应用[D].北京:中国矿业大学博士学位论文,2006.
    [67]王树元.矿井突水事件的模糊数学预测法[J].山东矿业学院学报,1989,8(3):48-51.
    [68]许延春.试用灰色理论宏观预测矿井水灾害[J].煤矿开采,1996(1):46-48.
    [69]陈秦生,蔡云龙.用模式识别方法预测煤矿突水[J].煤炭学报,1990,12 (4):63-68.
    [70]武强.华北型煤田矿井防治水决策系统[M].北京:煤炭工业出版社,1995.
    [71]孙亚军.信息拟合方法在焦作东部矿区底板突水预测中的应用研究[D].徐州:中国矿业大学硕士学位论文,1989.
    [72]张大顺,郑世书,孙亚军等.地理信息系统及其在煤矿水害预测中的应用[M],徐州:中国矿业大学出版社,1994,108-169.
    [73]张敏江,王延福.华北聚煤区煤矿工作面回采过程中突水预报专家系统[J].水文地质工程地质,1992.2 (2):29~33.
    [74]王延福,靳德武,曾艳京.矿井煤层底板突水预测新方法研究[J].水文地质工程地质,1999.4 (4):33~37.
    [75]武强,殷作如.评价煤层顶板涌(突)水条件的“三图-双预测法”[J].煤炭学报, 2000(1):60-65.
    [76]武强.基于GIS的地质灾害和水资源研究理论与方法[M].北京:地质出版社,2001.
    [77] Q.Wu,W.F.Zhou.Prediction of inflow from overlying aquifers into coalmines[J]. Environmental Geology, 2008, DOI 10.1007/s00254-007-1030-1.
    [78] B.H.G.Brady, E.T.Brown. Rock Mechanics for underground mining[M].Springer Netherlands. 2004.
    [79] D.G.Price. Engineering Geology-Principles and Practice[M]. Springer Berlin Heidelberg, 2008.
    [80]郑纲.煤矿底板突水机理与底板突水实时监测技术研究[D].西安:长安大学博士学位论文, 2004.
    [81]司海宝.岩溶陷落柱岩体结构力学特征及其突水风险预测的研究[D].淮南:安徽理工大学硕士学位论文,2005.
    [82]李运成.煤层底板岩体结构对采动效应的影响研究[D].淮南:安徽理工大学硕士学位论文, 2006.
    [83] S.N.Yang. Prevention and control of water inrush from faults in floor rocks in the workings [J].International Journal of Rock Mechanics and Mining Sciences, Geomechanics Abstracts, 1995,32(4):193A.
    [84]周瑞光,叶贵钧,武强等.断层破碎带突水的时效特征研究[J].南京建筑工程学院学报, 2002(1): 412-415.
    [85] L.Q.Shi, R.N.Singh. Study of Mine Water Inrush from Floor Strata through Faults[J]. Mine Water and the Environment,2001, 20:140–147.
    [86] Q.Wu, M.Wang. Investigations of groundwater bursting into coal mine seam floors from fault zones[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(4):557-571.
    [87]尹尚先,武强等.北方岩溶陷落柱的充水特征及水文地质模型[J].岩石力学与工程学报,2005, 24(1):77-82.
    [88] Q.Wu, W.F.Zhou, J.H.Wang et al. Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China[J].Environmental Geology,2008,DOI 10.1007/ s00254-008-1415-9.
    [89]煤矿防治水综合技术手册编委会.煤矿防治水综合技术手册[M].吉林:吉林音响出版社,2004.
    [90]郑世书,陈江中,刘汉湖等.专门水文地质学[M].徐州:中国矿业大学出版社,1999.
    [91]中国煤田地质总局编著.中国煤田水文地质学[M].北京:煤炭工业出版社,2000.
    [92]张文泉,张明波.煤层底板岩层阻水能力及其影响因素的研究[J].岩土力学, 1998,19(4): 31-35.
    [93]刘汉湖,郭敬波.带压开采时隔水层的隔水能力研究[J].中国煤田地质,1998,10(2):40-43.
    [94]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007, 32(6):561-564.
    [95]施龙青,娄华群.肥城煤田下组煤底板隔水能力影响因素分析[J].煤田地质与勘探,1998,26 (2): 47-49.
    [96]田干.煤层底板隔水层阻抗高承压水侵入机理研究[D].煤炭科学研究总院学位论文,2005.
    [97]刘印环,王建平,张海清.河南的寒武系和奥陶系[M].北京:地质出版社,1991.
    [98]梅冥相,马永生.华北地台晚寒武世层序地层及其与北美地台海平面变化的对比[J].沉积与特提斯地质,2003,23(4):14-26.
    [99]白海波.奥陶系顶部岩层渗流力学特性及作为隔水关键层应用研究[D].中国矿业大学博士学位论文,2008.
    [100]白喜庆,白海波,沈智慧.新驿煤田奥灰顶部相对隔水性及底板突水危险性评价[J].岩石力学与工程学报,2009,28(2):273 -280.
    [101]吴振岭,沈智慧.煤层底板突水危险性评价中奥灰含水层的阻水作用分析[J].煤矿安全,2009 (2):40-42.
    [102]王金安.承压水体上采煤相似模拟实验[J].矿山压力与顶板管理,1990(3):56-58.
    [103] J.A.Wang, H.D.Park. Coal mining above a confined aquifer[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(4):537-551.
    [104] W.T.Koiter. Elastic stability and post buckling behavior, nonlinear problem[M]. Madisom: University of Wisconsin Press,2005.
    [105]赵阳升,马宇等.岩层裂缝分形分布规律研究[J].岩石力学与工程学报,2002,21(2):219-222.
    [106] W.S.Dershowitz, H.Einstein. Characterizing rock joint geometry with joint System models [J].Rock Mech.and Rock Engrg. 1988,Vol.21.
    [107] M.N.Sakellariou, M.Mitsakaki. On the fractal character of rock surface[J]. International Journal of Rock Mechanics and Mining Sciences,1991,28:527-533.
    [108]王吉松,关英斌.相似材料模拟在研究煤层底板采动破坏规律中的应用[J].世界地质.2006.25 (1):86-90.
    [109]陈陆望.物理模型试验技术研究及其在岩土工程中的应用[D].武汉:中国科学院研究生院武汉岩土力学研究所博士学位论文,2007.
    [110]王贵虎,何廷峻.高承压水体上开采底板岩层变形特征研究[J].西安科技大学学报,2007, 23(3),359-364.
    [111]曹吉胜.高承压水作用下工作面突水机理数值模拟研究[D].青岛:山东科技大学,2006.
    [112]胡耀青.带压开采岩体水力学理论与应用[D].太原:太原理工大学博士学位论文,2003.
    [113]弓培林,胡耀青,赵阳升等.带压开采底板变形破坏规律的三维相似模拟研究[J].岩石力学与工程学报, 2005.24(23):4396-4402.
    [114]胡耀青,严国超等,承压水上采煤突水监测预报理论的物理与数值模拟研究[J].岩石力学与工程学报,2008,27(1):56-60.
    [115]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社.2004.
    [116]郑少河,朱维申,王书法.承压水上采煤的固流耦合问题研究[J].岩石力学与工程学报,2000, 19(7):421–424.
    [117] T.H.Yang, L.G.Tham, C. A. Tang, et al. Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks[J].Rock Mech. Rock Eng.,2000,37(4):251–275.
    [118] C.A.Tang, L.G.Tham, P.K.K.Li, et al. Coupled analysis of flow,stress and damage(FSD)in rock failure[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(4):477–489.
    [119]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特征[M].北京:科学出版社.2004.
    [120] T.H.Yang, J.S.Liu, C.A.Tang. A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations[J].International Journal of Rock Mechanics and Mining Sciences, 2007,44:87-97.
    [121] H.Q.Zhang, Y.N.He, C.A.Tang et al. Application of an Improved Flow-Stress-Damage Model to the Criticality Assessment of Water Inrush in a Mine[J]. Rock Mechanics and Rock Engineering, 2008, DOI 10.1007/s00603-008-0004-2.
    [122] S.X.Yin, S.X.Wang. Effect and mechanism of stresses on rock permeability at different scales[J]. Science in China Series D: Earth Sciences, 2006,49(7):714-723.
    [123] Y.G.He, Z.W.Li, X.L.Yang. Hazard development mechanism and deformation estimation of water solution mining area[J]. Journal of Central South University of Technology, 2006,13(6):738-742.
    [124] W.F.Yang, W.H.Sui, X.H.Xia. Model test of the overburden deformation and failure law in close distance multi-seam mining[J]. Journal of Coal Science and Engineering (China), 2008,14(2):181-185.
    [125]隋旺华,蔡光桃,董青红.近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J].岩石力学与工程学报,2007,26(10):2084-2091.
    [126]隋旺华,董青红.近松散层开采孔隙水压力变化及其对水砂突涌的前兆意义[J].岩石力学与工程学报,2008,27(9):1908-1916.
    [127]蔡光桃,隋旺华.采煤冒裂带上覆松散土层渗透变形的模型试验研究[J].水文地质工程地质,2008 (6):66-69.
    [128]杨伟峰.薄基岩采动破断及其诱发水砂混合流运移特性研究[D].徐州:中国矿业大学博士学位论文,2009.
    [129] Langevin, Christian D. Stochastic Ground Water Flow Simulation with a Fracture Zone Continuum Model[J]. Ground Water, 2003(5):587-601.
    [130] Tsuyoshi Ishida. Acoustic emission monitoring of hydraulic fracturing in laboratory and field[J]. Construction and Building Materials,2006,15(5/6): 283-295.
    [131] A.A.Varga, M.B.Remenyak. System simulation of interaction between hydrotechnical structures and rocks[J]. Power Technology and Engineering, 2006,40(3):8-12.
    [132] N.Rapantova, A.Grmela, D.Vojtek et al. Ground Water Flow Modelling Applications in Mining Hydrogeology[J]. Mine Water and the Environment, 2007,26:264-270.
    [133] V.V.Orekhov, Yu.K.Zaretskii, A.K.Fink. A Predictive Model Analysis of the Stress-Strain State of the Rock Mass Enclosing Chamber Workings at the Tehri Hydroelectric Power Plant[J]. Power Technology and Engineering, 2003,37(4): 232–236.
    [134] Y.S.Yang, Y.H.Der. On the solutions of modeling a slug test performed in a two-zone confined aquifer[J]. Hydrogeology Journal, 2007,15: 297–305.
    [135] O.Mughieda, M.T.Omar. Stress Analysis for Rock Mass Failure with Offset Joints[J].Geotechnical and Geological Engineering, 2008,26(5):543–552.
    [136] J.Rutqvist, O.Stephansson. The role of hydromechanical coupling in fractured rock engineering [J]. Hydrogeology Journal,2003,11:7–40.
    [137] V.Vincenzi, A.Gargini, N.Goldscheider. Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the Northern Apennines (Italy)[J]. Hydrogeology Journal, 2008, DOI 10.1007/s10040-008-0371-5.
    [138]邵爱军,刘唐生,邵太升等.煤矿地下水与底板突水[M].北京:地震出版社,2001.6.
    [139]张培森.采动条件下底板应力场及变形破坏特征的研究[D].青岛:山东科技大学硕士学位论文,2005.
    [140]张文泉,李白英,李家祥等.矿井底板突水点空间分布规律的研究[J].中州煤炭, 1992,1:6–10.
    [141]张文泉.矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究[D].青岛:山东科技大学硕士学位论文,2004.
    [142]张培森.采动条件下底板应力场及变形破坏特征的研究[D].青岛:山东科技大学硕士学位论文,2005.
    [143]牛建立.煤层底板采动岩水耦合作用与高承压水体上安全开采技术研究[D].西安:煤炭科学研究总院博士学位论文,2008.
    [144]周钢,李玉寿,吴振业.大屯矿区地应力测量与特征分析[J].煤炭学报,2005,30(3):314-318.
    [145]孙守增,王峰,于展绅.煤矿开采中的地应力研究[J].煤矿开采,2005,10(3):7-8.
    [146]马小钧,张长福,黎灵.大屯孔庄煤矿深部地应力测量研究[J].煤炭工程,2010,(1):66-68.
    [147]徐玉胜.寺河矿地应力测试与分布规律[J].煤矿安全,2010,(5):128-131.
    [148]李长洪,张吉良,蔡美峰等.大同矿区地应力测量及其与地质构造的关系[J].北京科技大学学报,2008,30(2):115-119.
    [149]韩军,张宏伟.淮南矿区地应力场特征[J].煤田地质与勘探,2009,37(1):17-21.
    [150]康红普,姜铁明,张晓等.晋城矿区地应力场研究及应用[J].岩石力学与工程学报,2009,28(1):1-8.
    [151]樊银辉,孙晓明,夏书贵.旗山煤矿深部地应力场测试及分析研究[J].煤炭技术,2007,(2):1-3.
    [152]刘耀炜.我国地震地下流体科学40a探索历程回顾[J].中国地震,2006,22(3):222-223.
    [153]李民.地下流体对地震前兆作用的综述[J].华北地震科学,2007,25(2):24-28.
    [154]隋旺华,狄乾生.开采沉陷土体变形与孔隙水压相互作用研究进展[J].工程地质学报,1999,7(4):303-309.
    [155] W.H.Sui, Q.S.Di, W.Shen, et al. Mechanism and prediction of thick soil mass deformation due to mining subsidence[C]. Proc.of the 7th Int. Congress IAEG.Rotterdam:A.A.Balkema, 1994:2699-2706.
    [156]赵启峰,孟祥瑞,刘庆林.采动过程中底板岩层变形破坏与损伤机理分析[J].煤矿安全,2008,4:12-16.
    [157]张玉军.基于固流耦合理论的覆岩破坏特征及涌水量预计的数值模拟[J].煤炭学报,2009, 34(5):610-613.
    [158]海龙.基于流固耦合理论的煤层开采底板突水问题研究[D].辽宁工程技术大学硕士学位论文,2007.
    [159]刘树才.煤矿底板突水机理及破坏裂隙带演化动态探测技术[D].中国矿业大学博士学位论文,2008.
    [160]刘树才,刘鑫明,姜志海等.煤层底板导水裂隙演化规律的电法探测研究[J].岩石力学与工程学报,2009,28(2):348-355.
    [161]刘盛东,杨胜伦,王勃等.义马煤业集团公司新义煤矿11011工作面底板破坏深度动态监测中期报告[R].2010.
    [162]张西民,马培智.采煤工作面顶板来压和底板突水关系的数值模拟研究[J].煤田地质与勘探.1998(5):33-35.
    [163]李海梅,关英斌.综采工作面底板破坏深度的研究[J].矿山压力与顶板管理.2002(3):51-54
    [164]徐国元,彭续承.充填法采矿的顶板导水裂隙扩展规律数值模拟研究[J].中南矿冶学院学报.1994(6):681-685.
    [165]李海梅,关英斌.显德汪煤矿煤层底板采动破坏效应的有限元模拟[J].煤炭工程.2002(10): 38-40.
    [166]刘红元,刘建新.采动影响下覆岩垮落过程的数值模拟[J].岩土工程学报,2001(2):201-204.
    [167]徐涛,唐春安等.采场覆岩关键层破断规律的数值模拟[J].岩石力学与工程学报,2002(增): 2129-2133.
    [168]浦海,缪协兴.综放采场覆岩冒落与围岩支撑压力动态分布规律得数值模拟[J].岩石力学与工程学报,2004(7):1123-1126.
    [169]薛世峰,仝兴华,岳伯谦.地下流固耦合理论的研究进展及应用[J].石油大学学报,2000,24(2): 109-114.
    [170]梁冰,孙可明,薛强.地下工程中的流-固耦合问题的探讨[J].辽宁工程技术大学学报2001,20 (2):129-134.
    [171]任长吉,黄涛.裂隙岩体渗流场与应力场耦合数学模型的研究[J].武汉大学学报,2004,37(2): 8-12.
    [172]刘建军,薛强.岩土工程中的若干流-固耦合问题[J].岩土工程界,2004,7(11):27-30.
    [173]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [174]代长青.承压水体上开采底板突水规律的研究[D].淮南:安徽理工大学硕士学位论文,2005.
    [175]孙亚军.基于异构信息的小浪底水库下采煤决策支持研究[D].徐州:中国矿业大学博士学位论文,2008.
    [176]徐智敏.小浪底水库下采煤导水裂隙带发育规律及预测研究[D].徐州:中国矿业大学硕士学位论文,2007.
    [177]国家安全生产管理总局,国家煤矿安监局.煤矿防治水规定[S].北京:煤炭工业出版社,2009.
    [178]张文泉,李白英,李加祥.岩层阻水性能与其结构成分,组合形式的关系[J].煤田地质与勘探,1992,20(4):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700