用户名: 密码: 验证码:
灵武2号煤低温自燃临界温度及其特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的煤炭产量和消费量均居世界首位,但煤层自燃现象却比较严重,严重威胁着煤矿的安全生产,不仅可以造成工作面、矿井封闭与停产,还可能引发瓦斯、煤尘、水煤气爆炸或火烟毒化矿井,酿成人员伤亡的恶性事故。煤自然发火过程可分为潜伏期、自热期和自燃期(或风化期)三个阶段,潜伏期是煤低温氧化蓄热阶段,自热期为加速氧化升温阶段,其转变温度点称为临界温度。研究临界温度及其特性对煤低温自然发火过程及其机理的深入研究具有重要实际意义。
     本文以灵武矿区2号煤层煤样为研究对象。首先,根据煤自燃机理分析,阐述了煤氧复合的反应过程及自燃实质,即煤自然发火主要是由于煤氧复合,放出热量,在一定蓄热环境下引起升温的过程,临界温度是煤自燃发火过程中的突变温度点;其次,利用XK-IV型大型煤自然发火实验台模拟2号煤层煤样低温氧化自然发火过程,得出煤体温度的变化规律,据临界温度的定义和宏观表现,推算出煤样的耗氧速度、放热强度、升温速率、反应物CO、CO2气体产生率等煤自燃特性参数及其与煤体温度的变化规律,在此基础上,提出煤样临界温度的确定方法,得出2号煤样临界温度,以及煤样在临界温度时的煤自燃特性参数及其变化率。最后,将原煤样破碎成不同粒度,采用水(空气)浴程序升温实验装置,分别在相同实验条件下对煤样进行程序升温氧化实验,根据实验结果,分析煤样粒度对临界温度及自燃特性参数的影响规律。
     通过煤自然发火过程中的关键突变温度点—临界温度及其特性的研究,对深入认识煤自燃过程,定量表征煤自燃倾性,具有一定的理论指导意义。
The production and consumption of coal all play the leading role in the world, but coal spontaneous combustion seriously threatens the production safety of coal mines, and leads to working face closing, even ceasing production, it also can cause gas, coal dust and water gas explosion or smoke and flame which envenom coal mines and fatalities. Coal spontaneous combustion can be devided into three periods: latent period, self-heating period and spontaneous ignition period or efflorescence period. Latent period is the low temperature heat accumulating step, self-heating period is accelerating oxidation and temperature increasing step, the temperature changing point is called critical temperature. It’s significant to research the critical temperature and characteristics for deeper research on procedures and mechanism of coal spontaneous combustion under low temperature.
     Taking coal No.2 as experimental sample, first, expatiate on procedures and essence of coal oxidation and spontaneous combustion according to coal spontaneous combustion mechanism analysis, it is because coal oxidation releases heat which accumulates in suitable environment and cause temperature increasing, then comes spontaneous combustion, critical temperature is the sudden changing point in coal spontaneous combustion. Then, XK-IV coal spontaneous combustion experiment system is used to simulate coal No.2 sample’spontaneous combustion procedures, coal temperature relationship is figured out, according to definition of critical temperature and macro performance, relationships bwtween coal spontaneous combustion characteristic parameters and coal temperature are worked out, such as O2 consumption rates, heat releasing intensity, temperature increasing rate, CO and CO2 generating rates etc. Based on that, method for determing coal critical temperature is raised, the critical temperature, characteristic parameters and their changing rates of coal NO.2 under critical temperature are figured out. Finally, original coal sample is breaked up into different grain diameters, water or air temperature programming experiments are carried out in same experimental conditions, according to experiment results, the influence of coal grain diameter on critical temperature and characteristic parameters of coal are analysed.
     According to the research on key temperature changing point in coal spontaneous combustion-critical temperature and its characters, this research is theoretically significant for deep understanding on coal spontaneous combustion procedures and tokening coal spontaneous combustion tendency quantitatively.
引文
[1]李士戎.二氧化碳抑制煤炭氧化自燃性能的实验研究: [学位论文].西安:西安科技大学, 2007
    [2]彭婵2005安全备忘录http://www.cps.com.cn/ebook/ly.asp?id=491,2006.3
    [3]毛占利.高瓦斯煤层自燃火灾防治技术研究: [学位论文].西安:西安科技大学, 2006
    [4]刘高文.煤自燃特性参数研究及应用:[学位论文].西安:西安科技学院,2002
    [5]刘灿.易自燃煤层无煤柱开采自燃规律及防治技术研究:[学位论文].西安:西安科技大学, 2006
    [6]李莉.自燃煤低温氧化放热性实验研究: [学位论文].西安:西安科技大学, 2004
    [7] Carlson G A.Modeling of coal structure by using computer-aided molecular design. ACS symposium series,1991:461~465
    [8]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报. 1996,25(3):111~114
    [9]Chen Xiaodong. On the fundamentals of diffusive self-heating in water containing combustible materials. Chemical Engineering and Processing,1998,37(5):367~378
    [10]Martin R R,Macphee J A,Younger C.Sequential derivation and the SIMS imaging of coal.Energy sources. 1989,11(1):1~8
    [11]Lopez D.Effect of low-temperature oxidation of coal on hydrogen-transfer capability.Fuel,1998,77(14):1623~1628
    [12]Wang H.Theoretical analysis of reaction regimes in low-temperature oxidation ofcoal.Fuel,1999,78(9):1073~1081
    [13]王继仁,邓存宝.煤微观结构与组分量质差异自燃理论[J].煤炭学报,2007,32(12)1291~1296
    [14]舒新前.煤炭自燃的热分析研究[J].中国煤田地质,1994,6(2):27~29
    [15]路继根等.用热重法研究我国四种煤显微组分的燃烧特性[J].燃料化学学报,1996,24(4):329~334
    [16]彭本信.应用热分析技术研究煤的氧化自燃过程[J].煤炭工程师,1992,(2):1-12
    [17]Jose J.Pis, G.de la Puente, E.Fuenye, A.Moran, F.Rubiera. A study of the self-heating of fresh and oxidized coals by differential thermal analysis, Thermochimica Atcta,1996,.(279):93~101
    [18]Garcia P. The use of differential scanning calorimetry to identify coals susceptible to spontaneous combustion[J], Thermochimica acta ,1999,336(1~2),41~46
    [19]Bowes,P.C., Self-heating: Evaluating and controlling the Hazard, Elservier, Amsterdam,1984
    [20]刘剑.煤的活化能理论研究[J].煤炭学报,1999,24(3):316~320
    [21]Shinn J H. Study of coal molecular structure. Fuel,1984,63(8): 83~86
    [22]Schulten H R.rzec A. Radical hydrogenation of coal studied by field ionization mass spectrometry. Fuel Processing technology, 1986,15(1):307~318
    [23]Schulten H R.bbt B G, Frimmel F H. Time-resolved pyrolysis field ionization mass spectrometry of humic material isolated from freshwater. Environmental science and technology, 1987, 21(4): 349~357
    [24]Krichko A A.hpirt M Y.Glazunov M P.etc. Sulfide-molybdenum catalyst for the liquefaction of coal. Solid fuel chemistry, 1988,22(5): 57~61
    [25]Krichko A A.Gagarin S G. New ideas of coal organic matter chemical structure and mechanism of hydrogenation processes. Fuel, 1990,69(7):885~891
    [26]Nishioka M. Test of the proposed two-phase model for high-volatile bituminous coal. Energy & Fuels,1990,4(1): 70~73
    [27]Nishoka M. The associated nature of bituminous coal. Fuel, 1992,71(8):941~948
    [28]Given P H.Marzec A.Barton W A etc. The concept of a mobile or molecular phase within the marcromolecular network of coals: adebate. Fuel,1986,65(8):155~163
    [29]傅家谟.匡宗.干酪根地球化学[M].广州:广东科技出版社,1995
    [30]Jasienko S.Bieganska C.Matuszewska A. Chemiai Fizyka Wegla. Poland: Wroclaw, 1995
    [31]刘旭光.保庆.煤大分子结构的计算机模拟[J].煤炭转化, 1999,22(3):1~5
    [32]X J Hou. Theoretical study on the reactivity of coal structure. Prospects for coal science in the 21st century. 1999:295~298
    [33]P Strka. Chemical structure of maceral groups of coal. Prospects for coal science in the 21st century, 1999:113~116
    [34]葛岭梅.煤分子中活性基团氧化与煤的自燃机制探讨[J].西安矿业学院学报,1988,8(1):90~94
    [35]徐精彩.张辛亥.文虎.等.煤氧复合过程及放热强测算方法[J].中国矿业大学学报,2000,29(3): 253~257
    [36]石婷.邓军.王小芳.等.煤自燃初期的反应机理研究[J].燃料化学学报.2004,32(6):652~657.
    [37]Itay M.Hill C R.Glasser D. Study of the low temperature oxidation of coal. Fuel Processing Technology, 1989,21(2):81~97
    [38]Continillo G.Galiero G.Maffettone P L.etc. Characterization of chaotic in the spontaneous combustion of coal stockpiles. Symposium on combustion, 1996.1585~1592
    [39]贺敦良.徐精彩.煤炭表面反应热与自燃性探讨[J].煤矿安全,1990(6):31~36
    [40]何萍.唐修义.煤氧化过程中气体的形成特征与煤自燃指标气体选择[J].煤炭学报,1994,19(6): 635~643
    [41]舒新前.葛岭梅.神府煤煤岩组分的结构特征及其差异[J].燃料化学学报,1996,24(5): 427~431
    [42]舒新前.朱书全.王祖讷.等.神府煤煤岩组分的表面电位研究[J].中国科学(E辑),1996,26(4): 333~338
    [43]王晓华.葛岭梅.周安宁等.神府煤流化床低温氧化煤分子中活性基团的变化[J].西安科技学院学报,2001,21(1): 40~43
    [44]张玉贵.唐修义.何萍.煤分子结构与煤的自燃倾向性[J].煤矿安全,1989(7):1~5
    [45]张玉贵.镜煤和丝炭自燃倾向性研究[J].煤矿安全,1991 (2):20~24
    [46]Straszheim W E.Markuszewski R. Automated image analysis of minerals and their association with organic components in bituminous coals. Energy & fuels, 1990,4(6):748~754
    [47]D.Chandra and Y.V.Prasad, Effect of coalification on spontaneous combustion of coals, Internation Journal of coal Geology, 1999,(16):225~229
    [48]戴中蜀等.低煤化度煤低温热解脱氧后结构的变化[J].燃料化学学报,1999,27(3):256~261
    [49]高桑功等.关于煤自然发火的研究—煤的碳素、灰与水含量与着火温度的关系[J].探矿与保安,1978,(2):1~4
    [50]田代襄等.关于煤自然发火的研究—煤的碳素、灰与水含量与温度及氧化热的蓄积量等之间的关系[J].探矿与保安,1974,20(3):7~10
    [51]O.N.契尔诺夫.水对煤炭自燃的影响[J].煤矿安全,1983,(5)
    [52]高桑功等.关于煤自然发火的研究—煤的破碎性与自燃的关系[J].探矿与保安,1977,(3):9~13
    [53]徐精彩.煤自燃危险区域判定理论[M].北京:煤炭工业出版社,2001
    [54]兖州矿业集团,西安矿业学院.巷道自燃发火机理与防治技术研究[M],1998
    [55]陆伟.基于耗氧量的煤自燃倾向性快速鉴定方法[J] .湖南科技大学学报. 2008,23(1):15~18
    [56]薛永强.来蔚鹏.王志忠.粒度对煤粒燃烧和热解影响的理论分析[J],煤炭转化. 2005.28(3):19~21
    [57]刘剑.赵凤杰.升温速率对煤的自燃倾向性表征影响的研究[J] ,煤矿安全,2006,05,4~6.
    [58]刘剑.赵凤杰.粒度对煤的自燃倾向性表征影响[J].辽宁工程技术大学学报,2006,25(1):1~3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700